
Rocky Enterprise Linux 9.2 Manual Pages on command 'man-pages.7'

$ man man-pages.7

MAN-PAGES(7) Linux Programmer's Manual MAN-PAGES(7)

NAME

 man-pages - conventions for writing Linux man pages

SYNOPSIS

 man [section] title

DESCRIPTION

 This page describes the conventions that should be employed when writing man pages for the

 Linux man-pages project, which documents the user-space API provided by the Linux kernel

 and the GNU C library. The project thus provides most of the pages in Section 2, many of

 the pages that appear in Sections 3, 4, and 7, and a few of the pages that appear in Sec?

 tions 1, 5, and 8 of the man pages on a Linux system. The conventions described on this

 page may also be useful for authors writing man pages for other projects.

 Sections of the manual pages

 The manual Sections are traditionally defined as follows:

 1 User commands (Programs)

 Commands that can be executed by the user from within a shell.

 2 System calls

 Functions which wrap operations performed by the kernel.

 3 Library calls

 All library functions excluding the system call wrappers (Most of the libc func?

 tions).

 4 Special files (devices)

 Files found in /dev which allow to access to devices through the kernel. Page 1/17

 5 File formats and configuration files

 Describes various human-readable file formats and configuration files.

 6 Games

 Games and funny little programs available on the system.

 7 Overview, conventions, and miscellaneous

 Overviews or descriptions of various topics, conventions and protocols, character

 set standards, the standard filesystem layout, and miscellaneous other things.

 8 System management commands

 Commands like mount(8), many of which only root can execute.

 Macro package

 New manual pages should be marked up using the groff an.tmac package described in man(7).

 This choice is mainly for consistency: the vast majority of existing Linux manual pages

 are marked up using these macros.

 Conventions for source file layout

 Please limit source code line length to no more than about 75 characters wherever possi?

 ble. This helps avoid line-wrapping in some mail clients when patches are submitted in?

 line.

 Title line

 The first command in a man page should be a TH command:

 .TH title section date source manual

 The arguments of the command are as follows:

 title The title of the man page, written in all caps (e.g., MAN-PAGES).

 section

 The section number in which the man page should be placed (e.g., 7).

 date The date of the last nontrivial change that was made to the man page. (Within the

 man-pages project, the necessary updates to these timestamps are handled automati?

 cally by scripts, so there is no need to manually update them as part of a patch.)

 Dates should be written in the form YYYY-MM-DD.

 source The source of the command, function, or system call.

 For those few man-pages pages in Sections 1 and 8, probably you just want to write

 GNU.

 For system calls, just write Linux. (An earlier practice was to write the version

 number of the kernel from which the manual page was being written/checked. How? Page 2/17

 ever, this was never done consistently, and so was probably worse than including no

 version number. Henceforth, avoid including a version number.)

 For library calls that are part of glibc or one of the other common GNU libraries,

 just use GNU C Library, GNU, or an empty string.

 For Section 4 pages, use Linux.

 In cases of doubt, just write Linux, or GNU.

 manual The title of the manual (e.g., for Section 2 and 3 pages in the man-pages package,

 use Linux Programmer's Manual).

 Sections within a manual page

 The list below shows conventional or suggested sections. Most manual pages should include

 at least the highlighted sections. Arrange a new manual page so that sections are placed

 in the order shown in the list.

 NAME

 SYNOPSIS

 CONFIGURATION [Normally only in Section 4]

 DESCRIPTION

 OPTIONS [Normally only in Sections 1, 8]

 EXIT STATUS [Normally only in Sections 1, 8]

 RETURN VALUE [Normally only in Sections 2, 3]

 ERRORS [Typically only in Sections 2, 3]

 ENVIRONMENT

 FILES

 VERSIONS [Normally only in Sections 2, 3]

 ATTRIBUTES [Normally only in Sections 2, 3]

 CONFORMING TO

 NOTES

 BUGS

 EXAMPLES

 AUTHORS [Discouraged]

 REPORTING BUGS [Not used in man-pages]

 COPYRIGHT [Not used in man-pages]

 SEE ALSO

 Where a traditional heading would apply, please use it; this kind of consistency can make Page 3/17

 the information easier to understand. If you must, you can create your own headings if

 they make things easier to understand (this can be especially useful for pages in Sections

 4 and 5). However, before doing this, consider whether you could use the traditional

 headings, with some subsections (.SS) within those sections.

 The following list elaborates on the contents of each of the above sections.

 NAME The name of this manual page.

 See man(7) for important details of the line(s) that should follow the .SH NAME

 command. All words in this line (including the word immediately following the

 "\-") should be in lowercase, except where English or technical terminological con?

 vention dictates otherwise.

 SYNOPSIS

 A brief summary of the command or function's interface.

 For commands, this shows the syntax of the command and its arguments (including op?

 tions); boldface is used for as-is text and italics are used to indicate replace?

 able arguments. Brackets ([]) surround optional arguments, vertical bars (|) sepa?

 rate choices, and ellipses (...) can be repeated. For functions, it shows any re?

 quired data declarations or #include directives, followed by the function declara?

 tion.

 Where a feature test macro must be defined in order to obtain the declaration of a

 function (or a variable) from a header file, then the SYNOPSIS should indicate

 this, as described in feature_test_macros(7).

 CONFIGURATION

 Configuration details for a device.

 This section normally appears only in Section 4 pages.

 DESCRIPTION

 An explanation of what the program, function, or format does.

 Discuss how it interacts with files and standard input, and what it produces on

 standard output or standard error. Omit internals and implementation details un?

 less they're critical for understanding the interface. Describe the usual case;

 for information on command-line options of a program use the OPTIONS section.

 When describing new behavior or new flags for a system call or library function, be

 careful to note the kernel or C library version that introduced the change. The

 preferred method of noting this information for flags is as part of a .TP list, in Page 4/17

 the following form (here, for a new system call flag):

 XYZ_FLAG (since Linux 3.7)

 Description of flag...

 Including version information is especially useful to users who are constrained to

 using older kernel or C library versions (which is typical in embedded systems, for

 example).

 OPTIONS

 A description of the command-line options accepted by a program and how they change

 its behavior.

 This section should appear only for Section 1 and 8 manual pages.

 EXIT STATUS

 A list of the possible exit status values of a program and the conditions that

 cause these values to be returned.

 This section should appear only for Section 1 and 8 manual pages.

 RETURN VALUE

 For Section 2 and 3 pages, this section gives a list of the values the library rou?

 tine will return to the caller and the conditions that cause these values to be re?

 turned.

 ERRORS For Section 2 and 3 manual pages, this is a list of the values that may be placed

 in errno in the event of an error, along with information about the cause of the

 errors.

 Where several different conditions produce the same error, the preferred approach

 is to create separate list entries (with duplicate error names) for each of the

 conditions. This makes the separate conditions clear, may make the list easier to

 read, and allows metainformation (e.g., kernel version number where the condition

 first became applicable) to be more easily marked for each condition.

 The error list should be in alphabetical order.

 ENVIRONMENT

 A list of all environment variables that affect the program or function and how

 they affect it.

 FILES A list of the files the program or function uses, such as configuration files,

 startup files, and files the program directly operates on.

 Give the full pathname of these files, and use the installation process to modify Page 5/17

 the directory part to match user preferences. For many programs, the default in?

 stallation location is in /usr/local, so your base manual page should use /usr/lo?

 cal as the base.

 ATTRIBUTES

 A summary of various attributes of the function(s) documented on this page. See

 attributes(7) for further details.

 VERSIONS

 A brief summary of the Linux kernel or glibc versions where a system call or li?

 brary function appeared, or changed significantly in its operation.

 As a general rule, every new interface should include a VERSIONS section in its

 manual page. Unfortunately, many existing manual pages don't include this informa?

 tion (since there was no policy to do so when they were written). Patches to rem?

 edy this are welcome, but, from the perspective of programmers writing new code,

 this information probably matters only in the case of kernel interfaces that have

 been added in Linux 2.4 or later (i.e., changes since kernel 2.2), and library

 functions that have been added to glibc since version 2.1 (i.e., changes since

 glibc 2.0).

 The syscalls(2) manual page also provides information about kernel versions in

 which various system calls first appeared.

 CONFORMING TO

 A description of any standards or conventions that relate to the function or com?

 mand described by the manual page.

 The preferred terms to use for the various standards are listed as headings in

 standards(7).

 For a page in Section 2 or 3, this section should note the POSIX.1 version(s) that

 the call conforms to, and also whether the call is specified in C99. (Don't worry

 too much about other standards like SUS, SUSv2, and XPG, or the SVr4 and 4.xBSD im?

 plementation standards, unless the call was specified in those standards, but isn't

 in the current version of POSIX.1.)

 If the call is not governed by any standards but commonly exists on other systems,

 note them. If the call is Linux-specific, note this.

 If this section consists of just a list of standards (which it commonly does), ter?

 minate the list with a period ('.'). Page 6/17

 NOTES Miscellaneous notes.

 For Section 2 and 3 man pages you may find it useful to include subsections (SS)

 named Linux Notes and Glibc Notes.

 In Section 2, use the heading C library/kernel differences to mark off notes that

 describe the differences (if any) between the C library wrapper function for a sys?

 tem call and the raw system call interface provided by the kernel.

 BUGS A list of limitations, known defects or inconveniences, and other questionable ac?

 tivities.

 EXAMPLES

 One or more examples demonstrating how this function, file or command is used.

 For details on writing example programs, see Example programs below.

 AUTHORS

 A list of authors of the documentation or program.

 Use of an AUTHORS section is strongly discouraged. Generally, it is better not to

 clutter every page with a list of (over time potentially numerous) authors; if you

 write or significantly amend a page, add a copyright notice as a comment in the

 source file. If you are the author of a device driver and want to include an ad?

 dress for reporting bugs, place this under the BUGS section.

 REPORTING BUGS

 The man-pages project doesn't use a REPORTING BUGS section in manual pages. Infor?

 mation on reporting bugs is instead supplied in the script-generated COLOPHON sec?

 tion. However, various projects do use a REPORTING BUGS section. it is recom?

 mended to place it near the foot of the page.

 COPYRIGHT

 The man-pages project doesn't use a COPYRIGHT section in manual pages. Copyright

 information is instead maintained in the page source. In pages where this section

 is present, it is recommended to place it near the foot of the page, just above SEE

 ALSO.

 SEE ALSO

 A comma-separated list of related man pages, possibly followed by other related

 pages or documents.

 The list should be ordered by section number and then alphabetically by name. Do

 not terminate this list with a period. Page 7/17

 Where the SEE ALSO list contains many long manual page names, to improve the visual

 result of the output, it may be useful to employ the .ad l (don't right justify)

 and .nh (don't hyphenate) directives. Hyphenation of individual page names can be

 prevented by preceding words with the string "\%".

 Given the distributed, autonomous nature of FOSS projects and their documentation,

 it is sometimes necessary?and in many cases desirable?that the SEE ALSO section in?

 cludes references to manual pages provided by other projects.

STYLE GUIDE

 The following subsections describe the preferred style for the man-pages project. For de?

 tails not covered below, the Chicago Manual of Style is usually a good source; try also

 grepping for preexisting usage in the project source tree.

 Use of gender-neutral language

 As far as possible, use gender-neutral language in the text of man pages. Use of "they"

 ("them", "themself", "their") as a gender-neutral singular pronoun is acceptable.

 Formatting conventions for manual pages describing commands

 For manual pages that describe a command (typically in Sections 1 and 8), the arguments

 are always specified using italics, even in the SYNOPSIS section.

 The name of the command, and its options, should always be formatted in bold.

 Formatting conventions for manual pages describing functions

 For manual pages that describe functions (typically in Sections 2 and 3), the arguments

 are always specified using italics, even in the SYNOPSIS section, where the rest of the

 function is specified in bold:

 int myfunction(int argc, char **argv);

 Variable names should, like argument names, be specified in italics.

 Any reference to the subject of the current manual page should be written with the name in

 bold followed by a pair of parentheses in Roman (normal) font. For example, in the fc?

 ntl(2) man page, references to the subject of the page would be written as: fcntl(). The

 preferred way to write this in the source file is:

 .BR fcntl ()

 (Using this format, rather than the use of "\fB...\fP()" makes it easier to write tools

 that parse man page source files.)

 Use semantic newlines

 In the source of a manual page, new sentences should be started on new lines, and long Page 8/17

 sentences should split into lines at clause breaks (commas, semicolons, colons, and so

 on). This convention, sometimes known as "semantic newlines", makes it easier to see the

 effect of patches, which often operate at the level of individual sentences or sentence

 clauses.

 Formatting conventions (general)

 Paragraphs should be separated by suitable markers (usually either .PP or .IP). Do not

 separate paragraphs using blank lines, as this results in poor rendering in some output

 formats (such as PostScript and PDF).

 Filenames (whether pathnames, or references to header files) are always in italics (e.g.,

 <stdio.h>), except in the SYNOPSIS section, where included files are in bold (e.g., #in?

 clude <stdio.h>). When referring to a standard header file include, specify the header

 file surrounded by angle brackets, in the usual C way (e.g., <stdio.h>).

 Special macros, which are usually in uppercase, are in bold (e.g., MAXINT). Exception:

 don't boldface NULL.

 When enumerating a list of error codes, the codes are in bold (this list usually uses the

 .TP macro).

 Complete commands should, if long, be written as an indented line on their own, with a

 blank line before and after the command, for example

 man 7 man-pages

 If the command is short, then it can be included inline in the text, in italic format, for

 example, man 7 man-pages. In this case, it may be worth using nonbreaking spaces ("\ ")

 at suitable places in the command. Command options should be written in italics (e.g.,

 -l).

 Expressions, if not written on a separate indented line, should be specified in italics.

 Again, the use of nonbreaking spaces may be appropriate if the expression is inlined with

 normal text.

 When showing example shell sessions, user input should be formatted in bold, for example

 $ date

 Thu Jul 7 13:01:27 CEST 2016

 Any reference to another man page should be written with the name in bold, always followed

 by the section number, formatted in Roman (normal) font, without any separating spaces

 (e.g., intro(2)). The preferred way to write this in the source file is:

 .BR intro (2) Page 9/17

 (Including the section number in cross references lets tools like man2html(1) create prop?

 erly hyperlinked pages.)

 Control characters should be written in bold face, with no quotes; for example, ^X.

 Spelling

 Starting with release 2.59, man-pages follows American spelling conventions (previously,

 there was a random mix of British and American spellings); please write all new pages and

 patches according to these conventions.

 Aside from the well-known spelling differences, there are a few other subtleties to watch

 for:

 * American English tends to use the forms "backward", "upward", "toward", and so on

 rather than the British forms "backwards", "upwards", "towards", and so on.

 BSD version numbers

 The classical scheme for writing BSD version numbers is x.yBSD, where x.y is the version

 number (e.g., 4.2BSD). Avoid forms such as BSD 4.3.

 Capitalization

 In subsection ("SS") headings, capitalize the first word in the heading, but otherwise use

 lowercase, except where English usage (e.g., proper nouns) or programming language re?

 quirements (e.g., identifier names) dictate otherwise. For example:

 .SS Unicode under Linux

 Indentation of structure definitions, shell session logs, and so on

 When structure definitions, shell session logs, and so on are included in running text,

 indent them by 4 spaces (i.e., a block enclosed by .in +4n and .in), format them using the

 .EX and EE macros, and surround them with suitable paragraph markers (either .PP or .IP).

 For example:

 .PP

 .in +4n

 .EX

 int

 main(int argc, char *argv[])

 {

 return 0;

 }

 .EE Page 10/17

 .in

 .PP

 Preferred terms

 The following table lists some preferred terms to use in man pages, mainly to ensure con?

 sistency across pages.

 Term Avoid using Notes

 ???

 bit mask bitmask

 built-in builtin

 Epoch epoch For the UNIX Epoch

 (00:00:00, 1 Jan 1970

 UTC)

 filename file name

 filesystem file system

 hostname host name

 inode i-node

 lowercase lower case, lower-case

 nonzero non-zero

 pathname path name

 pseudoterminal pseudo-terminal

 privileged port reserved port, system

 port

 real-time realtime, real time

 run time runtime

 saved set-group-ID saved group ID, saved

 set-GID

 saved set-user-ID saved user ID, saved

 set-UID

 set-group-ID set-GID, setgid

 set-user-ID set-UID, setuid

 superuser super user, super-user

 superblock super block, super-block

 timestamp time stamp Page 11/17

 timezone time zone

 uppercase upper case, upper-case

 usable useable

 user space userspace

 username user name

 x86-64 x86_64 Except if referring to

 result of "uname -m" or

 similar

 zeros zeroes

 See also the discussion Hyphenation of attributive compounds below.

 Terms to avoid

 The following table lists some terms to avoid using in man pages, along with some sug?

 gested alternatives, mainly to ensure consistency across pages.

 Avoid Use instead Notes

 ???

 32bit 32-bit same for 8-bit, 16-bit,

 etc.

 current process calling process A common mistake made by

 kernel programmers when

 writing man pages

 manpage man page, manual page

 minus infinity negative infinity

 non-root unprivileged user

 non-superuser unprivileged user

 nonprivileged unprivileged

 OS operating system

 plus infinity positive infinity

 pty pseudoterminal

 tty terminal

 Unices UNIX systems

 Unixes UNIX systems

 Trademarks

 Use the correct spelling and case for trademarks. The following is a list of the correct Page 12/17

 spellings of various relevant trademarks that are sometimes misspelled:

 DG/UX

 HP-UX

 UNIX

 UnixWare

 NULL, NUL, null pointer, and null character

 A null pointer is a pointer that points to nothing, and is normally indicated by the con?

 stant NULL. On the other hand, NUL is the null byte, a byte with the value 0, represented

 in C via the character constant '\0'.

 The preferred term for the pointer is "null pointer" or simply "NULL"; avoid writing "NULL

 pointer".

 The preferred term for the byte is "null byte". Avoid writing "NUL", since it is too eas?

 ily confused with "NULL". Avoid also the terms "zero byte" and "null character". The

 byte that terminates a C string should be described as "the terminating null byte";

 strings may be described as "null-terminated", but avoid the use of "NUL-terminated".

 Hyperlinks

 For hyperlinks, use the .UR/.UE macro pair (see groff_man(7)). This produces proper hy?

 perlinks that can be used in a web browser, when rendering a page with, say:

 BROWSER=firefox man -H pagename

 Use of e.g., i.e., etc., a.k.a., and similar

 In general, the use of abbreviations such as "e.g.", "i.e.", "etc.", "cf.", and "a.k.a."

 should be avoided, in favor of suitable full wordings ("for example", "that is", "and so

 on", "compare to", "also known as").

 The only place where such abbreviations may be acceptable is in short parenthetical asides

 (e.g., like this one).

 Always include periods in such abbreviations, as shown here. In addition, "e.g." and

 "i.e." should always be followed by a comma.

 Em-dashes

 The way to write an em-dash?the glyph that appears at either end of this subphrase?in

 *roff is with the macro "\(em". (On an ASCII terminal, an em-dash typically renders as

 two hyphens, but in other typographical contexts it renders as a long dash.) Em-dashes

 should be written without surrounding spaces.

 Hyphenation of attributive compounds Page 13/17

 Compound terms should be hyphenated when used attributively (i.e., to qualify a following

 noun). Some examples:

 32-bit value

 command-line argument

 floating-point number

 run-time check

 user-space function

 wide-character string

 Hyphenation with multi, non, pre, re, sub, and so on

 The general tendency in modern English is not to hyphenate after prefixes such as "multi",

 "non", "pre", "re", "sub", and so on. Manual pages should generally follow this rule when

 these prefixes are used in natural English constructions with simple suffixes. The fol?

 lowing list gives some examples of the preferred forms:

 interprocess

 multithreaded

 multiprocess

 nonblocking

 nondefault

 nonempty

 noninteractive

 nonnegative

 nonportable

 nonzero

 preallocated

 precreate

 prerecorded

 reestablished

 reinitialize

 rearm

 reread

 subcomponent

 subdirectory

 subsystem Page 14/17

 Hyphens should be retained when the prefixes are used in nonstandard English words, with

 trademarks, proper nouns, acronyms, or compound terms. Some examples:

 non-ASCII

 non-English

 non-NULL

 non-real-time

 Finally, note that "re-create" and "recreate" are two different verbs, and the former is

 probably what you want.

 Generating optimal glyphs

 Where a real minus character is required (e.g., for numbers such as -1, for man page cross

 references such as utf-8(7), or when writing options that have a leading dash, such as in

 ls -l), use the following form in the man page source:

 \-

 This guideline applies also to code examples.

 To produce unslanted single quotes that render well in ASCII, UTF-8, and PDF, use "\(aq"

 ("apostrophe quote"); for example

 \(aqC\(aq

 where C is the quoted character. This guideline applies also to character constants used

 in code examples.

 Where a proper caret (^) that renders well in both a terminal and PDF is required, use

 "\(ha". This is especially necessary in code samples, to get a nicely rendered caret when

 rendering to PDF.

 Using a naked "~" character results in a poor rendering in PDF. Instead use "\(ti". This

 is especially necessary in code samples, to get a nicely rendered tilde when rendering to

 PDF.

 Example programs and shell sessions

 Manual pages may include example programs demonstrating how to use a system call or li?

 brary function. However, note the following:

 * Example programs should be written in C.

 * An example program is necessary and useful only if it demonstrates something beyond

 what can easily be provided in a textual description of the interface. An example pro?

 gram that does nothing other than call an interface usually serves little purpose.

 * Example programs should ideally be short (e.g., a good example can often be provided in Page 15/17

 less than 100 lines of code), though in some cases longer programs may be necessary to

 properly illustrate the use of an API.

 * Expressive code and useful comments are appreciated.

 * Example programs should do error checking after system calls and library function

 calls.

 * Example programs should be complete, and compile without warnings when compiled with

 cc -Wall.

 * Where possible and appropriate, example programs should allow experimentation, by vary?

 ing their behavior based on inputs (ideally from command-line arguments, or alterna?

 tively, via input read by the program).

 * Example programs should be laid out according to Kernighan and Ritchie style, with

 4-space indents. (Avoid the use of TAB characters in source code!) The following com?

 mand can be used to format your source code to something close to the preferred style:

 indent -npro -kr -i4 -ts4 -sob -l72 -ss -nut -psl prog.c

 * For consistency, all example programs should terminate using either of:

 exit(EXIT_SUCCESS);

 exit(EXIT_FAILURE);

 Avoid using the following forms to terminate a program:

 exit(0);

 exit(1);

 return n;

 * If there is extensive explanatory text before the program source code, mark off the

 source code with a subsection heading Program source, as in:

 .SS Program source

 Always do this if the explanatory text includes a shell session log.

 If you include a shell session log demonstrating the use of a program or other system fea?

 ture:

 * Place the session log above the source code listing

 * Indent the session log by four spaces.

 * Boldface the user input text, to distinguish it from output produced by the system.

 For some examples of what example programs should look like, see wait(2) and pipe(2).

EXAMPLES

 For canonical examples of how man pages in the man-pages package should look, see pipe(2) Page 16/17

 and fcntl(2).

SEE ALSO

 man(1), man2html(1), attributes(7), groff(7), groff_man(7), man(7), mdoc(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 MAN-PAGES(7)

Page 17/17

