
Rocky Enterprise Linux 9.2 Manual Pages on command 'lvmcache.7'

$ man lvmcache.7

LVMCACHE(7) LVMCACHE(7)

NAME

 lvmcache ? LVM caching

DESCRIPTION

 lvm(8) includes two kinds of caching that can be used to improve the performance of a Log?

 ical Volume (LV). When caching, varying subsets of an LV's data are temporarily stored on

 a smaller, faster device (e.g. an SSD) to improve the performance of the LV.

 To do this with lvm, a new special LV is first created from the faster device. This LV

 will hold the cache. Then, the new fast LV is attached to the main LV by way of an lvcon?

 vert command. lvconvert inserts one of the device mapper caching targets into the main

 LV's i/o path. The device mapper target combines the main LV and fast LV into a hybrid de?

 vice that looks like the main LV, but has better performance. While the main LV is being

 used, portions of its data will be temporarily and transparently stored on the special

 fast LV.

 The two kinds of caching are:

 ? A read and write hot-spot cache, using the dm-cache kernel module. This cache tracks

 access patterns and adjusts its content deliberately so that commonly used parts of the

 main LV are likely to be found on the fast storage. LVM refers to this using the LV type

 cache.

 ? A write cache, using the dm-writecache kernel module. This cache can be used with SSD

 or PMEM devices to speed up all writes to the main LV. Data read from the main LV is not

 stored in the cache, only newly written data. LVM refers to this using the LV type

 writecache. Page 1/10

USAGE

 1. Identify main LV that needs caching

 The main LV may already exist, and is located on larger, slower devices. A main LV would

 be created with a command like:

 $ lvcreate -n main -L Size vg /dev/slow_hhd

 2. Identify fast LV to use as the cache

 A fast LV is created using one or more fast devices, like an SSD. This special LV will be

 used to hold the cache:

 $ lvcreate -n fast -L Size vg /dev/fast_ssd

 $ lvs -a

 LV Attr Type Devices

 fast -wi------- linear /dev/fast_ssd

 main -wi------- linear /dev/slow_hhd

 3. Start caching the main LV

 To start caching the main LV, convert the main LV to the desired caching type, and specify

 the fast LV to use as the cache:

 using dm-cache:

 $ lvconvert --type cache --cachevol fast vg/main

 using dm-writecache:

 $ lvconvert --type writecache --cachevol fast vg/main

 using dm-cache (with cachepool):

 $ lvconvert --type cache --cachepool fast vg/main

 4. Display LVs

 Once the fast LV has been attached to the main LV, lvm reports the main LV type as either

 cache or writecache depending on the type used. While attached, the fast LV is hidden,

 and renamed with a _cvol or _cpool suffix. It is displayed by lvs -a. The _corig or

 _wcorig LV represents the original LV without the cache.

 using dm-cache:

 $ lvs -a

 LV Pool Type Devices

 main [fast_cvol] cache main_corig(0)

 [fast_cvol] linear /dev/fast_ssd

 [main_corig] linear /dev/slow_hhd Page 2/10

 using dm-writecache:

 $ lvs -a

 LV Pool Type Devices

 main [fast_cvol] writecache main_wcorig(0)

 [fast_cvol] linear /dev/fast_ssd

 [main_wcorig] linear /dev/slow_hhd

 using dm-cache (with cachepool):

 $ lvs -a

 LV Pool Type Devices

 main [fast_cpool] cache main_corig(0)

 [fast_cpool] cache-pool fast_pool_cdata(0)

 [fast_cpool_cdata] linear /dev/fast_ssd

 [fast_cpool_cmeta] linear /dev/fast_ssd

 [main_corig] linear /dev/slow_hhd

 5. Use the main LV

 Use the LV until the cache is no longer wanted, or needs to be changed.

 6. Stop caching

 To stop caching the main LV, separate the fast LV from the main LV. This changes the type

 of the main LV back to what it was before the cache was attached.

 $ lvconvert --splitcache vg/main

 $ lvs -a

 LV VG Attr Type Devices

 fast vg -wi------- linear /dev/fast_ssd

 main vg -wi------- linear /dev/slow_hhd

 To stop caching the main LV and also remove unneeded cache pool,

 use the --uncache:

 $ lvconvert --uncache vg/main

 $ lvs -a

 LV VG Attr Type Devices

 main vg -wi------- linear /dev/slow_hhd

 Create a new LV with caching.

 A new LV can be created with caching attached at the time of creation using the following

 command: Page 3/10

 $ lvcreate --type cache|writecache -n Name -L Size

 --cachedevice /dev/fast_ssd vg /dev/slow_hhd

 The main LV is created with the specified Name and Size from the slow_hhd. A hidden fast

 LV is created on the fast_ssd and is then attached to the new main LV. If the fast_ssd is

 unused, the entire disk will be used as the cache unless the --cachesize option is used to

 specify a size for the fast LV. The --cachedevice option can be repeated to use multiple

 disks for the fast LV.

OPTIONS

 option args

 --cachevol LV

 Pass this option a fast LV that should be used to hold the cache. With a cachevol, cache

 data and metadata are stored in different parts of the same fast LV. This option can be

 used with dm-writecache or dm-cache.

 --cachepool CachePoolLV|LV

 Pass this option a cachepool LV or a standard LV. When using a cache pool, lvm places

 cache data and cache metadata on different LVs. The two LVs together are called a cache

 pool. This has a bit better performance for dm-cache and permits specific placement and

 segment type selection for data and metadata volumes. A cache pool is represented as a

 special type of LV that cannot be used directly. If a standard LV is passed with this op?

 tion, lvm will first convert it to a cache pool by combining it with another LV to use for

 metadata. This option can be used with dm-cache.

 --cachedevice PV

 This option can be used in place of --cachevol, in which case a cachevol LV will be cre?

 ated using the specified device. This option can be repeated to create a cachevol using

 multiple devices, or a tag name can be specified in which case the cachevol will be cre?

 ated using any of the devices with the given tag. If a named cache device is unused, the

 entire device will be used to create the cachevol. To create a cachevol of a specific

 size from the cache devices, include the --cachesize option.

 dm-cache block size

 A cache pool will have a logical block size of 4096 bytes if it is created on a device

 with a logical block size of 4096 bytes.

 If a main LV has logical block size 512 (with an existing xfs file system using that

 size), then it cannot use a cache pool with a 4096 logical block size. If the cache pool Page 4/10

 is attached, the main LV will likely fail to mount.

 To avoid this problem, use a mkfs option to specify a 4096 block size for the file system,

 or attach the cache pool before running mkfs.

 dm-writecache block size

 The dm-writecache block size can be 4096 bytes (the default), or 512 bytes. The default

 4096 has better performance and should be used except when 512 is necessary for compati?

 bility. The dm-writecache block size is specified with --cachesettings

 block_size=4096|512 when caching is started.

 When a file system like xfs already exists on the main LV prior to caching, and the file

 system is using a block size of 512, then the writecache block size should be set to 512.

 (The file system will likely fail to mount if writecache block size of 4096 is used in

 this case.)

 Check the xfs sector size while the fs is mounted:

 $ xfs_info /dev/vg/main

 Look for sectsz=512 or sectsz=4096

 The writecache block size should be chosen to match the xfs sectsz value.

 It is also possible to specify a sector size of 4096 to mkfs.xfs when creating the file

 system. In this case the writecache block size of 4096 can be used.

 dm-writecache settings

 Tunable parameters can be passed to the dm-writecache kernel module using the --cacheset?

 tings option when caching is started, e.g.

 $ lvconvert --type writecache --cachevol fast \

 --cachesettings 'high_watermark=N writeback_jobs=N' vg/main

 Tunable options are:

 ? high_watermark = <percent>

 Start writeback when the writecache usage reaches this percent (0-100).

 ? low_watermark = <percent>

 Stop writeback when the writecache usage reaches this percent (0-100).

 ? writeback_jobs = <count>

 Limit the number of blocks that are in flight during writeback. Setting this value re?

 duces writeback throughput, but it may improve latency of read requests.

 ? autocommit_blocks = <count>

 When the application writes this amount of blocks without issuing the FLUSH request, the Page 5/10

 blocks are automatically commited.

 ? autocommit_time = <milliseconds>

 The data is automatically commited if this time passes and no FLUSH request is received.

 ? fua = 0|1

 Use the FUA flag when writing data from persistent memory back to the underlying device.

 Applicable only to persistent memory.

 ? nofua = 0|1

 Don't use the FUA flag when writing back data and send the FLUSH request afterwards.

 Some underlying devices perform better with fua, some with nofua. Testing is necessary

 to determine which. Applicable only to persistent memory.

 ? cleaner = 0|1

 Setting cleaner=1 enables the writecache cleaner mode in which data is gradually flushed

 from the cache. If this is done prior to detaching the writecache, then the splitcache

 command will have little or no flushing to perform. If not done beforehand, the split?

 cache command enables the cleaner mode and waits for flushing to complete before detach?

 ing the writecache. Adding cleaner=0 to the splitcache command will skip the cleaner

 mode, and any required flushing is performed in device suspend.

 dm-cache with separate data and metadata LVs

 When using dm-cache, the cache metadata and cache data can be stored on separate LVs. To

 do this, a "cache pool" is created, which is a special LV that references two sub LVs, one

 for data and one for metadata.

 To create a cache pool from two separate LVs:

 $ lvcreate -n fast -L DataSize vg /dev/fast_ssd1

 $ lvcreate -n fastmeta -L MetadataSize vg /dev/fast_ssd2

 $ lvconvert --type cache-pool --poolmetadata fastmeta vg/fast

 Then use the cache pool LV to start caching the main LV:

 $ lvconvert --type cache --cachepool fast vg/main

 A variation of the same procedure automatically creates a cache pool when caching is

 started. To do this, use a standard LV as the --cachepool (this will hold cache data),

 and use another standard LV as the --poolmetadata (this will hold cache metadata). LVM

 will create a cache pool LV from the two specified LVs, and use the cache pool to start

 caching the main LV.

 $ lvcreate -n fast -L DataSize vg /dev/fast_ssd1 Page 6/10

 $ lvcreate -n fastmeta -L MetadataSize vg /dev/fast_ssd2

 $ lvconvert --type cache --cachepool fast --poolmetadata fastmeta vg/main

 dm-cache cache modes

 The default dm-cache cache mode is "writethrough". Writethrough ensures that any data

 written will be stored both in the cache and on the origin LV. The loss of a device asso?

 ciated with the cache in this case would not mean the loss of any data.

 A second cache mode is "writeback". Writeback delays writing data blocks from the cache

 back to the origin LV. This mode will increase performance, but the loss of a cache de?

 vice can result in lost data.

 With the --cachemode option, the cache mode can be set when caching is started, or changed

 on an LV that is already cached. The current cache mode can be displayed with the

 cache_mode reporting option:

 lvs -o+cache_mode VG/LV

 lvm.conf(5) allocation/cache_mode

 defines the default cache mode.

 $ lvconvert --type cache --cachevol fast \

 --cachemode writethrough vg/main

 dm-cache chunk size

 The size of data blocks managed by dm-cache can be specified with the --chunksize option

 when caching is started. The default unit is KiB. The value must be a multiple of 32KiB

 between 32KiB and 1GiB. Cache chunks bigger then 512KiB shall be only used when necessary.

 Using a chunk size that is too large can result in wasteful use of the cache, in which

 small reads and writes cause large sections of an LV to be stored in the cache. It can

 also require increasing migration threshold which defaults to 2048 sectors (1 MiB). Lvm2

 ensures migration threshold is at least 8 chunks in size. This may in some cases result in

 very high bandwidth load of transfering data between the cache LV and its cache origin LV.

 However, choosing a chunk size that is too small can result in more overhead trying to

 manage the numerous chunks that become mapped into the cache. Overhead can include both

 excessive CPU time searching for chunks, and excessive memory tracking chunks.

 Command to display the chunk size:

 lvs -o+chunksize VG/LV

 lvm.conf(5) cache_pool_chunk_size

 controls the default chunk size. Page 7/10

 The default value is shown by:

 lvmconfig --type default allocation/cache_pool_chunk_size

 Checking migration threshold (in sectors) of running cached LV:

 lvs -o+kernel_cache_settings VG/LV

 dm-cache migration threshold

 Migrating data between the origin and cache LV uses bandwidth. The user can set a throt?

 tle to prevent more than a certain amount of migration occurring at any one time. Cur?

 rently dm-cache is not taking any account of normal io traffic going to the devices.

 User can set migration threshold via cache policy settings as "migration_threshold=<#sec?

 tors>" to set the maximum number of sectors being migrated, the default being 2048 sectors

 (1MiB).

 Command to set migration threshold to 2MiB (4096 sectors):

 lvcreate --cachepolicy 'migration_threshold=4096' VG/LV

 Command to display the migration threshold:

 lvs -o+kernel_cache_settings,cache_settings VG/LV

 lvs -o+chunksize VG/LV

 dm-cache cache policy

 The dm-cache subsystem has additional per-LV parameters: the cache policy to use, and pos?

 sibly tunable parameters for the cache policy. Three policies are currently available:

 "smq" is the default policy, "mq" is an older implementation, and "cleaner" is used to

 force the cache to write back (flush) all cached writes to the origin LV.

 The older "mq" policy has a number of tunable parameters. The defaults are chosen to be

 suitable for the majority of systems, but in special circumstances, changing the settings

 can improve performance.

 With the --cachepolicy and --cachesettings options, the cache policy and settings can be

 set when caching is started, or changed on an existing cached LV (both options can be used

 together). The current cache policy and settings can be displayed with the cache_policy

 and cache_settings reporting options:

 lvs -o+cache_policy,cache_settings VG/LV

 Change the cache policy and settings of an existing LV.

 $ lvchange --cachepolicy mq --cachesettings \

 'migration_threshold=2048 random_threshold=4' vg/main

 lvm.conf(5) allocation/cache_policy Page 8/10

 defines the default cache policy.

 lvm.conf(5) allocation/cache_settings

 defines the default cache settings.

 dm-cache spare metadata LV

 See lvmthin(7) for a description of the "pool metadata spare" LV. The same concept is

 used for cache pools.

 dm-cache metadata formats

 There are two disk formats for dm-cache metadata. The metadata format can be specified

 with --cachemetadataformat when caching is started, and cannot be changed. Format 2 has

 better performance; it is more compact, and stores dirty bits in a separate btree, which

 improves the speed of shutting down the cache. With auto, lvm selects the best option

 provided by the current dm-cache kernel module.

 RAID1 cache device

 RAID1 can be used to create the fast LV holding the cache so that it can tolerate a device

 failure. (When using dm-cache with separate data and metadata LVs, each of the sub-LVs

 can use RAID1.)

 $ lvcreate -n main -L Size vg /dev/slow

 $ lvcreate --type raid1 -m 1 -n fast -L Size vg /dev/ssd1 /dev/ssd2

 $ lvconvert --type cache --cachevol fast vg/main

 dm-cache command shortcut

 A single command can be used to create a cache pool and attach that new cache pool to a

 main LV:

 $ lvcreate --type cache --name Name --size Size VG/LV [PV]

 In this command, the specified LV already exists, and is the main LV to be cached. The

 command creates a new cache pool with the given name and size, using the optionally speci?

 fied PV (typically an ssd). Then it attaches the new cache pool to the existing main LV

 to begin caching.

 (Note: ensure that the specified main LV is a standard LV. If a cache pool LV is mistak?

 enly specified, then the command does something different.)

 (Note: the type option is interpreted differently by this command than by normal lvcreate

 commands in which --type specifies the type of the newly created LV. In this case, an LV

 with type cache-pool is being created, and the existing main LV is being converted to type

 cache.) Page 9/10

SEE ALSO

 lvm.conf(5), lvchange(8), lvcreate(8), lvdisplay(8), lvextend(8), lvremove(8), lvre?

 name(8), lvresize(8), lvs(8), vgchange(8), vgmerge(8), vgreduce(8), vgsplit(8)

Red Hat, Inc LVM TOOLS 2.03.11(2) (2021-01-08) LVMCACHE(7)

Page 10/10

