
Rocky Enterprise Linux 9.2 Manual Pages on command 'mawk.1'

$ man mawk.1

MAWK(1) USER COMMANDS MAWK(1)

NAME

 mawk - pattern scanning and text processing language

SYNOPSIS

 mawk [-W option] [-F value] [-v var=value] [--] 'program text' [file ...]

 mawk [-W option] [-F value] [-v var=value] [-f program-file] [--] [file ...]

DESCRIPTION

 mawk is an interpreter for the AWK Programming Language. The AWK language is useful for

 manipulation of data files, text retrieval and processing, and for prototyping and experi?

 menting with algorithms. mawk is a new awk meaning it implements the AWK language as de?

 fined in Aho, Kernighan and Weinberger, The AWK Programming Language, Addison-Wesley Pub?

 lishing, 1988 (hereafter referred to as the AWK book.) mawk conforms to the POSIX 1003.2

 (draft 11.3) definition of the AWK language which contains a few features not described in

 the AWK book, and mawk provides a small number of extensions.

 An AWK program is a sequence of pattern {action} pairs and function definitions. Short

 programs are entered on the command line usually enclosed in ' ' to avoid shell interpre?

 tation. Longer programs can be read in from a file with the -f option. Data input is

 read from the list of files on the command line or from standard input when the list is

 empty. The input is broken into records as determined by the record separator variable,

 RS. Initially, RS = ?\n? and records are synonymous with lines. Each record is compared

 against each pattern and if it matches, the program text for {action} is executed.

OPTIONS

 -F value sets the field separator, FS, to value. Page 1/21

 -f file Program text is read from file instead of from the command line. Multiple

 -f options are allowed.

 -v var=value assigns value to program variable var.

 -- indicates the unambiguous end of options.

 The above options will be available with any POSIX compatible implementation of AWK. Im?

 plementation specific options are prefaced with -W. mawk provides these:

 -W dump writes an assembler like listing of the internal representation of the pro?

 gram to stdout and exits 0 (on successful compilation).

 -W exec file Program text is read from file and this is the last option.

 This is a useful alternative to -f on systems that support the #! ?magic

 number? convention for executable scripts. Those implicitly pass the path?

 name of the script itself as the final parameter, and expect no more than

 one ?-? option on the #! line. Because mawk can combine multiple -W op?

 tions separated by commas, you can use this option when an additional -W

 option is needed.

 -W help prints a usage message to stderr and exits (same as ?-W usage?).

 -W interactive sets unbuffered writes to stdout and line buffered reads from stdin.

 Records from stdin are lines regardless of the value of RS.

 -W posix_space forces mawk not to consider '\n' to be space.

 -W random=num calls srand with the given parameter (and overrides the auto-seeding behav?

 ior).

 -W sprintf=num adjusts the size of mawk's internal sprintf buffer to num bytes. More than

 rare use of this option indicates mawk should be recompiled.

 -W usage prints a usage message to stderr and exits (same as ?-W help?).

 -W version mawk writes its version and copyright to stdout and compiled limits to

 stderr and exits 0.

 mawk accepts abbreviations for any of these options, e.g., ?-W v? and ?-Wv? both tell mawk

 to show its version.

 mawk allows multiple -W options to be combined by separating the options with commas,

 e.g., -Wsprint=2000,posix. This is useful for executable #! ?magic number? invocations

 in which only one argument is supported, e.g., -Winteractive,exec.

THE AWK LANGUAGE

 1. Program structure Page 2/21

 An AWK program is a sequence of pattern {action} pairs and user function definitions.

 A pattern can be:

 BEGIN

 END

 expression

 expression , expression

 One, but not both, of pattern {action} can be omitted. If {action} is omitted it is im?

 plicitly { print }. If pattern is omitted, then it is implicitly matched. BEGIN and END

 patterns require an action.

 Statements are terminated by newlines, semi-colons or both. Groups of statements such as

 actions or loop bodies are blocked via { ... } as in C. The last statement in a block

 doesn't need a terminator. Blank lines have no meaning; an empty statement is terminated

 with a semi-colon. Long statements can be continued with a backslash, \. A statement can

 be broken without a backslash after a comma, left brace, &&, ||, do, else, the right

 parenthesis of an if, while or for statement, and the right parenthesis of a function def?

 inition. A comment starts with # and extends to, but does not include the end of line.

 The following statements control program flow inside blocks.

 if (expr) statement

 if (expr) statement else statement

 while (expr) statement

 do statement while (expr)

 for (opt_expr ; opt_expr ; opt_expr) statement

 for (var in array) statement

 continue

 break

 2. Data types, conversion and comparison

 There are two basic data types, numeric and string. Numeric constants can be integer like

 -2, decimal like 1.08, or in scientific notation like -1.1e4 or .28E-3. All numbers are

 represented internally and all computations are done in floating point arithmetic. So for

 example, the expression 0.2e2 == 20 is true and true is represented as 1.0.

 String constants are enclosed in double quotes.

 "This is a string with a newline at the end.\n"

 Strings can be continued across a line by escaping (\) the newline. The following escape Page 3/21

 sequences are recognized.

 \\ \

 \" "

 \a alert, ascii 7

 \b backspace, ascii 8

 \t tab, ascii 9

 \n newline, ascii 10

 \v vertical tab, ascii 11

 \f formfeed, ascii 12

 \r carriage return, ascii 13

 \ddd 1, 2 or 3 octal digits for ascii ddd

 \xhh 1 or 2 hex digits for ascii hh

 If you escape any other character \c, you get \c, i.e., mawk ignores the escape.

 There are really three basic data types; the third is number and string which has both a

 numeric value and a string value at the same time. User defined variables come into exis?

 tence when first referenced and are initialized to null, a number and string value which

 has numeric value 0 and string value "". Non-trivial number and string typed data come

 from input and are typically stored in fields. (See section 4).

 The type of an expression is determined by its context and automatic type conversion oc?

 curs if needed. For example, to evaluate the statements

 y = x + 2 ; z = x "hello"

 The value stored in variable y will be typed numeric. If x is not numeric, the value read

 from x is converted to numeric before it is added to 2 and stored in y. The value stored

 in variable z will be typed string, and the value of x will be converted to string if nec?

 essary and concatenated with "hello". (Of course, the value and type stored in x is not

 changed by any conversions.) A string expression is converted to numeric using its long?

 est numeric prefix as with atof(3). A numeric expression is converted to string by re?

 placing expr with sprintf(CONVFMT, expr), unless expr can be represented on the host ma?

 chine as an exact integer then it is converted to sprintf("%d", expr). Sprintf() is an

 AWK built-in that duplicates the functionality of sprintf(3), and CONVFMT is a built-in

 variable used for internal conversion from number to string and initialized to "%.6g".

 Explicit type conversions can be forced, expr "" is string and expr+0 is numeric.

 To evaluate, expr1 rel-op expr2, if both operands are numeric or number and string then Page 4/21

 the comparison is numeric; if both operands are string the comparison is string; if one

 operand is string, the non-string operand is converted and the comparison is string. The

 result is numeric, 1 or 0.

 In boolean contexts such as, if (expr) statement, a string expression evaluates true if

 and only if it is not the empty string ""; numeric values if and only if not numerically

 zero.

 3. Regular expressions

 In the AWK language, records, fields and strings are often tested for matching a regular

 expression. Regular expressions are enclosed in slashes, and

 expr ~ /r/

 is an AWK expression that evaluates to 1 if expr ?matches? r, which means a substring of

 expr is in the set of strings defined by r. With no match the expression evaluates to 0;

 replacing ~ with the ?not match? operator, !~ , reverses the meaning. As pattern-action

 pairs,

 /r/ { action } and $0 ~ /r/ { action }

 are the same, and for each input record that matches r, action is executed. In fact, /r/

 is an AWK expression that is equivalent to ($0 ~ /r/) anywhere except when on the right

 side of a match operator or passed as an argument to a built-in function that expects a

 regular expression argument.

 AWK uses extended regular expressions as with the -E option of grep(1). The regular ex?

 pression metacharacters, i.e., those with special meaning in regular expressions are

 \ ^ $. [] | () * + ?

 Regular expressions are built up from characters as follows:

 c matches any non-metacharacter c.

 \c matches a character defined by the same escape sequences used in string

 constants or the literal character c if \c is not an escape sequence.

 . matches any character (including newline).

 ^ matches the front of a string.

 $ matches the back of a string.

 [c1c2c3...] matches any character in the class c1c2c3... . An interval of charac?

 ters is denoted c1-c2 inside a class [...].

 [^c1c2c3...] matches any character not in the class c1c2c3...

 Regular expressions are built up from other regular expressions as follows: Page 5/21

 r1r2 matches r1 followed immediately by r2 (concatenation).

 r1 | r2 matches r1 or r2 (alternation).

 r* matches r repeated zero or more times.

 r+ matches r repeated one or more times.

 r? matches r zero or once.

 (r) matches r, providing grouping.

 The increasing precedence of operators is alternation, concatenation and unary (*, + or

 ?).

 For example,

 /^[_a-zA-Z][_a-zA-Z0-9]*$/ and

 /^[-+]?([0-9]+\.?|\.[0-9])[0-9]*([eE][-+]?[0-9]+)?$/

 are matched by AWK identifiers and AWK numeric constants respectively. Note that ?.? has

 to be escaped to be recognized as a decimal point, and that metacharacters are not special

 inside character classes.

 Any expression can be used on the right hand side of the ~ or !~ operators or passed to a

 built-in that expects a regular expression. If needed, it is converted to string, and

 then interpreted as a regular expression. For example,

 BEGIN { identifier = "[_a-zA-Z][_a-zA-Z0-9]*" }

 $0 ~ "^" identifier

 prints all lines that start with an AWK identifier.

 mawk recognizes the empty regular expression, //, which matches the empty string and hence

 is matched by any string at the front, back and between every character. For example,

 echo abc | mawk { gsub(//, "X") ; print }

 XaXbXcX

 4. Records and fields

 Records are read in one at a time, and stored in the field variable $0. The record is

 split into fields which are stored in $1, $2, ..., $NF. The built-in variable NF is set

 to the number of fields, and NR and FNR are incremented by 1. Fields above $NF are set to

 "".

 Assignment to $0 causes the fields and NF to be recomputed. Assignment to NF or to a

 field causes $0 to be reconstructed by concatenating the $i's separated by OFS. Assign?

 ment to a field with index greater than NF, increases NF and causes $0 to be recon?

 structed. Page 6/21

 Data input stored in fields is string, unless the entire field has numeric form and then

 the type is number and string. For example,

 echo 24 24E |

 mawk '{ print($1>100, $1>"100", $2>100, $2>"100") }'

 0 1 1 1

 $0 and $2 are string and $1 is number and string. The first comparison is numeric, the

 second is string, the third is string (100 is converted to "100"), and the last is string.

 5. Expressions and operators

 The expression syntax is similar to C. Primary expressions are numeric constants, string

 constants, variables, fields, arrays and function calls. The identifier for a variable,

 array or function can be a sequence of letters, digits and underscores, that does not

 start with a digit. Variables are not declared; they exist when first referenced and are

 initialized to null.

 New expressions are composed with the following operators in order of increasing prece?

 dence.

 assignment = += -= *= /= %= ^=

 conditional ? :

 logical or ||

 logical and &&

 array membership in

 matching ~ !~

 relational < > <= >= == !=

 concatenation (no explicit operator)

 add ops + -

 mul ops * / %

 unary + -

 logical not !

 exponentiation ^

 inc and dec ++ -- (both post and pre)

 field $

 Assignment, conditional and exponentiation associate right to left; the other operators

 associate left to right. Any expression can be parenthesized.

 6. Arrays Page 7/21

 Awk provides one-dimensional arrays. Array elements are expressed as array[expr]. Expr

 is internally converted to string type, so, for example, A[1] and A["1"] are the same ele?

 ment and the actual index is "1". Arrays indexed by strings are called associative ar?

 rays. Initially an array is empty; elements exist when first accessed. An expression,

 expr in array evaluates to 1 if array[expr] exists, else to 0.

 There is a form of the for statement that loops over each index of an array.

 for (var in array) statement

 sets var to each index of array and executes statement. The order that var transverses

 the indices of array is not defined.

 The statement, delete array[expr], causes array[expr] not to exist. mawk supports an ex?

 tension, delete array, which deletes all elements of array.

 Multidimensional arrays are synthesized with concatenation using the built-in variable

 SUBSEP. array[expr1,expr2] is equivalent to array[expr1 SUBSEP expr2]. Testing for a

 multidimensional element uses a parenthesized index, such as

 if ((i, j) in A) print A[i, j]

 7. Builtin-variables

 The following variables are built-in and initialized before program execution.

 ARGC number of command line arguments.

 ARGV array of command line arguments, 0..ARGC-1.

 CONVFMT format for internal conversion of numbers to string, initially = "%.6g".

 ENVIRON array indexed by environment variables. An environment string, var=value

 is stored as ENVIRON[var] = value.

 FILENAME name of the current input file.

 FNR current record number in FILENAME.

 FS splits records into fields as a regular expression.

 NF number of fields in the current record.

 NR current record number in the total input stream.

 OFMT format for printing numbers; initially = "%.6g".

 OFS inserted between fields on output, initially = " ".

 ORS terminates each record on output, initially = "\n".

 RLENGTH length set by the last call to the built-in function, match().

 RS input record separator, initially = "\n".

 RSTART index set by the last call to match(). Page 8/21

 SUBSEP used to build multiple array subscripts, initially = "\034".

 8. Built-in functions

 String functions

 gsub(r,s,t) gsub(r,s)

 Global substitution, every match of regular expression r in variable t is re?

 placed by string s. The number of replacements is returned. If t is omitted,

 $0 is used. An & in the replacement string s is replaced by the matched sub?

 string of t. \& and \\ put literal & and \, respectively, in the replacement

 string.

 index(s,t)

 If t is a substring of s, then the position where t starts is returned, else 0

 is returned. The first character of s is in position 1.

 length(s)

 Returns the length of string or array. s.

 match(s,r)

 Returns the index of the first longest match of regular expression r in string

 s. Returns 0 if no match. As a side effect, RSTART is set to the return

 value. RLENGTH is set to the length of the match or -1 if no match. If the

 empty string is matched, RLENGTH is set to 0, and 1 is returned if the match

 is at the front, and length(s)+1 is returned if the match is at the back.

 split(s,A,r) split(s,A)

 String s is split into fields by regular expression r and the fields are

 loaded into array A. The number of fields is returned. See section 11 below

 for more detail. If r is omitted, FS is used.

 sprintf(format,expr-list)

 Returns a string constructed from expr-list according to format. See the de?

 scription of printf() below.

 sub(r,s,t) sub(r,s)

 Single substitution, same as gsub() except at most one substitution.

 substr(s,i,n) substr(s,i)

 Returns the substring of string s, starting at index i, of length n. If n is

 omitted, the suffix of s, starting at i is returned.

 tolower(s) Page 9/21

 Returns a copy of s with all upper case characters converted to lower case.

 toupper(s)

 Returns a copy of s with all lower case characters converted to upper case.

 Time functions

 These are available on systems which support the corresponding C mktime and strftime func?

 tions:

 mktime(specification)

 converts a date specification to a timestamp with the same units as systime.

 The date specification is a string containing the components of the date as

 decimal integers:

 YYYY

 the year, e.g., 2012

 MM the month of the year starting at 1

 DD the day of the month starting at 1

 HH hour (0-23)

 MM minute (0-59)

 SS seconds (0-59)

 DST

 tells how to treat timezone versus daylight savings time:

 positive

 DST is in effect

 zero (default)

 DST is not in effect

 negative

 mktime() should (use timezone information and system databases to) at?

 tempt to determine whether DST is in effect at the specified time.

 strftime([format [, timestamp [, utc]]])

 formats the given timestamp using the format (passed to the C strftime func?

 tion):

 ? If the format parameter is missing, "%c" is used.

 ? If the timestamp parameter is missing, the current value from systime is

 used.

 ? If the utc parameter is present and nonzero, the result is in UTC. Other? Page 10/21

 wise local time is used.

 systime()

 returns the current time of day as the number of seconds since the Epoch

 (1970-01-01 00:00:00 UTC on POSIX systems).

 Arithmetic functions

 atan2(y,x) Arctan of y/x between -pi and pi.

 cos(x) Cosine function, x in radians.

 exp(x) Exponential function.

 int(x) Returns x truncated towards zero.

 log(x) Natural logarithm.

 rand() Returns a random number between zero and one.

 sin(x) Sine function, x in radians.

 sqrt(x) Returns square root of x.

 srand(expr) srand()

 Seeds the random number generator, using the clock if expr is omitted, and re?

 turns the value of the previous seed. Srand(expr) is useful for repeating

 pseudo random sequences.

 Note: mawk is normally configured to seed the random number generator from the

 clock at startup, making it unnecessary to call srand(). This feature can be

 suppressed via conditional compile, or overridden using the -Wrandom option.

 9. Input and output

 There are two output statements, print and printf.

 print writes $0 ORS to standard output.

 print expr1, expr2, ..., exprn

 writes expr1 OFS expr2 OFS ... exprn ORS to standard output. Numeric expres?

 sions are converted to string with OFMT.

 printf format, expr-list

 duplicates the printf C library function writing to standard output. The com?

 plete ANSI C format specifications are recognized with conversions %c, %d, %e,

 %E, %f, %g, %G, %i, %o, %s, %u, %x, %X and %%, and conversion qualifiers h and

 l.

 The argument list to print or printf can optionally be enclosed in parentheses. Print

 formats numbers using OFMT or "%d" for exact integers. "%c" with a numeric argument Page 11/21

 prints the corresponding 8 bit character, with a string argument it prints the first char?

 acter of the string. The output of print and printf can be redirected to a file or com?

 mand by appending > file, >> file or | command to the end of the print statement. Redi?

 rection opens file or command only once, subsequent redirections append to the already

 open stream. By convention, mawk associates the filename

 ? "/dev/stderr" with stderr,

 ? "/dev/stdout" with stdout,

 ? "-" and "/dev/stdin" with stdin.

 The association with stderr is especially useful because it allows print and printf to be

 redirected to stderr. These names can also be passed to functions.

 The input function getline has the following variations.

 getline

 reads into $0, updates the fields, NF, NR and FNR.

 getline < file

 reads into $0 from file, updates the fields and NF.

 getline var

 reads the next record into var, updates NR and FNR.

 getline var < file

 reads the next record of file into var.

 command | getline

 pipes a record from command into $0 and updates the fields and NF.

 command | getline var

 pipes a record from command into var.

 Getline returns 0 on end-of-file, -1 on error, otherwise 1.

 Commands on the end of pipes are executed by /bin/sh.

 The function close(expr) closes the file or pipe associated with expr. Close returns 0 if

 expr is an open file, the exit status if expr is a piped command, and -1 otherwise. Close

 is used to reread a file or command, make sure the other end of an output pipe is finished

 or conserve file resources.

 The function fflush(expr) flushes the output file or pipe associated with expr. Fflush

 returns 0 if expr is an open output stream else -1. Fflush without an argument flushes

 stdout. Fflush with an empty argument ("") flushes all open output.

 The function system(expr) uses the C runtime system call to execute expr and returns the Page 12/21

 corresponding wait status of the command as follows:

 ? if the system call failed, setting the status to -1, mawk returns that value.

 ? if the command exited normally, mawk returns its exit-status.

 ? if the command exited due to a signal such as SIGHUP, mawk returns the signal number

 plus 256.

 Changes made to the ENVIRON array are not passed to commands executed with system or

 pipes.

 10. User defined functions

 The syntax for a user defined function is

 function name(args) { statements }

 The function body can contain a return statement

 return opt_expr

 A return statement is not required. Function calls may be nested or recursive. Functions

 are passed expressions by value and arrays by reference. Extra arguments serve as local

 variables and are initialized to null. For example, csplit(s,A) puts each character of s

 into array A and returns the length of s.

 function csplit(s, A, n, i)

 {

 n = length(s)

 for(i = 1 ; i <= n ; i++) A[i] = substr(s, i, 1)

 return n

 }

 Putting extra space between passed arguments and local variables is conventional. Func?

 tions can be referenced before they are defined, but the function name and the '(' of the

 arguments must touch to avoid confusion with concatenation.

 A function parameter is normally a scalar value (number or string). If there is a forward

 reference to a function using an array as a parameter, the function's corresponding param?

 eter will be treated as an array.

 11. Splitting strings, records and files

 Awk programs use the same algorithm to split strings into arrays with split(), and records

 into fields on FS. mawk uses essentially the same algorithm to split files into records

 on RS.

 Split(expr,A,sep) works as follows: Page 13/21

 (1) If sep is omitted, it is replaced by FS. Sep can be an expression or regular ex?

 pression. If it is an expression of non-string type, it is converted to string.

 (2) If sep = " " (a single space), then <SPACE> is trimmed from the front and back of

 expr, and sep becomes <SPACE>. mawk defines <SPACE> as the regular expression

 /[\t\n]+/. Otherwise sep is treated as a regular expression, except that meta-

 characters are ignored for a string of length 1, e.g., split(x, A, "*") and

 split(x, A, /*/) are the same.

 (3) If expr is not string, it is converted to string. If expr is then the empty

 string "", split() returns 0 and A is set empty. Otherwise, all non-overlapping,

 non-null and longest matches of sep in expr, separate expr into fields which are

 loaded into A. The fields are placed in A[1], A[2], ..., A[n] and split() returns

 n, the number of fields which is the number of matches plus one. Data placed in A

 that looks numeric is typed number and string.

 Splitting records into fields works the same except the pieces are loaded into $1, $2,...,

 $NF. If $0 is empty, NF is set to 0 and all $i to "".

 mawk splits files into records by the same algorithm, but with the slight difference that

 RS is really a terminator instead of a separator. (ORS is really a terminator too).

 E.g., if FS = ?:+? and $0 = ?a::b:? , then NF = 3 and $1 = ?a?, $2 = ?b? and $3 = "",

 but if ?a::b:? is the contents of an input file and RS = ?:+?, then there are two

 records ?a? and ?b?.

 RS = " " is not special.

 If FS = "", then mawk breaks the record into individual characters, and, similarly,

 split(s,A,"") places the individual characters of s into A.

 12. Multi-line records

 Since mawk interprets RS as a regular expression, multi-line records are easy. Setting RS

 = "\n\n+", makes one or more blank lines separate records. If FS = " " (the default),

 then single newlines, by the rules for <SPACE> above, become space and single newlines are

 field separators.

 For example, if

 ? a file is "a b\nc\n\n",

 ? RS = "\n\n+" and

 ? FS = " ",

 then there is one record ?a b\nc? with three fields ?a?, ?b? and ?c?: Page 14/21

 ? Changing FS = ?\n?, gives two fields ?a b? and ?c?;

 ? changing FS = ??, gives one field identical to the record.

 If you want lines with spaces or tabs to be considered blank, set RS = ?\n([\t]*\n)+?.

 For compatibility with other awks, setting RS = "" has the same effect as if blank lines

 are stripped from the front and back of files and then records are determined as if RS =

 ?\n\n+?. POSIX requires that ?\n? always separates records when RS = "" regardless of the

 value of FS. mawk does not support this convention, because defining ?\n? as <SPACE>

 makes it unnecessary.

 Most of the time when you change RS for multi-line records, you will also want to change

 ORS to ?\n\n? so the record spacing is preserved on output.

 13. Program execution

 This section describes the order of program execution. First ARGC is set to the total

 number of command line arguments passed to the execution phase of the program. ARGV[0] is

 set the name of the AWK interpreter and ARGV[1] ... ARGV[ARGC-1] holds the remaining com?

 mand line arguments exclusive of options and program source. For example with

 mawk -f prog v=1 A t=hello B

 ARGC = 5 with ARGV[0] = "mawk", ARGV[1] = "v=1", ARGV[2] = "A", ARGV[3] = "t=hello" and

 ARGV[4] = "B".

 Next, each BEGIN block is executed in order. If the program consists entirely of BEGIN

 blocks, then execution terminates, else an input stream is opened and execution continues.

 If ARGC equals 1, the input stream is set to stdin, else the command line arguments

 ARGV[1] ... ARGV[ARGC-1] are examined for a file argument.

 The command line arguments divide into three sets: file arguments, assignment arguments

 and empty strings "". An assignment has the form var=string. When an ARGV[i] is examined

 as a possible file argument, if it is empty it is skipped; if it is an assignment argu?

 ment, the assignment to var takes place and i skips to the next argument; else ARGV[i] is

 opened for input. If it fails to open, execution terminates with exit code 2. If no com?

 mand line argument is a file argument, then input comes from stdin. Getline in a BEGIN

 action opens input. ?-? as a file argument denotes stdin.

 Once an input stream is open, each input record is tested against each pattern, and if it

 matches, the associated action is executed. An expression pattern matches if it is bool?

 ean true (see the end of section 2). A BEGIN pattern matches before any input has been

 read, and an END pattern matches after all input has been read. A range pattern, Page 15/21

 expr1,expr2 , matches every record between the match of expr1 and the match expr2 inclu?

 sively.

 When end of file occurs on the input stream, the remaining command line arguments are ex?

 amined for a file argument, and if there is one it is opened, else the END pattern is con?

 sidered matched and all END actions are executed.

 In the example, the assignment v=1 takes place after the BEGIN actions are executed, and

 the data placed in v is typed number and string. Input is then read from file A. On end

 of file A, t is set to the string "hello", and B is opened for input. On end of file B,

 the END actions are executed.

 Program flow at the pattern {action} level can be changed with the

 next

 nextfile

 exit opt_expr

 statements:

 ? A next statement causes the next input record to be read and pattern testing to

 restart with the first pattern {action} pair in the program.

 ? A nextfile statement tells mawk to stop processing the current input file. It then

 updates FILENAME to the next file listed on the command line, and resets FNR to 1.

 ? An exit statement causes immediate execution of the END actions or program termination

 if there are none or if the exit occurs in an END action. The opt_expr sets the exit

 value of the program unless overridden by a later exit or subsequent error.

EXAMPLES

 1. emulate cat.

 { print }

 2. emulate wc.

 { chars += length($0) + 1 # add one for the \n

 words += NF

 }

 END{ print NR, words, chars }

 3. count the number of unique ?real words?.

 BEGIN { FS = "[^A-Za-z]+" }

 { for(i = 1 ; i <= NF ; i++) word[$i] = "" }

 END { delete word[""] Page 16/21

 for (i in word) cnt++

 print cnt

 }

 4. sum the second field of every record based on the first field.

 $1 ~ /credit|gain/ { sum += $2 }

 $1 ~ /debit|loss/ { sum -= $2 }

 END { print sum }

 5. sort a file, comparing as string

 { line[NR] = $0 "" } # make sure of comparison type

 # in case some lines look numeric

 END { isort(line, NR)

 for(i = 1 ; i <= NR ; i++) print line[i]

 }

 #insertion sort of A[1..n]

 function isort(A, n, i, j, hold)

 {

 for(i = 2 ; i <= n ; i++)

 {

 hold = A[j = i]

 while (A[j-1] > hold)

 { j-- ; A[j+1] = A[j] }

 A[j] = hold

 }

 # sentinel A[0] = "" will be created if needed

 }

COMPATIBILITY ISSUES

 MAWK 1.3.3 versus POSIX 1003.2 Draft 11.3

 The POSIX 1003.2(draft 11.3) definition of the AWK language is AWK as described in the AWK

 book with a few extensions that appeared in SystemVR4 nawk. The extensions are:

 ? New functions: toupper() and tolower().

 ? New variables: ENVIRON[] and CONVFMT.

 ? ANSI C conversion specifications for printf() and sprintf().

 ? New command options: -v var=value, multiple -f options and implementation options Page 17/21

 as arguments to -W.

 ? For systems (MS-DOS or Windows) which provide a setmode function, an environment

 variable MAWKBINMODE and a built-in variable BINMODE. The bits of the BINMODE

 value tell mawk how to modify the RS and ORS variables:

 0 set standard input to binary mode, and if BIT-2 is unset, set RS to "\r\n"

 (CR/LF) rather than "\n" (LF).

 1 set standard output to binary mode, and if BIT-2 is unset, set ORS to "\r\n"

 (CR/LF) rather than "\n" (LF).

 2 suppress the assignment to RS and ORS of CR/LF, making it possible to run

 scripts and generate output compatible with Unix line-endings.

 POSIX AWK is oriented to operate on files a line at a time. RS can be changed from "\n"

 to another single character, but it is hard to find any use for this ? there are no exam?

 ples in the AWK book. By convention, RS = "", makes one or more blank lines separate

 records, allowing multi-line records. When RS = "", "\n" is always a field separator re?

 gardless of the value in FS.

 mawk, on the other hand, allows RS to be a regular expression. When "\n" appears in

 records, it is treated as space, and FS always determines fields.

 Removing the line at a time paradigm can make some programs simpler and can often improve

 performance. For example, redoing example 3 from above,

 BEGIN { RS = "[^A-Za-z]+" }

 { word[$0] = "" }

 END { delete word[""]

 for(i in word) cnt++

 print cnt

 }

 counts the number of unique words by making each word a record. On moderate size files,

 mawk executes twice as fast, because of the simplified inner loop.

 The following program replaces each comment by a single space in a C program file,

 BEGIN {

 RS = "/*([^*]|*+[^/*])**+/"

 # comment is record separator

 ORS = " "

 getline hold Page 18/21

 }

 { print hold ; hold = $0 }

 END { printf "%s" , hold }

 Buffering one record is needed to avoid terminating the last record with a space.

 With mawk, the following are all equivalent,

 x ~ /a\+b/ x ~ "a\+b" x ~ "a\\+b"

 The strings get scanned twice, once as string and once as regular expression. On the

 string scan, mawk ignores the escape on non-escape characters while the AWK book advocates

 \c be recognized as c which necessitates the double escaping of meta-characters in

 strings. POSIX explicitly declines to define the behavior which passively forces programs

 that must run under a variety of awks to use the more portable but less readable, double

 escape.

 POSIX AWK does not recognize "/dev/std{in,out,err}". Some systems provide an actual de?

 vice for this, allowing AWKs which do not implement the feature directly to support it.

 POSIX AWK does not recognize \x hex escape sequences in strings. Unlike ANSI C, mawk lim?

 its the number of digits that follows \x to two as the current implementation only sup?

 ports 8 bit characters. The built-in fflush first appeared in a recent (1993) AT&T awk

 released to netlib, and is not part of the POSIX standard. Aggregate deletion with delete

 array is not part of the POSIX standard.

 POSIX explicitly leaves the behavior of FS = "" undefined, and mentions splitting the

 record into characters as a possible interpretation, but currently this use is not porta?

 ble across implementations.

 Random numbers

 POSIX does not prescribe a method for initializing random numbers at startup.

 In practice, most implementations do nothing special, which makes srand and rand follow

 the C runtime library, making the initial seed value 1. Some implementations (Solaris

 XPG4 and Tru64) return 0 from the first call to srand, although the results from rand be?

 have as if the initial seed is 1. Other implementations return 1.

 While mawk can call srand at startup with no parameter (initializing random numbers from

 the clock), this feature may be suppressed using conditional compilation.

 Extensions added for compatibility for GAWK and BWK

 Nextfile is a gawk extension (also implemented by BWK awk), is not yet part of the POSIX

 standard (as of October 2012), although it has been accepted for the next revision of the Page 19/21

 standard.

 Mktime, strftime and systime are gawk extensions.

 The "/dev/stdin" feature was added to mawk after 1.3.4, for compatibility with gawk and

 BWK awk. The corresponding "-" (alias for /dev/stdin) was present in mawk 1.3.3.

 Subtle Differences not in POSIX or the AWK Book

 Finally, here is how mawk handles exceptional cases not discussed in the AWK book or the

 POSIX draft. It is unsafe to assume consistency across awks and safe to skip to the next

 section.

 ? substr(s, i, n) returns the characters of s in the intersection of the closed in?

 terval [1, length(s)] and the half-open interval [i, i+n). When this intersection

 is empty, the empty string is returned; so substr("ABC", 1, 0) = "" and sub?

 str("ABC", -4, 6) = "A".

 ? Every string, including the empty string, matches the empty string at the front so,

 s ~ // and s ~ "", are always 1 as is match(s, //) and match(s, ""). The last two

 set RLENGTH to 0.

 ? index(s, t) is always the same as match(s, t1) where t1 is the same as t with

 metacharacters escaped. Hence consistency with match requires that index(s, "")

 always returns 1. Also the condition, index(s,t) != 0 if and only t is a substring

 of s, requires index("","") = 1.

 ? If getline encounters end of file, getline var, leaves var unchanged. Similarly,

 on entry to the END actions, $0, the fields and NF have their value unaltered from

 the last record.

ENVIRONMENT VARIABLES

 Mawk recognizes these variables:

 MAWKBINMODE

 (see COMPATIBILITY ISSUES)

 MAWK_LONG_OPTIONS

 If this is set, mawk uses its value to decide what to do with GNU-style long op?

 tions:

 allow Mawk allows the option to be checked against the (small) set of long op?

 tions it recognizes.

 error Mawk prints an error message and exits. This is the default.

 ignore Mawk ignores the option. Page 20/21

 warn Print an warning message and otherwise ignore the option.

 If the variable is unset, mawk prints an error message and exits.

 WHINY_USERS

 This is an undocumented gawk feature. It tells mawk to sort array indices before it

 starts to iterate over the elements of an array.

SEE ALSO

 grep(1)

 Aho, Kernighan and Weinberger, The AWK Programming Language, Addison-Wesley Publishing,

 1988, (the AWK book), defines the language, opening with a tutorial and advancing to many

 interesting programs that delve into issues of software design and analysis relevant to

 programming in any language.

 The GAWK Manual, The Free Software Foundation, 1991, is a tutorial and language reference

 that does not attempt the depth of the AWK book and assumes the reader may be a novice

 programmer. The section on AWK arrays is excellent. It also discusses POSIX requirements

 for AWK.

BUGS

 mawk implements printf() and sprintf() using the C library functions, printf and sprintf,

 so full ANSI compatibility requires an ANSI C library. In practice this means the h con?

 version qualifier may not be available. Also mawk inherits any bugs or limitations of the

 library functions.

 Implementors of the AWK language have shown a consistent lack of imagination when naming

 their programs.

AUTHOR

 Mike Brennan (brennan@whidbey.com).

 Thomas E. Dickey <dickey@invisible-island.net>.

Version 1.3.4 2019-12-31 MAWK(1)

Page 21/21

