
Rocky Enterprise Linux 9.2 Manual Pages on command 'locale.7'

$ man locale.7

LOCALE(7) Linux Programmer's Manual LOCALE(7)

NAME

 locale - description of multilanguage support

SYNOPSIS

 #include <locale.h>

DESCRIPTION

 A locale is a set of language and cultural rules. These cover aspects such as language

 for messages, different character sets, lexicographic conventions, and so on. A program

 needs to be able to determine its locale and act accordingly to be portable to different

 cultures.

 The header <locale.h> declares data types, functions and macros which are useful in this

 task.

 The functions it declares are setlocale(3) to set the current locale, and localeconv(3) to

 get information about number formatting.

 There are different categories for locale information a program might need; they are de?

 clared as macros. Using them as the first argument to the setlocale(3) function, it is

 possible to set one of these to the desired locale:

 LC_ADDRESS (GNU extension, since glibc 2.2)

 Change settings that describe the formats (e.g., postal addresses) used to describe

 locations and geography-related items. Applications that need this information can

 use nl_langinfo(3) to retrieve nonstandard elements, such as _NL_ADDRESS_COUN?

 TRY_NAME (country name, in the language of the locale) and _NL_ADDRESS_LANG_NAME

 (language name, in the language of the locale), which return strings such as Page 1/6

 "Deutschland" and "Deutsch" (for German-language locales). (Other element names

 are listed in <langinfo.h>.)

 LC_COLLATE

 This category governs the collation rules used for sorting and regular expressions,

 including character equivalence classes and multicharacter collating elements.

 This locale category changes the behavior of the functions strcoll(3) and

 strxfrm(3), which are used to compare strings in the local alphabet. For example,

 the German sharp s is sorted as "ss".

 LC_CTYPE

 This category determines the interpretation of byte sequences as characters (e.g.,

 single versus multibyte characters), character classifications (e.g., alphabetic or

 digit), and the behavior of character classes. On glibc systems, this category

 also determines the character transliteration rules for iconv(1) and iconv(3). It

 changes the behavior of the character handling and classification functions, such

 as isupper(3) and toupper(3), and the multibyte character functions such as

 mblen(3) or wctomb(3).

 LC_IDENTIFICATION (GNU extension, since glibc 2.2)

 Change settings that relate to the metadata for the locale. Applications that need

 this information can use nl_langinfo(3) to retrieve nonstandard elements, such as

 _NL_IDENTIFICATION_TITLE (title of this locale document) and _NL_IDENTIFICA?

 TION_TERRITORY (geographical territory to which this locale document applies),

 which might return strings such as "English locale for the USA" and "USA". (Other

 element names are listed in <langinfo.h>.)

 LC_MONETARY

 This category determines the formatting used for monetary-related numeric values.

 This changes the information returned by localeconv(3), which describes the way

 numbers are usually printed, with details such as decimal point versus decimal

 comma. This information is internally used by the function strfmon(3).

 LC_MESSAGES

 This category affects the language in which messages are displayed and what an af?

 firmative or negative answer looks like. The GNU C library contains the get?

 text(3), ngettext(3), and rpmatch(3) functions to ease the use of this information.

 The GNU gettext family of functions also obey the environment variable LANGUAGE Page 2/6

 (containing a colon-separated list of locales) if the category is set to a valid

 locale other than "C". This category also affects the behavior of catopen(3).

 LC_MEASUREMENT (GNU extension, since glibc 2.2)

 Change the settings relating to the measurement system in the locale (i.e., metric

 versus US customary units). Applications can use nl_langinfo(3) to retrieve the

 nonstandard _NL_MEASUREMENT_MEASUREMENT element, which returns a pointer to a char?

 acter that has the value 1 (metric) or 2 (US customary units).

 LC_NAME (GNU extension, since glibc 2.2)

 Change settings that describe the formats used to address persons. Applications

 that need this information can use nl_langinfo(3) to retrieve nonstandard elements,

 such as _NL_NAME_NAME_MR (general salutation for men) and _NL_NAME_NAME_MS (general

 salutation for women) elements, which return strings such as "Herr" and "Frau" (for

 German-language locales). (Other element names are listed in <langinfo.h>.)

 LC_NUMERIC

 This category determines the formatting rules used for nonmonetary numeric values?

 for example, the thousands separator and the radix character (a period in most Eng?

 lish-speaking countries, but a comma in many other regions). It affects functions

 such as printf(3), scanf(3), and strtod(3). This information can also be read with

 the localeconv(3) function.

 LC_PAPER (GNU extension, since glibc 2.2)

 Change the settings relating to the dimensions of the standard paper size (e.g., US

 letter versus A4). Applications that need the dimensions can obtain them by using

 nl_langinfo(3) to retrieve the nonstandard _NL_PAPER_WIDTH and _NL_PAPER_HEIGHT el?

 ements, which return int values specifying the dimensions in millimeters.

 LC_TELEPHONE (GNU extension, since glibc 2.2)

 Change settings that describe the formats to be used with telephone services. Ap?

 plications that need this information can use nl_langinfo(3) to retrieve nonstan?

 dard elements, such as _NL_TELEPHONE_INT_PREFIX (international prefix used to call

 numbers in this locale), which returns a string such as "49" (for Germany). (Other

 element names are listed in <langinfo.h>.)

 LC_TIME

 This category governs the formatting used for date and time values. For example,

 most of Europe uses a 24-hour clock versus the 12-hour clock used in the United Page 3/6

 States. The setting of this category affects the behavior of functions such as

 strftime(3) and strptime(3).

 LC_ALL All of the above.

 If the second argument to setlocale(3) is an empty string, "", for the default locale, it

 is determined using the following steps:

 1. If there is a non-null environment variable LC_ALL, the value of LC_ALL is used.

 2. If an environment variable with the same name as one of the categories above exists and

 is non-null, its value is used for that category.

 3. If there is a non-null environment variable LANG, the value of LANG is used.

 Values about local numeric formatting is made available in a struct lconv returned by the

 localeconv(3) function, which has the following declaration:

 struct lconv {

 /* Numeric (nonmonetary) information */

 char *decimal_point; /* Radix character */

 char *thousands_sep; /* Separator for digit groups to left

 of radix character */

 char *grouping; /* Each element is the number of digits in

 a group; elements with higher indices

 are further left. An element with value

 CHAR_MAX means that no further grouping

 is done. An element with value 0 means

 that the previous element is used for

 all groups further left. */

 /* Remaining fields are for monetary information */

 char *int_curr_symbol; /* First three chars are a currency

 symbol from ISO 4217. Fourth char

 is the separator. Fifth char

 is '\0'. */

 char *currency_symbol; /* Local currency symbol */

 char *mon_decimal_point; /* Radix character */

 char *mon_thousands_sep; /* Like thousands_sep above */

 char *mon_grouping; /* Like grouping above */

 char *positive_sign; /* Sign for positive values */ Page 4/6

 char *negative_sign; /* Sign for negative values */

 char int_frac_digits; /* International fractional digits */

 char frac_digits; /* Local fractional digits */

 char p_cs_precedes; /* 1 if currency_symbol precedes a

 positive value, 0 if succeeds */

 char p_sep_by_space; /* 1 if a space separates

 currency_symbol from a positive

 value */

 char n_cs_precedes; /* 1 if currency_symbol precedes a

 negative value, 0 if succeeds */

 char n_sep_by_space; /* 1 if a space separates

 currency_symbol from a negative

 value */

 /* Positive and negative sign positions:

 0 Parentheses surround the quantity and currency_symbol.

 1 The sign string precedes the quantity and currency_symbol.

 2 The sign string succeeds the quantity and currency_symbol.

 3 The sign string immediately precedes the currency_symbol.

 4 The sign string immediately succeeds the currency_symbol. */

 char p_sign_posn;

 char n_sign_posn;

 };

 POSIX.1-2008 extensions to the locale API

 POSIX.1-2008 standardized a number of extensions to the locale API, based on implementa?

 tions that first appeared in version 2.3 of the GNU C library. These extensions are de?

 signed to address the problem that the traditional locale APIs do not mix well with multi?

 threaded applications and with applications that must deal with multiple locales.

 The extensions take the form of new functions for creating and manipulating locale objects

 (newlocale(3), freelocale(3), duplocale(3), and uselocale(3)) and various new library

 functions with the suffix "_l" (e.g., toupper_l(3)) that extend the traditional locale-de?

 pendent APIs (e.g., toupper(3)) to allow the specification of a locale object that should

 apply when executing the function.

ENVIRONMENT Page 5/6

 The following environment variable is used by newlocale(3) and setlocale(3), and thus af?

 fects all unprivileged localized programs:

 LOCPATH

 A list of pathnames, separated by colons (':'), that should be used to find locale

 data. If this variable is set, only the individual compiled locale data files from

 LOCPATH and the system default locale data path are used; any available locale ar?

 chives are not used (see localedef(1)). The individual compiled locale data files

 are searched for under subdirectories which depend on the currently used locale.

 For example, when en_GB.UTF-8 is used for a category, the following subdirectories

 are searched for, in this order: en_GB.UTF-8, en_GB.utf8, en_GB, en.UTF-8, en.utf8,

 and en.

FILES

 /usr/lib/locale/locale-archive

 Usual default locale archive location.

 /usr/lib/locale

 Usual default path for compiled individual locale files.

CONFORMING TO

 POSIX.1-2001.

SEE ALSO

 iconv(1), locale(1), localedef(1), catopen(3), gettext(3), iconv(3), localeconv(3), mb?

 stowcs(3), newlocale(3), ngettext(3), nl_langinfo(3), rpmatch(3), setlocale(3), str?

 coll(3), strfmon(3), strftime(3), strxfrm(3), uselocale(3), wcstombs(3), locale(5),

 charsets(7), unicode(7), utf-8(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2019-03-06 LOCALE(7)

Page 6/6

