
Rocky Enterprise Linux 9.2 Manual Pages on command 'llistxattr.2'

$ man llistxattr.2

LISTXATTR(2) Linux Programmer's Manual LISTXATTR(2)

NAME

 listxattr, llistxattr, flistxattr - list extended attribute names

SYNOPSIS

 #include <sys/types.h>

 #include <sys/xattr.h>

 ssize_t listxattr(const char *path, char *list, size_t size);

 ssize_t llistxattr(const char *path, char *list, size_t size);

 ssize_t flistxattr(int fd, char *list, size_t size);

DESCRIPTION

 Extended attributes are name:value pairs associated with inodes (files, directories, sym?

 bolic links, etc.). They are extensions to the normal attributes which are associated

 with all inodes in the system (i.e., the stat(2) data). A complete overview of extended

 attributes concepts can be found in xattr(7).

 listxattr() retrieves the list of extended attribute names associated with the given path

 in the filesystem. The retrieved list is placed in list, a caller-allocated buffer whose

 size (in bytes) is specified in the argument size. The list is the set of (null-termi?

 nated) names, one after the other. Names of extended attributes to which the calling

 process does not have access may be omitted from the list. The length of the attribute

 name list is returned.

 llistxattr() is identical to listxattr(), except in the case of a symbolic link, where the

 list of names of extended attributes associated with the link itself is retrieved, not the

 file that it refers to. Page 1/7

 flistxattr() is identical to listxattr(), only the open file referred to by fd (as re?

 turned by open(2)) is interrogated in place of path.

 A single extended attribute name is a null-terminated string. The name includes a name?

 space prefix; there may be several, disjoint namespaces associated with an individual in?

 ode.

 If size is specified as zero, these calls return the current size of the list of extended

 attribute names (and leave list unchanged). This can be used to determine the size of the

 buffer that should be supplied in a subsequent call. (But, bear in mind that there is a

 possibility that the set of extended attributes may change between the two calls, so that

 it is still necessary to check the return status from the second call.)

 Example

 The list of names is returned as an unordered array of null-terminated character strings

 (attribute names are separated by null bytes ('\0')), like this:

 user.name1\0system.name1\0user.name2\0

 Filesystems that implement POSIX ACLs using extended attributes might return a list like

 this:

 system.posix_acl_access\0system.posix_acl_default\0

RETURN VALUE

 On success, a nonnegative number is returned indicating the size of the extended attribute

 name list. On failure, -1 is returned and errno is set appropriately.

ERRORS

 E2BIG The size of the list of extended attribute names is larger than the maximum size

 allowed; the list cannot be retrieved. This can happen on filesystems that support

 an unlimited number of extended attributes per file such as XFS, for example. See

 BUGS.

 ENOTSUP

 Extended attributes are not supported by the filesystem, or are disabled.

 ERANGE The size of the list buffer is too small to hold the result.

 In addition, the errors documented in stat(2) can also occur.

VERSIONS

 These system calls have been available on Linux since kernel 2.4; glibc support is pro?

 vided since version 2.3.

CONFORMING TO Page 2/7

 These system calls are Linux-specific.

BUGS

 As noted in xattr(7), the VFS imposes a limit of 64 kB on the size of the extended attri?

 bute name list returned by listxattr(7). If the total size of attribute names attached to

 a file exceeds this limit, it is no longer possible to retrieve the list of attribute

 names.

EXAMPLES

 The following program demonstrates the usage of listxattr() and getxattr(2). For the file

 whose pathname is provided as a command-line argument, it lists all extended file at?

 tributes and their values.

 To keep the code simple, the program assumes that attribute keys and values are constant

 during the execution of the program. A production program should expect and handle

 changes during execution of the program. For example, the number of bytes required for

 attribute keys might increase between the two calls to listxattr(). An application could

 handle this possibility using a loop that retries the call (perhaps up to a predetermined

 maximum number of attempts) with a larger buffer each time it fails with the error ERANGE.

 Calls to getxattr(2) could be handled similarly.

 The following output was recorded by first creating a file, setting some extended file at?

 tributes, and then listing the attributes with the example program.

 Example output

 $ touch /tmp/foo

 $ setfattr -n user.fred -v chocolate /tmp/foo

 $ setfattr -n user.frieda -v bar /tmp/foo

 $ setfattr -n user.empty /tmp/foo

 $./listxattr /tmp/foo

 user.fred: chocolate

 user.frieda: bar

 user.empty: <no value>

 Program source (listxattr.c)

 #include <malloc.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h> Page 3/7

 #include <sys/types.h>

 #include <sys/xattr.h>

 int

 main(int argc, char *argv[])

 {

 ssize_t buflen, keylen, vallen;

 char *buf, *key, *val;

 if (argc != 2) {

 fprintf(stderr, "Usage: %s path\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 /*

 * Determine the length of the buffer needed.

 */

 buflen = listxattr(argv[1], NULL, 0);

 if (buflen == -1) {

 perror("listxattr");

 exit(EXIT_FAILURE);

 }

 if (buflen == 0) {

 printf("%s has no attributes.\n", argv[1]);

 exit(EXIT_SUCCESS);

 }

 /*

 * Allocate the buffer.

 */

 buf = malloc(buflen);

 if (buf == NULL) {

 perror("malloc");

 exit(EXIT_FAILURE);

 }

 /*

 * Copy the list of attribute keys to the buffer. Page 4/7

 */

 buflen = listxattr(argv[1], buf, buflen);

 if (buflen == -1) {

 perror("listxattr");

 exit(EXIT_FAILURE);

 }

 /*

 * Loop over the list of zero terminated strings with the

 * attribute keys. Use the remaining buffer length to determine

 * the end of the list.

 */

 key = buf;

 while (buflen > 0) {

 /*

 * Output attribute key.

 */

 printf("%s: ", key);

 /*

 * Determine length of the value.

 */

 vallen = getxattr(argv[1], key, NULL, 0);

 if (vallen == -1)

 perror("getxattr");

 if (vallen > 0) {

 /*

 * Allocate value buffer.

 * One extra byte is needed to append 0x00.

 */

 val = malloc(vallen + 1);

 if (val == NULL) {

 perror("malloc");

 exit(EXIT_FAILURE);

 } Page 5/7

 /*

 * Copy value to buffer.

 */

 vallen = getxattr(argv[1], key, val, vallen);

 if (vallen == -1)

 perror("getxattr");

 else {

 /*

 * Output attribute value.

 */

 val[vallen] = 0;

 printf("%s", val);

 }

 free(val);

 } else if (vallen == 0)

 printf("<no value>");

 printf("\n");

 /*

 * Forward to next attribute key.

 */

 keylen = strlen(key) + 1;

 buflen -= keylen;

 key += keylen;

 }

 free(buf);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 getfattr(1), setfattr(1), getxattr(2), open(2), removexattr(2), setxattr(2), stat(2), sym?

 link(7), xattr(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be Page 6/7

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 LISTXATTR(2)

Page 7/7

