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$ man md.4

MD(4)                                Kernel Interfaces Manual                               MD(4)

NAME

       md - Multiple Device driver aka Linux Software RAID

SYNOPSIS

       /dev/mdn

       /dev/md/n

       /dev/md/name

DESCRIPTION

       The  md  driver provides virtual devices that are created from one or more independent un?

       derlying devices.  This array of devices often contains redundancy and the devices are of?

       ten  disk drives, hence the acronym RAID which stands for a Redundant Array of Independent

       Disks.

       md supports RAID levels 1 (mirroring), 4 (striped array with parity  device),  5  (striped

       array  with distributed parity information), 6 (striped array with distributed dual redun?

       dancy information), and 10 (striped and mirrored).  If some number of  underlying  devices

       fails while using one of these levels, the array will continue to function; this number is

       one for RAID levels 4 and 5, two for RAID level 6, and all but one (N-1) for RAID level 1,

       and dependent on configuration for level 10.

       md  also  supports  a number of pseudo RAID (non-redundant) configurations including RAID0

       (striped array), LINEAR (catenated array), MULTIPATH (a set of different interfaces to the

       same device), and FAULTY (a layer over a single device into which errors can be injected).

   MD METADATA
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       sometimes called a superblock.  The metadata records information about the  structure  and

       state of the array.  This allows the array to be reliably re-assembled after a shutdown.

       From  Linux  kernel version 2.6.10, md provides support for two different formats of meta?

       data, and other formats can be added.  Prior to this release,  only  one  format  is  sup?

       ported.

       The  common format ? known as version 0.90 ? has a superblock that is 4K long and is writ?

       ten into a 64K aligned block that starts at least 64K and less than 128K from the  end  of

       the device (i.e. to get the address of the superblock round the size of the device down to

       a multiple of 64K and then subtract 64K).  The available size of each device is the amount

       of space before the super block, so between 64K and 128K is lost when a device in incorpo?

       rated into an MD array.  This superblock stores multi-byte fields in a processor-dependent

       manner, so arrays cannot easily be moved between computers with different processors.

       The  new  format ? known as version 1 ? has a superblock that is normally 1K long, but can

       be longer.  It is normally stored between 8K and 12K from the end of the device, on  a  4K

       boundary,  though  variations can be stored at the start of the device (version 1.1) or 4K

       from the start of the device (version 1.2).  This metadata format stores multibyte data in

       a  processor-independent  format and supports up to hundreds of component devices (version

       0.90 only supports 28).

       The metadata contains, among other things:

       LEVEL  The manner in which the devices are arranged into the array (LINEAR, RAID0,  RAID1,

              RAID4, RAID5, RAID10, MULTIPATH).

       UUID   a  128  bit  Universally  Unique Identifier that identifies the array that contains

              this device.

       When a version 0.90 array is being reshaped (e.g. adding extra devices to  a  RAID5),  the

       version  number  is  temporarily set to 0.91.  This ensures that if the reshape process is

       stopped in the middle (e.g. by a system crash) and the machine boots into an older  kernel

       that  does  not support reshaping, then the array will not be assembled (which would cause

       data corruption) but will be left untouched until a kernel that can complete  the  reshape

       processes is used.

   ARRAYS WITHOUT METADATA

       While  it  is usually best to create arrays with superblocks so that they can be assembled

       reliably, there are some circumstances when an array  without  superblocks  is  preferred.
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       LEGACY ARRAYS

              Early  versions of the md driver only supported LINEAR and RAID0 configurations and

              did not use a superblock (which is less critical with these configurations).  While

              such arrays should be rebuilt with superblocks if possible, md continues to support

              them.

       FAULTY Being a largely transparent layer over a different device, the  FAULTY  personality

              doesn't gain anything from having a superblock.

       MULTIPATH

              It  is often possible to detect devices which are different paths to the same stor?

              age directly rather than having a distinctive superblock written to the device  and

              searched  for  on  all  paths.   In this case, a MULTIPATH array with no superblock

              makes sense.

       RAID1  In some configurations it might be desired to create  a  RAID1  configuration  that

              does not use a superblock, and to maintain the state of the array elsewhere.  While

              not encouraged for general use, it does have special-purpose uses and is supported.

   ARRAYS WITH EXTERNAL METADATA

       From release 2.6.28, the md driver supports arrays with externally managed metadata.  That

       is,  the metadata is not managed by the kernel but rather by a user-space program which is

       external to the kernel.  This allows support for a variety  of  metadata  formats  without

       cluttering the kernel with lots of details.

       md  is able to communicate with the user-space program through various sysfs attributes so

       that it can make appropriate changes to the metadata - for example to  mark  a  device  as

       faulty.   When necessary, md will wait for the program to acknowledge the event by writing

       to a sysfs attribute.  The manual page for mdmon(8) contains more detail about this inter?

       action.

   CONTAINERS

       Many metadata formats use a single block of metadata to describe a number of different ar?

       rays which all use the same set of devices.  In this case it is helpful for the kernel  to

       know about the full set of devices as a whole.  This set is known to md as a container.  A

       container is an md array with externally managed metadata and with device offset and  size

       so  that it just covers the metadata part of the devices.  The remainder of each device is

       available to be incorporated into various arrays.
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       A LINEAR array simply catenates the available space on each drive to form one  large  vir?

       tual drive.

       One advantage of this arrangement over the more common RAID0 arrangement is that the array

       may be reconfigured at a later time with an extra drive, so the array is made bigger with?

       out disturbing the data that is on the array.  This can even be done on a live array.

       If  a  chunksize  is given with a LINEAR array, the usable space on each device is rounded

       down to a multiple of this chunksize.

   RAID0

       A RAID0 array (which has zero redundancy) is also known as a striped array.  A RAID0 array

       is  configured  at creation with a Chunk Size which must be a power of two (prior to Linux

       2.6.31), and at least 4 kibibytes.

       The RAID0 driver assigns the first chunk of the array to  the  first  device,  the  second

       chunk to the second device, and so on until all drives have been assigned one chunk.  This

       collection of chunks forms a stripe.  Further chunks are gathered into stripes in the same

       way, and are assigned to the remaining space in the drives.

       If  devices in the array are not all the same size, then once the smallest device has been

       exhausted, the RAID0 driver starts collecting chunks into smaller stripes that  only  span

       the drives which still have remaining space.

       A  bug  was  introduced in linux 3.14 which changed the layout of blocks in a RAID0 beyond

       the region that is striped over all devices.  This bug does not affect an array  with  all

       devices the same size, but can affect other RAID0 arrays.

       Linux  5.4  (and some stable kernels to which the change was backported) will not normally

       assemble such an array as it cannot know which layout to use.  There is a module parameter

       "raid0.default_layout"  which  can  be  set to "1" to force the kernel to use the pre-3.14

       layout or to "2" to force it to use the 3.14-and-later layout.  when creating a new  RAID0

       array, mdadm will record the chosen layout in the metadata in a way that allows newer ker?

       nels to assemble the array without needing a module parameter.

       To assemble an old array on a new kernel without using the module  parameter,  use  either

       the --update=layout-original option or the --update=layout-alternate option.

       Once  you have updated the layout you will not be able to mount the array on an older ker?

       nel.  If you need to revert to an older kernel, the layout information can be erased  with

       the  --update=layout-unspecificed option.  If you use this option to --assemble while run?

       ning a newer kernel, the array will NOT assemble, but the metadata will be update so  that Page 4/23



       it can be assembled on an older kernel.

       No  that setting the layout to "unspecified" removes protections against this bug, and you

       must be sure that the kernel you use matches the layout of the array.

   RAID1

       A RAID1 array is also known as a mirrored set (though mirrors tend  to  provide  reflected

       images, which RAID1 does not) or a plex.

       Once  initialised,  each  device in a RAID1 array contains exactly the same data.  Changes

       are written to all devices in parallel.  Data is read from any one device.  The driver at?

       tempts to distribute read requests across all devices to maximise performance.

       All  devices  in  a  RAID1  array should be the same size.  If they are not, then only the

       amount of space available on the smallest device is used (any extra space on other devices

       is wasted).

       Note  that  the read balancing done by the driver does not make the RAID1 performance pro?

       file be the same as for RAID0; a single stream of sequential input will not be accelerated

       (e.g.  a  single  dd),  but multiple sequential streams or a random workload will use more

       than one spindle. In theory, having an N-disk RAID1 will allow  N  sequential  threads  to

       read from all disks.

       Individual  devices in a RAID1 can be marked as "write-mostly".  These drives are excluded

       from the normal read balancing and will only be read from when there is no  other  option.

       This can be useful for devices connected over a slow link.

   RAID4

       A  RAID4  array is like a RAID0 array with an extra device for storing parity. This device

       is the last of the active devices in the array. Unlike RAID0, RAID4 also requires that all

       stripes  span  all  drives, so extra space on devices that are larger than the smallest is

       wasted.

       When any block in a RAID4 array is modified, the parity block for that  stripe  (i.e.  the

       block  in  the  parity device at the same device offset as the stripe) is also modified so

       that the parity block always contains the "parity" for the whole stripe.  I.e. its content

       is  equivalent  to the result of performing an exclusive-or operation between all the data

       blocks in the stripe.

       This allows the array to continue to function if one device fails.  The data that  was  on

       that device can be calculated as needed from the parity block and the other data blocks.
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       RAID5 is very similar to RAID4.  The difference is that the parity blocks for each stripe,

       instead of being on a single device, are distributed across all devices.  This allows more

       parallelism when writing, as two different block updates will quite possibly affect parity

       blocks on different devices so there is less contention.

       This also allows more parallelism when reading, as read requests are distributed over  all

       the devices in the array instead of all but one.

   RAID6

       RAID6  is  similar to RAID5, but can handle the loss of any two devices without data loss.

       Accordingly, it requires N+2 drives to store N drives worth of data.

       The performance for RAID6 is slightly lower but comparable to RAID5  in  normal  mode  and

       single disk failure mode.  It is very slow in dual disk failure mode, however.

   RAID10

       RAID10  provides a combination of RAID1 and RAID0, and is sometimes known as RAID1+0.  Ev?

       ery datablock is duplicated some number of times, and the  resulting  collection  of  dat?

       ablocks are distributed over multiple drives.

       When configuring a RAID10 array, it is necessary to specify the number of replicas of each

       data block that are required (this will usually be 2) and whether their layout  should  be

       "near", "far" or "offset" (with "offset" being available since Linux 2.6.18).

       About the RAID10 Layout Examples:

       The  examples below visualise the chunk distribution on the underlying devices for the re?

       spective layout.

       For simplicity it is assumed that the size of the chunks equals the size of the blocks  of

       the  underlying  devices as well as those of the RAID10 device exported by the kernel (for

       example /dev/md/name).

       Therefore the chunks / chunk numbers map directly to the blocks /block  addresses  of  the

       exported RAID10 device.

       Decimal  numbers  (0, 1, 2, ...) are the chunks of the RAID10 and due to the above assump?

       tion also the blocks and block addresses of the exported RAID10 device.

       Repeated numbers mean copies of a chunk / block (obviously  on  different  underlying  de?

       vices).

       Hexadecimal  numbers (0x00, 0x01, 0x02, ...) are the block addresses of the underlying de?

       vices.
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              When "near" replicas are chosen, the multiple copies of a given chunk are laid  out

              consecutively  ("as close to each other as possible") across the stripes of the ar?

              ray.

              With an even number of devices, they  will  likely  (unless  some  misalignment  is

              present) lay at the very same offset on the different devices.

              This  is  as  the "classic" RAID1+0; that is two groups of mirrored devices (in the

              example below the groups Device #1 / #2 and Device #3 / #4 are each a  RAID1)  both

              in turn forming a striped RAID0.

              Example with 2 copies per chunk and an even number (4) of devices:

                    ?????????????????????????????????????????????????

                    ? Device #1 ? Device #2 ? Device #3 ? Device #4 ?

              ???????????????????????????????????????????????????????

              ?0x00 ?     0     ?     0     ?     1     ?     1     ?

              ?0x01 ?     2     ?     2     ?     3     ?     3     ?

              ?     ?    ...    ?    ...    ?    ...    ?    ...    ?

              ? :   ?     :     ?     :     ?     :     ?     :     ?

              ?     ?    ...    ?    ...    ?    ...    ?    ...    ?

              ?0x80 ?    254    ?    254    ?    255    ?    255    ?

              ???????????????????????????????????????????????????????

                      \---------v---------/   \---------v---------/

                              RAID1                   RAID1

                      \---------------------v---------------------/

                                          RAID0

              Example with 2 copies per chunk and an odd number (5) of devices:

                    ??????????????????????????????????????????????

                    ? Dev #1 ? Dev #2 ? Dev #3 ? Dev #4 ? Dev #5 ?

              ????????????????????????????????????????????????????

              ?0x00 ?   0    ?   0    ?   1    ?   1    ?   2    ?

              ?0x01 ?   2    ?   3    ?   3    ?   4    ?   4    ?

              ?     ?  ...   ?  ...   ?  ...   ?  ...   ?  ...   ?

              ? :   ?   :    ?   :    ?   :    ?   :    ?   :    ?

              ?     ?  ...   ?  ...   ?  ...   ?  ...   ?  ...   ?

              ?0x80 ?  317   ?  318   ?  318   ?  319   ?  319   ? Page 7/23



              ????????????????????????????????????????????????????

        "far" Layout

              When  "far"  replicas are chosen, the multiple copies of a given chunk are laid out

              quite distant ("as far as reasonably possible") from each other.

              First a complete sequence of all data blocks (that is all the data one sees on  the

              exported  RAID10  block  device)  is striped over the devices. Then another (though

              "shifted") complete sequence of all data blocks; and so on (in  the  case  of  more

              than 2 copies per chunk).

              The "shift" needed to prevent placing copies of the same chunks on the same devices

              is actually a cyclic permutation with offset 1 of each of the stripes within a com?

              plete sequence of chunks.

              The offset 1 is relative to the previous complete sequence of chunks, so in case of

              more than 2 copies per chunk one gets the following offsets:

              1. complete sequence of chunks: offset =  0

              2. complete sequence of chunks: offset =  1

              3. complete sequence of chunks: offset =  2

                                     :

              n. complete sequence of chunks: offset = n-1

              Example with 2 copies per chunk and an even number (4) of devices:

                    ?????????????????????????????????????????????????

                    ? Device #1 ? Device #2 ? Device #3 ? Device #4 ?

              ???????????????????????????????????????????????????????

              ?0x00 ?     0     ?     1     ?     2     ?     3     ? \

              ?0x01 ?     4     ?     5     ?     6     ?     7     ? > [#]

              ?     ?    ...    ?    ...    ?    ...    ?    ...    ? ...

              ? :   ?     :     ?     :     ?     :     ?     :     ? :

              ?     ?    ...    ?    ...    ?    ...    ?    ...    ? ...

              ?0x40 ?    252    ?    253    ?    254    ?    255    ? /

              ?0x41 ?     3     ?     0     ?     1     ?     2     ? \

              ?0x42 ?     7     ?     4     ?     5     ?     6     ? > [#]~

              ?     ?    ...    ?    ...    ?    ...    ?    ...    ? ...

              ? :   ?     :     ?     :     ?     :     ?     :     ? :
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              ?0x80 ?    255    ?    252    ?    253    ?    254    ? /

              ???????????????????????????????????????????????????????

              Example with 2 copies per chunk and an odd number (5) of devices:

                    ??????????????????????????????????????????????

                    ? Dev #1 ? Dev #2 ? Dev #3 ? Dev #4 ? Dev #5 ?

              ????????????????????????????????????????????????????

              ?0x00 ?   0    ?   1    ?   2    ?   3    ?   4    ? \

              ?0x01 ?   5    ?   6    ?   7    ?   8    ?   9    ? > [#]

              ?     ?  ...   ?  ...   ?  ...   ?  ...   ?  ...   ? ...

              ? :   ?   :    ?   :    ?   :    ?   :    ?   :    ? :

              ?     ?  ...   ?  ...   ?  ...   ?  ...   ?  ...   ? ...

              ?0x40 ?  315   ?  316   ?  317   ?  318   ?  319   ? /

              ?0x41 ?   4    ?   0    ?   1    ?   2    ?   3    ? \

              ?0x42 ?   9    ?   5    ?   6    ?   7    ?   8    ? > [#]~

              ?     ?  ...   ?  ...   ?  ...   ?  ...   ?  ...   ? ...

              ? :   ?   :    ?   :    ?   :    ?   :    ?   :    ? :

              ?     ?  ...   ?  ...   ?  ...   ?  ...   ?  ...   ? ...

              ?0x80 ?  319   ?  315   ?  316   ?  317   ?  318   ? /

              ????????????????????????????????????????????????????

              With [#] being the complete sequence of chunks and [#]~ the cyclic permutation with

              offset 1  thereof  (in  the  case  of  more  than 2 copies per chunk there would be

              ([#]~)~, (([#]~)~)~, ...).

              The advantage of this layout is that MD can easily spread sequential reads over the

              devices, making them similar to RAID0 in terms of speed.

              The cost is more seeking for writes, making them substantially slower.

       "offset" Layout

              When "offset" replicas are chosen, all the copies of a given chunk are striped con?

              secutively ("offset by the stripe length after each other") over the devices.

              Explained in detail, <number of devices> consecutive chunks are  striped  over  the

              devices,  immediately  followed by a "shifted" copy of these chunks (and by further

              such "shifted" copies in the case of more than 2 copies per chunk).

              This pattern repeats for all further consecutive chunks of the exported RAID10  de?

              vice (in other words: all further data blocks). Page 9/23



              The "shift" needed to prevent placing copies of the same chunks on the same devices

              is actually a cyclic permutation with offset 1 of each of  the  striped  copies  of

              <number of devices> consecutive chunks.

              The  offset 1  is relative to the previous striped copy of <number of devices> con?

              secutive chunks, so in case of more than 2 copies per chunk one gets the  following

              offsets:

              1. <number of devices> consecutive chunks: offset =  0

              2. <number of devices> consecutive chunks: offset =  1

              3. <number of devices> consecutive chunks: offset =  2

                                           :

              n. <number of devices> consecutive chunks: offset = n-1

              Example with 2 copies per chunk and an even number (4) of devices:

                    ?????????????????????????????????????????????????

                    ? Device #1 ? Device #2 ? Device #3 ? Device #4 ?

              ???????????????????????????????????????????????????????

              ?0x00 ?     0     ?     1     ?     2     ?     3     ? ) AA

              ?0x01 ?     3     ?     0     ?     1     ?     2     ? ) AA~

              ?0x02 ?     4     ?     5     ?     6     ?     7     ? ) AB

              ?0x03 ?     7     ?     4     ?     5     ?     6     ? ) AB~

              ?     ?    ...    ?    ...    ?    ...    ?    ...    ? ...

              ? :   ?     :     ?     :     ?     :     ?     :     ?   :

              ?     ?    ...    ?    ...    ?    ...    ?    ...    ? ...

              ?0x79 ?    251    ?    252    ?    253    ?    254    ? ) EX

              ?0x80 ?    254    ?    251    ?    252    ?    253    ? ) EX~

              ???????????????????????????????????????????????????????

              Example with 2 copies per chunk and an odd number (5) of devices:

                    ??????????????????????????????????????????????

                    ? Dev #1 ? Dev #2 ? Dev #3 ? Dev #4 ? Dev #5 ?

              ????????????????????????????????????????????????????

              ?0x00 ?   0    ?   1    ?   2    ?   3    ?   4    ? ) AA

              ?0x01 ?   4    ?   0    ?   1    ?   2    ?   3    ? ) AA~

              ?0x02 ?   5    ?   6    ?   7    ?   8    ?   9    ? ) AB

              ?0x03 ?   9    ?   5    ?   6    ?   7    ?   8    ? ) AB~ Page 10/23



              ?     ?  ...   ?  ...   ?  ...   ?  ...   ?  ...   ? ...

              ? :   ?   :    ?   :    ?   :    ?   :    ?   :    ?   :

              ?     ?  ...   ?  ...   ?  ...   ?  ...   ?  ...   ? ...

              ?0x79 ?  314   ?  315   ?  316   ?  317   ?  318   ? ) EX

              ?0x80 ?  318   ?  314   ?  315   ?  316   ?  317   ? ) EX~

              ????????????????????????????????????????????????????

              With  AA, AB, ...,  AZ, BA, ...  being  the sets of <number of devices> consecutive

              chunks and AA~, AB~, ...,  AZ~, BA~, ...  the  cyclic  permutations  with  offset 1

              thereof (in the case of more than 2 copies per chunk there would be (AA~)~, ...  as

              well as ((AA~)~)~, ... and so on).

              This should give similar read characteristics to "far" if a  suitably  large  chunk

              size is used, but without as much seeking for writes.

       It  should be noted that the number of devices in a RAID10 array need not be a multiple of

       the number of replica of each data block; however, there must be at least as many  devices

       as replicas.

       If,  for example, an array is created with 5 devices and 2 replicas, then space equivalent

       to 2.5 of the devices will be available, and every block will be stored on  two  different

       devices.

       Finally,  it  is possible to have an array with both "near" and "far" copies.  If an array

       is configured with 2 near copies and 2 far copies, then there will be a total of 4  copies

       of  each  block, each on a different drive.  This is an artifact of the implementation and

       is unlikely to be of real value.

   MULTIPATH

       MULTIPATH is not really a RAID at all as there is only one real device in a  MULTIPATH  md

       array.   However there are multiple access points (paths) to this device, and one of these

       paths might fail, so there are some similarities.

       A MULTIPATH array is composed of a number of  logically  different  devices,  often  fibre

       channel  interfaces,  that  all refer the the same real device. If one of these interfaces

       fails (e.g. due to cable problems), the MULTIPATH driver will attempt to redirect requests

       to another interface.

       The  MULTIPATH  drive  is not receiving any ongoing development and should be considered a

       legacy driver.  The device-mapper based multipath drivers should be preferred for new  in?
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   FAULTY

       The  FAULTY  md  module  is provided for testing purposes.  A FAULTY array has exactly one

       component device and is normally assembled without a superblock, so the md  array  created

       provides direct access to all of the data in the component device.

       The  FAULTY module may be requested to simulate faults to allow testing of other md levels

       or of filesystems.  Faults can be chosen to trigger on read requests  or  write  requests,

       and  can  be  transient  (a subsequent read/write at the address will probably succeed) or

       persistent (subsequent read/write of the same address will fail).   Further,  read  faults

       can be "fixable" meaning that they persist until a write request at the same address.

       Fault types can be requested with a period.  In this case, the fault will recur repeatedly

       after the given number of requests of the relevant type.  For example if  persistent  read

       faults have a period of 100, then every 100th read request would generate a fault, and the

       faulty sector would be recorded so that subsequent reads on that sector would also fail.

       There is a limit to the number of faulty sectors that are  remembered.   Faults  generated

       after this limit is exhausted are treated as transient.

       The  list  of  faulty  sectors can be flushed, and the active list of failure modes can be

       cleared.

   UNCLEAN SHUTDOWN

       When changes are made to a RAID1, RAID4, RAID5, RAID6, or RAID10 array there is  a  possi?

       bility  of  inconsistency  for  short periods of time as each update requires at least two

       block to be written to different devices, and these writes probably won't  happen  at  ex?

       actly  the same time.  Thus if a system with one of these arrays is shutdown in the middle

       of a write operation (e.g. due to power failure), the array may not be consistent.

       To handle this situation, the md driver marks an array as "dirty" before writing any  data

       to it, and marks it as "clean" when the array is being disabled, e.g. at shutdown.  If the

       md driver finds an array to be dirty at startup, it proceeds to correct any  possibly  in?

       consistency.   For  RAID1,  this involves copying the contents of the first drive onto all

       other drives.  For RAID4, RAID5 and RAID6 this involves recalculating the parity for  each

       stripe and making sure that the parity block has the correct data.  For RAID10 it involves

       copying one of the replicas of each block onto all the others.   This  process,  known  as

       "resynchronising"  or  "resync"  is  performed  in the background.  The array can still be

       used, though possibly with reduced performance.

       If a RAID4, RAID5 or RAID6 array is degraded (missing at least one drive, two  for  RAID6) Page 12/23



       when it is restarted after an unclean shutdown, it cannot recalculate parity, and so it is

       possible that data might be undetectably corrupted.  The 2.4 md driver does not alert  the

       operator  to this condition.  The 2.6 md driver will fail to start an array in this condi?

       tion without manual intervention, though this behaviour can be overridden by a kernel  pa?

       rameter.

   RECOVERY

       If  the  md  driver  detects a write error on a device in a RAID1, RAID4, RAID5, RAID6, or

       RAID10 array, it immediately disables that device (marking it as faulty) and continues op?

       eration on the remaining devices.  If there are spare drives, the driver will start recre?

       ating on one of the spare drives the data which was on that failed drive, either by  copy?

       ing  a  working  drive  in a RAID1 configuration, or by doing calculations with the parity

       block on RAID4, RAID5 or RAID6, or by finding and copying originals for RAID10.

       In kernels prior to about 2.6.15, a read error would cause the same effect as a write  er?

       ror.   In later kernels, a read-error will instead cause md to attempt a recovery by over?

       writing the bad block. i.e. it will find the correct data from elsewhere,  write  it  over

       the block that failed, and then try to read it back again.  If either the write or the re-

       read fail, md will treat the error the same way that a write error is  treated,  and  will

       fail the whole device.

       While this recovery process is happening, the md driver will monitor accesses to the array

       and will slow down the rate of recovery if other activity is happening, so that normal ac?

       cess  to  the array will not be unduly affected.  When no other activity is happening, the

       recovery process proceeds at full speed.  The actual speed targets for the  two  different

       situations can be controlled by the speed_limit_min and speed_limit_max control files men?

       tioned below.

   SCRUBBING AND MISMATCHES

       As storage devices can develop bad blocks at any time it is valuable to regularly read all

       blocks  on  all devices in an array so as to catch such bad blocks early.  This process is

       called scrubbing.

       md arrays can be scrubbed by writing either check or repair to the file md/sync_action  in

       the sysfs directory for the device.

       Requesting  a  scrub  will  cause md to read every block on every device in the array, and

       check that the data is consistent.  For RAID1 and RAID10, this  means  checking  that  the

       copies  are  identical.  For RAID4, RAID5, RAID6 this means checking that the parity block Page 13/23



       is (or blocks are) correct.

       If a read error is detected during this process, the  normal  read-error  handling  causes

       correct  data  to be found from other devices and to be written back to the faulty device.

       In many case this will effectively fix the bad block.

       If all blocks read successfully but are found to not be consistent, then this is  regarded

       as a mismatch.

       If  check was used, then no action is taken to handle the mismatch, it is simply recorded.

       If repair was used, then a mismatch will be repaired in the same way that  resync  repairs

       arrays.   For  RAID5/RAID6  new  parity blocks are written.  For RAID1/RAID10, all but one

       block are overwritten with the content of that one block.

       A count of mismatches is recorded in the sysfs file md/mismatch_cnt.  This is set to  zero

       when  a scrub starts and is incremented whenever a sector is found that is a mismatch.  md

       normally works in units much larger than a single sector and when it finds a mismatch,  it

       does  not determine exactly how many actual sectors were affected but simply adds the num?

       ber of sectors in the IO unit that was used.  So a value of 128 could simply mean  that  a

       single 64KB check found an error (128 x 512bytes = 64KB).

       If  an  array is created by mdadm with --assume-clean then a subsequent check could be ex?

       pected to find some mismatches.

       On a truly clean RAID5 or RAID6 array, any mismatches should indicate a  hardware  problem

       at some level - software issues should never cause such a mismatch.

       However  on  RAID1 and RAID10 it is possible for software issues to cause a mismatch to be

       reported.  This does not necessarily mean that the data on the  array  is  corrupted.   It

       could  simply  be that the system does not care what is stored on that part of the array -

       it is unused space.

       The most likely cause for an unexpected mismatch on RAID1 or RAID10 occurs if a swap  par?

       tition or swap file is stored on the array.

       When  the swap subsystem wants to write a page of memory out, it flags the page as 'clean'

       in the memory manager and requests the swap device to write it out.  It is quite  possible

       that  the  memory  will  be  changed  while  the write-out is happening.  In that case the

       'clean' flag will be found to be clear when the write completes and so the swap  subsystem

       will simply forget that the swapout had been attempted, and will possibly choose a differ?

       ent page to write out.

       If the swap device was on RAID1 (or RAID10), then the data is sent from memory to a device Page 14/23



       twice (or more depending on the number of devices in the array).  Thus it is possible that

       the memory gets changed between the times it is sent, so different data can be written  to

       the  different  devices in the array.  This will be detected by check as a mismatch.  How?

       ever it does not reflect any corruption as the block where this mismatch occurs  is  being

       treated  by  the  swap  system  as  being empty, and the data will never be read from that

       block.

       It is conceivable for a similar situation to occur on non-swap files, though  it  is  less

       likely.

       Thus the mismatch_cnt value can not be interpreted very reliably on RAID1 or RAID10, espe?

       cially when the device is used for swap.

   BITMAP WRITE-INTENT LOGGING

       From Linux 2.6.13, md supports a bitmap based write-intent log.  If configured, the bitmap

       is  used to record which blocks of the array may be out of sync.  Before any write request

       is honoured, md will make sure that the corresponding bit in the log is set.  After a  pe?

       riod  of  time  with  no  writes  to  an  area of the array, the corresponding bit will be

       cleared.

       This bitmap is used for two optimisations.

       Firstly, after an unclean shutdown, the resync process will consult the  bitmap  and  only

       resync those blocks that correspond to bits in the bitmap that are set.  This can dramati?

       cally reduce resync time.

       Secondly, when a drive fails and is removed from the array, md stops clearing bits in  the

       intent log.  If that same drive is re-added to the array, md will notice and will only re?

       cover the sections of the drive that are covered by bits in the intent log that  are  set.

       This  can allow a device to be temporarily removed and reinserted without causing an enor?

       mous recovery cost.

       The intent log can be stored in a file on a separate device, or it can be stored near  the

       superblocks of an array which has superblocks.

       It  is possible to add an intent log to an active array, or remove an intent log if one is

       present.

       In 2.6.13, intent bitmaps are only supported with RAID1.  Other levels with redundancy are

       supported from 2.6.15.

   BAD BLOCK LIST

       From Linux 3.5 each device in an md array can store a list of known-bad-blocks.  This list Page 15/23



       is 4K in size and usually positioned at the end of the space between  the  superblock  and

       the data.

       When  a  block  cannot be read and cannot be repaired by writing data recovered from other

       devices, the address of the block is stored in the bad block list.  Similarly  if  an  at?

       tempt  to write a block fails, the address will be recorded as a bad block.  If attempting

       to record the bad block fails, the whole device will be marked faulty.

       Attempting to read from a known bad block will cause a read error.  Attempting to write to

       a  known  bad  block will be ignored if any write errors have been reported by the device.

       If there have been no write errors then the data will be written to the  known  bad  block

       and if that succeeds, the address will be removed from the list.

       This  allows  an  array to fail more gracefully - a few blocks on different devices can be

       faulty without taking the whole array out of action.

       The list is particularly useful when recovering to a spare.  If a  few  blocks  cannot  be

       read  from  the  other  devices,  the  bulk of the recovery can complete and those few bad

       blocks will be recorded in the bad block list.

   RAID WRITE HOLE

       Due to non-atomicity nature of RAID write operations,  interruption  of  write  operations

       (system  crash,  etc.)  to RAID456 array can lead to inconsistent parity and data loss (so

       called RAID-5 write hole).  To plug the write hole md supports  two  mechanisms  described

       below.

       DIRTY STRIPE JOURNAL

              From  Linux  4.4,  md  supports write ahead journal for RAID456.  When the array is

              created, an additional journal device can be added to the array through write-jour?

              nal  option.  The  RAID write journal works similar to file system journals. Before

              writing to the data disks, md persists data AND parity of the stripe to the journal

              device.  After  crashes, md searches the journal device for incomplete write opera?

              tions, and replay them to the data disks.

              When the journal device fails, the RAID array is forced to run in read-only mode.

       PARTIAL PARITY LOG

              From Linux 4.12 md supports Partial Parity Log (PPL) for RAID5 arrays  only.   Par?

              tial  parity for a write operation is the XOR of stripe data chunks not modified by

              the write. PPL is stored in the metadata region of RAID  member  drives,  no  addi?

              tional  journal  drive  is  needed.  After crashes, if one of the not modified data Page 16/23



              disks of the stripe is missing, this updated parity can  be  used  to  recover  its

              data.

              This mechanism is documented more fully in the file Documentation/md/raid5-ppl.rst

   WRITE-BEHIND

       From Linux 2.6.14, md supports WRITE-BEHIND on RAID1 arrays.

       This allows certain devices in the array to be flagged as write-mostly.  MD will only read

       from such devices if there is no other option.

       If a write-intent bitmap is also provided, write requests to write-mostly devices will  be

       treated as write-behind requests and md will not wait for writes to those requests to com?

       plete before reporting the write as complete to the filesystem.

       This allows for a RAID1 with WRITE-BEHIND to be used to mirror data over a slow link to  a

       remote computer (providing the link isn't too slow).  The extra latency of the remote link

       will not slow down normal operations, but the remote system will still have  a  reasonably

       up-to-date copy of all data.

   FAILFAST

       From  Linux  4.10,  md supports FAILFAST for RAID1 and RAID10 arrays.  This is a flag that

       can be set on individual drives, though it is usually set on all drives, or no drives.

       When md sends an I/O request to a drive that is marked as FAILFAST,  and  when  the  array

       could  survive the loss of that drive without losing data, md will request that the under?

       lying device does not perform any retries.  This means that a failure will be reported  to

       md  promptly, and it can mark the device as faulty and continue using the other device(s).

       md cannot control the timeout that the underlying devices use to determine  failure.   Any

       changes  desired  to  that  timeout must be set explicitly on the underlying device, sepa?

       rately from using mdadm.

       If a FAILFAST request does fail, and if it is still safe to  mark  the  device  as  faulty

       without  data loss, that will be done and the array will continue functioning on a reduced

       number of devices.  If it is not possible to safely mark the device  as  faulty,  md  will

       retry  the  request  without  disabling retries in the underlying device.  In any case, md

       will not attempt to repair read errors on a device marked as FAILFAST by writing  out  the

       correct.  It will just mark the device as faulty.

       FAILFAST  is  appropriate  for storage arrays that have a low probability of true failure,

       but will sometimes introduce unacceptable delays to I/O requests while performing internal

       maintenance.   The  value  of setting FAILFAST involves a trade-off.  The gain is that the Page 17/23



       chance of unacceptable delays is substantially reduced.  The cost  is  that  the  unlikely

       event  of  data-loss  on one device is slightly more likely to result in data-loss for the

       array.

       When a device in an array using FAILFAST is marked as faulty, it will usually  become  us?

       able  again  in  a  short while.  mdadm makes no attempt to detect that possibility.  Some

       separate mechanism, tuned to the specific details of the expected failure modes, needs  to

       be  created  to monitor devices to see when they return to full functionality, and to then

       re-add them to the array.  In order of this "re-add" functionality to be effective, an ar?

       ray using FAILFAST should always have a write-intent bitmap.

   RESTRIPING

       Restriping,  also  known as Reshaping, is the processes of re-arranging the data stored in

       each stripe into a new layout.  This might involve changing the number of devices  in  the

       array  (so the stripes are wider), changing the chunk size (so stripes are deeper or shal?

       lower), or changing the arrangement of data and parity (possibly changing the RAID  level,

       e.g. 1 to 5 or 5 to 6).

       As of Linux 2.6.35, md can reshape a RAID4, RAID5, or RAID6 array to have a different num?

       ber of devices (more or fewer) and to have a different layout or chunk size.  It can  also

       convert  between  these  different  RAID  levels.   It  can also convert between RAID0 and

       RAID10, and between RAID0 and RAID4 or RAID5.  Other possibilities may  follow  in  future

       kernels.

       During  any  stripe  process there is a 'critical section' during which live data is being

       overwritten on disk.  For the operation of increasing the number of  drives  in  a  RAID5,

       this  critical  section  covers the first few stripes (the number being the product of the

       old and new number of devices).  After this critical section is passed, data is only writ?

       ten  to areas of the array which no longer hold live data ? the live data has already been

       located away.

       For a reshape which reduces the number of devices, the 'critical section' is at the end of

       the reshape process.

       md is not able to ensure data preservation if there is a crash (e.g. power failure) during

       the critical section.  If md is asked to start an array which  failed  during  a  critical

       section of restriping, it will fail to start the array.

       To deal with this possibility, a user-space program must

       ?   Disable writes to that section of the array (using the sysfs interface), Page 18/23



       ?   take a copy of the data somewhere (i.e. make a backup),

       ?   allow  the process to continue and invalidate the backup and restore write access once

           the critical section is passed, and

       ?   provide for restoring the critical data before restarting the  array  after  a  system

           crash.

       mdadm versions from 2.4 do this for growing a RAID5 array.

       For  operations  that  do  not  change the size of the array, like simply increasing chunk

       size, or converting RAID5 to RAID6 with one extra device, the entire process is the criti?

       cal  section.  In this case, the restripe will need to progress in stages, as a section is

       suspended, backed up, restriped, and released.

   SYSFS INTERFACE

       Each block device appears as a directory in sysfs (which is usually mounted at /sys).  For

       MD  devices,  this  directory will contain a subdirectory called md which contains various

       files for providing access to information about the array.

       This interface is documented more fully in the file Documentation/admin-guide/md.rst which

       is distributed with the kernel sources.  That file should be consulted for full documenta?

       tion.  The following are just a selection of attribute files that are available.

       md/sync_speed_min

              This    value,    if    set,    overrides    the     system-wide     setting     in

              /proc/sys/dev/raid/speed_limit_min  for  this array only.  Writing the value system

              to this file will cause the system-wide setting to have effect.

       md/sync_speed_max

              This     is     the     partner     of     md/sync_speed_min     and      overrides

              /proc/sys/dev/raid/speed_limit_max described below.

       md/sync_action

              This can be used to monitor and control the resync/recovery process of MD.  In par?

              ticular, writing "check" here will cause the array to read all data block and check

              that  they  are  consistent (e.g. parity is correct, or all mirror replicas are the

              same).  Any discrepancies found are NOT corrected.

              A count of problems found will be stored in md/mismatch_count.

              Alternately, "repair" can be written which will cause the same  check  to  be  per?

              formed, but any errors will be corrected.

              Finally, "idle" can be written to stop the check/repair process. Page 19/23



       md/stripe_cache_size

              This  is  only available on RAID5 and RAID6.  It records the size (in pages per de?

              vice) of the  stripe cache which is used for synchronising all write operations  to

              the  array  and  all read operations if the array is degraded.  The default is 256.

              Valid values are 17 to 32768.  Increasing this number can increase  performance  in

              some  situations, at some cost in system memory.  Note, setting this value too high

              can result in an "out of memory" condition for the system.

              memory_consumed = system_page_size * nr_disks * stripe_cache_size

       md/preread_bypass_threshold

              This is only available on RAID5 and RAID6.  This variable sets the number of  times

              MD  will  service  a full-stripe-write before servicing a stripe that requires some

              "prereading".   For  fairness  this  defaults  to  1.   Valid  values  are   0   to

              stripe_cache_size.   Setting this to 0 maximizes sequential-write throughput at the

              cost of fairness to threads doing small or random writes.

       md/bitmap/backlog

              The value stored in the file only has any effect on RAID1 when write-mostly devices

              are active, and write requests to those devices are proceed in the background.

              This variable sets a limit on the number of concurrent background writes, the valid

              values are 0 to 16383, 0 means that write-behind is not allowed,  while  any  other

              number  means it can happen.  If there are more write requests than the number, new

              writes will by synchronous.

       md/bitmap/can_clear

              This is for externally managed bitmaps, where the kernel writes the bitmap  itself,

              but metadata describing the bitmap is managed by mdmon or similar.

              When the array is degraded, bits mustn't be cleared. When the array becomes optimal

              again, bit can be cleared, but first the metadata needs to record the current event

              count.  So md sets this to 'false' and notifies mdmon, then mdmon updates the meta?

              data and writes 'true'.

              There is no code in mdmon to actually do this, so maybe it doesn't even work.

       md/bitmap/chunksize

              The bitmap chunksize can only be changed when no bitmap is active,  and  the  value

              should be power of 2 and at least 512.
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              This  indicates  where  the write-intent bitmap for the array is stored.  It can be

              "none" or "file" or a signed offset from the array metadata - measured in  sectors.

              You  cannot  set  a  file by writing here - that can only be done with the SET_BIT?

              MAP_FILE ioctl.

              Write 'none' to 'bitmap/location' will clear  bitmap,  and  the  previous  location

              value must be write to it to restore bitmap.

       md/bitmap/max_backlog_used

              This  keeps  track of the maximum number of concurrent write-behind requests for an

              md array, writing any value to this file will clear it.

       md/bitmap/metadata

              This can be 'internal' or 'clustered' or 'external'. 'internal' is set by  default,

              which  means the metadata for bitmap is stored in the first 256 bytes of the bitmap

              space. 'clustered' means separate bitmap metadata are used for each  cluster  node.

              'external' means that bitmap metadata is managed externally to the kernel.

       md/bitmap/space

              This shows the space (in sectors) which is available at md/bitmap/location, and al?

              lows the kernel to know when it is safe to resize the bitmap to match a resized ar?

              ray. It should big enough to contain the total bytes in the bitmap.

              For  1.0 metadata, assume we can use up to the superblock if before, else to 4K be?

              yond superblock. For other metadata versions, assume no change is possible.

       md/bitmap/time_base

              This shows the time (in seconds) between disk flushes, and is used to  looking  for

              bits in the bitmap to be cleared.

              The default value is 5 seconds, and it should be an unsigned long value.

   KERNEL PARAMETERS

       The md driver recognised several different kernel parameters.

       raid=noautodetect

              This  will disable the normal detection of md arrays that happens at boot time.  If

              a drive is partitioned with MS-DOS style partitions, then if any of the 4 main par?

              titions  has  a  partition  type  of 0xFD, then that partition will normally be in?

              spected to see if it is part of an MD array, and if any full arrays are found, they

              are started.  This kernel parameter disables this behaviour.
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       raid=part

              These are available in 2.6 and later kernels only.  They indicate that autodetected

              MD arrays should be created as partitionable arrays, with a different major  device

              number to the original non-partitionable md arrays.  The device number is listed as

              mdp in /proc/devices.

       md_mod.start_ro=1

       /sys/module/md_mod/parameters/start_ro

              This tells md to start all arrays in read-only mode.  This is a soft read-only that

              will  automatically switch to read-write on the first write request.  However until

              that write request, nothing is written to any device by md, and in  particular,  no

              resync or recovery operation is started.

       md_mod.start_dirty_degraded=1

       /sys/module/md_mod/parameters/start_dirty_degraded

              As  mentioned  above,  md  will not normally start a RAID4, RAID5, or RAID6 that is

              both dirty and degraded as this situation can imply hidden data loss.  This can  be

              awkward  if  the  root  filesystem is affected.  Using this module parameter allows

              such arrays to be started at boot time.  It should be understood that  there  is  a

              real (though small) risk of data corruption in this situation.

       md=n,dev,dev,...

       md=dn,dev,dev,...

              This tells the md driver to assemble /dev/md n from the listed devices.  It is only

              necessary to start the device holding the root filesystem this way.   Other  arrays

              are best started once the system is booted.

              In 2.6 kernels, the d immediately after the = indicates that a partitionable device

              (e.g.  /dev/md/d0) should be created rather than the original non-partitionable de?

              vice.

       md=n,l,c,i,dev...

              This  tells  the md driver to assemble a legacy RAID0 or LINEAR array without a su?

              perblock.  n gives the md device number, l gives the level, 0 for RAID0 or  -1  for

              LINEAR,  c  gives the chunk size as a base-2 logarithm offset by twelve, so 0 means

              4K, 1 means 8K.  i is ignored (legacy support).

FILES
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              Contains information about the status of currently running array.

       /proc/sys/dev/raid/speed_limit_min

              A readable and writable file that reflects the current  "goal"  rebuild  speed  for

              times  when non-rebuild activity is current on an array.  The speed is in Kibibytes

              per second, and is a per-device rate, not a per-array rate (which means that an ar?

              ray  with  more  disks  will shuffle more data for a given speed).   The default is

              1000.

       /proc/sys/dev/raid/speed_limit_max

              A readable and writable file that reflects the current  "goal"  rebuild  speed  for

              times when no non-rebuild activity is current on an array.  The default is 200,000.

SEE ALSO

       mdadm(8),

                                                                                            MD(4)
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