
Rocky Enterprise Linux 9.2 Manual Pages on command 'loop.4'

$ man loop.4

LOOP(4) Linux Programmer's Manual LOOP(4)

NAME

 loop, loop-control - loop devices

SYNOPSIS

 #include <linux/loop.h>

DESCRIPTION

 The loop device is a block device that maps its data blocks not to a physical device such

 as a hard disk or optical disk drive, but to the blocks of a regular file in a filesystem

 or to another block device. This can be useful for example to provide a block device for

 a filesystem image stored in a file, so that it can be mounted with the mount(8) command.

 You could do

 $ dd if=/dev/zero of=file.img bs=1MiB count=10

 $ sudo losetup /dev/loop4 file.img

 $ sudo mkfs -t ext4 /dev/loop4

 $ sudo mkdir /myloopdev

 $ sudo mount /dev/loop4 /myloopdev

 See losetup(8) for another example.

 A transfer function can be specified for each loop device for encryption and decryption

 purposes.

 The following ioctl(2) operations are provided by the loop block device:

 LOOP_SET_FD

 Associate the loop device with the open file whose file descriptor is passed as the

 (third) ioctl(2) argument. Page 1/7

 LOOP_CLR_FD

 Disassociate the loop device from any file descriptor.

 LOOP_SET_STATUS

 Set the status of the loop device using the (third) ioctl(2) argument. This argu?

 ment is a pointer to a loop_info structure, defined in <linux/loop.h> as:

 struct loop_info {

 int lo_number; /* ioctl r/o */

 dev_t lo_device; /* ioctl r/o */

 unsigned long lo_inode; /* ioctl r/o */

 dev_t lo_rdevice; /* ioctl r/o */

 int lo_offset;

 int lo_encrypt_type;

 int lo_encrypt_key_size; /* ioctl w/o */

 int lo_flags; /* ioctl r/w (r/o before

 Linux 2.6.25) */

 char lo_name[LO_NAME_SIZE];

 unsigned char lo_encrypt_key[LO_KEY_SIZE];

 /* ioctl w/o */

 unsigned long lo_init[2];

 char reserved[4];

 };

 The encryption type (lo_encrypt_type) should be one of LO_CRYPT_NONE, LO_CRYPT_XOR,

 LO_CRYPT_DES, LO_CRYPT_FISH2, LO_CRYPT_BLOW, LO_CRYPT_CAST128, LO_CRYPT_IDEA,

 LO_CRYPT_DUMMY, LO_CRYPT_SKIPJACK, or (since Linux 2.6.0) LO_CRYPT_CRYPTOAPI.

 The lo_flags field is a bit mask that can include zero or more of the following:

 LO_FLAGS_READ_ONLY

 The loopback device is read-only.

 LO_FLAGS_AUTOCLEAR (since Linux 2.6.25)

 The loopback device will autodestruct on last close.

 LO_FLAGS_PARTSCAN (since Linux 3.2)

 Allow automatic partition scanning.

 LO_FLAGS_DIRECT_IO (since Linux 4.10)

 Use direct I/O mode to access the backing file. Page 2/7

 The only lo_flags that can be modified by LOOP_SET_STATUS are LO_FLAGS_AUTOCLEAR

 and LO_FLAGS_PARTSCAN.

 LOOP_GET_STATUS

 Get the status of the loop device. The (third) ioctl(2) argument must be a pointer

 to a struct loop_info.

 LOOP_CHANGE_FD (since Linux 2.6.5)

 Switch the backing store of the loop device to the new file identified file de?

 scriptor specified in the (third) ioctl(2) argument, which is an integer. This op?

 eration is possible only if the loop device is read-only and the new backing store

 is the same size and type as the old backing store.

 LOOP_SET_CAPACITY (since Linux 2.6.30)

 Resize a live loop device. One can change the size of the underlying backing store

 and then use this operation so that the loop driver learns about the new size.

 This operation takes no argument.

 LOOP_SET_DIRECT_IO (since Linux 4.10)

 Set DIRECT I/O mode on the loop device, so that it can be used to open backing

 file. The (third) ioctl(2) argument is an unsigned long value. A nonzero repre?

 sents direct I/O mode.

 LOOP_SET_BLOCK_SIZE (since Linux 4.14)

 Set the block size of the loop device. The (third) ioctl(2) argument is an un?

 signed long value. This value must be a power of two in the range [512,pagesize];

 otherwise, an EINVAL error results.

 LOOP_CONFIGURE (since Linux 5.8)

 Setup and configure all loop device parameters in a single step using the (third)

 ioctl(2) argument. This argument is a pointer to a loop_config structure, defined

 in <linux/loop.h> as:

 struct loop_config {

 __u32 fd;

 __u32 block_size;

 struct loop_info64 info;

 __u64 __reserved[8];

 };

 In addition to doing what LOOP_SET_STATUS can do, LOOP_CONFIGURE can also be used Page 3/7

 to do the following:

 * set the correct block size immediately by setting loop_config.block_size;

 * explicitly request direct I/O mode by setting LO_FLAGS_DIRECT_IO in loop_con?

 fig.info.lo_flags; and

 * explicitly request read-only mode by setting LO_FLAGS_READ_ONLY in loop_con?

 fig.info.lo_flags.

 Since Linux 2.6, there are two new ioctl(2) operations:

 LOOP_SET_STATUS64, LOOP_GET_STATUS64

 These are similar to LOOP_SET_STATUS and LOOP_GET_STATUS described above but use

 the loop_info64 structure, which has some additional fields and a larger range for

 some other fields:

 struct loop_info64 {

 uint64_t lo_device; /* ioctl r/o */

 uint64_t lo_inode; /* ioctl r/o */

 uint64_t lo_rdevice; /* ioctl r/o */

 uint64_t lo_offset;

 uint64_t lo_sizelimit; /* bytes, 0 == max available */

 uint32_t lo_number; /* ioctl r/o */

 uint32_t lo_encrypt_type;

 uint32_t lo_encrypt_key_size; /* ioctl w/o */

 uint32_t lo_flags; i /* ioctl r/w (r/o before

 Linux 2.6.25) */

 uint8_t lo_file_name[LO_NAME_SIZE];

 uint8_t lo_crypt_name[LO_NAME_SIZE];

 uint8_t lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */

 uint64_t lo_init[2];

 };

 /dev/loop-control

 Since Linux 3.1, the kernel provides the /dev/loop-control device, which permits an appli?

 cation to dynamically find a free device, and to add and remove loop devices from the sys?

 tem. To perform these operations, one first opens /dev/loop-control and then employs one

 of the following ioctl(2) operations:

 LOOP_CTL_GET_FREE Page 4/7

 Allocate or find a free loop device for use. On success, the device number is re?

 turned as the result of the call. This operation takes no argument.

 LOOP_CTL_ADD

 Add the new loop device whose device number is specified as a long integer in the

 third ioctl(2) argument. On success, the device index is returned as the result of

 the call. If the device is already allocated, the call fails with the error EEX?

 IST.

 LOOP_CTL_REMOVE

 Remove the loop device whose device number is specified as a long integer in the

 third ioctl(2) argument. On success, the device number is returned as the result

 of the call. If the device is in use, the call fails with the error EBUSY.

FILES

 /dev/loop*

 The loop block special device files.

EXAMPLES

 The program below uses the /dev/loop-control device to find a free loop device, opens the

 loop device, opens a file to be used as the underlying storage for the device, and then

 associates the loop device with the backing store. The following shell session demon?

 strates the use of the program:

 $ dd if=/dev/zero of=file.img bs=1MiB count=10

 10+0 records in

 10+0 records out

 10485760 bytes (10 MB) copied, 0.00609385 s, 1.7 GB/s

 $ sudo ./mnt_loop file.img

 loopname = /dev/loop5

 Program source

 #include <fcntl.h>

 #include <linux/loop.h>

 #include <sys/ioctl.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \ Page 5/7

 } while (0)

 int

 main(int argc, char *argv[])

 {

 int loopctlfd, loopfd, backingfile;

 long devnr;

 char loopname[4096];

 if (argc != 2) {

 fprintf(stderr, "Usage: %s backing-file\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 loopctlfd = open("/dev/loop-control", O_RDWR);

 if (loopctlfd == -1)

 errExit("open: /dev/loop-control");

 devnr = ioctl(loopctlfd, LOOP_CTL_GET_FREE);

 if (devnr == -1)

 errExit("ioctl-LOOP_CTL_GET_FREE");

 sprintf(loopname, "/dev/loop%ld", devnr);

 printf("loopname = %s\n", loopname);

 loopfd = open(loopname, O_RDWR);

 if (loopfd == -1)

 errExit("open: loopname");

 backingfile = open(argv[1], O_RDWR);

 if (backingfile == -1)

 errExit("open: backing-file");

 if (ioctl(loopfd, LOOP_SET_FD, backingfile) == -1)

 errExit("ioctl-LOOP_SET_FD");

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 losetup(8), mount(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the Page 6/7

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 LOOP(4)

Page 7/7

