
Rocky Enterprise Linux 9.2 Manual Pages on command 'lirc.4'

$ man lirc.4

LIRC(4) Linux Programmer's Manual LIRC(4)

NAME

 lirc - lirc devices

DESCRIPTION

 The /dev/lirc* character devices provide a low-level bidirectional interface to infra-red

 (IR) remotes. Most of these devices can receive, and some can send. When receiving or

 sending data, the driver works in two different modes depending on the underlying hard?

 ware.

 Some hardware (typically TV-cards) decodes the IR signal internally and provides decoded

 button presses as scancode values. Drivers for this kind of hardware work in

 LIRC_MODE_SCANCODE mode. Such hardware usually does not support sending IR signals. Fur?

 thermore, such hardware can only decode a limited set of IR protocols, usually only the

 protocol of the specific remote which is bundled with, for example, a TV-card.

 Other hardware provides a stream of pulse/space durations. Such drivers work in

 LIRC_MODE_MODE2 mode. Sometimes, this kind of hardware also supports sending IR data.

 Such hardware can be used with (almost) any kind of remote. This type of hardware can

 also be used in LIRC_MODE_SCANCODE mode, in which case the kernel IR decoders will decode

 the IR. These decoders can be written in extended BPF (see bpf(2)) and attached to the

 lirc device.

 The LIRC_GET_FEATURES ioctl (see below) allows probing for whether receiving and sending

 is supported, and in which modes, amongst other features.

 Reading input with the LIRC_MODE_MODE2 mode

 In the LIRC_MODE_MODE2 mode, the data returned by read(2) provides 32-bit values repre? Page 1/7

 senting a space or a pulse duration. The time of the duration (microseconds) is encoded

 in the lower 24 bits. The upper 8 bits indicate the type of package:

 LIRC_MODE2_SPACE

 Value reflects a space duration (microseconds).

 LIRC_MODE2_PULSE

 Value reflects a pulse duration (microseconds).

 LIRC_MODE2_FREQUENCY

 Value reflects a frequency (Hz); see the LIRC_SET_MEASURE_CARRIER_MODE ioctl.

 LIRC_MODE2_TIMEOUT

 Value reflects a space duration (microseconds). The package reflects a timeout; see

 the LIRC_SET_REC_TIMEOUT_REPORTS ioctl.

 Reading input with the LIRC_MODE_SCANCODE mode

 In the LIRC_MODE_SCANCODE mode, the data returned by read(2) reflects decoded button

 presses, in the struct lirc_scancode. The scancode is stored in the scancode field, and

 the IR protocol is stored in rc_proto. This field has one the values of the enum

 rc_proto.

 Writing output with the LIRC_MODE_PULSE mode

 The data written to the character device using write(2) is a pulse/space sequence of inte?

 ger values. Pulses and spaces are only marked implicitly by their position. The data

 must start and end with a pulse, thus it must always include an odd number of samples.

 The write(2) function blocks until the data has been transmitted by the hardware. If more

 data is provided than the hardware can send, the write(2) call fails with the error EIN?

 VAL.

 Writing output with the LIRC_MODE_SCANCODE mode

 The data written to the character devices must be a single struct lirc_scancode. The

 scancode and rc_proto fields must filled in, all other fields must be 0. The kernel IR

 encoders will convert the scancode to pulses and spaces. The protocol or scancode is in?

 valid, or the lirc device cannot transmit.

IOCTL COMMANDS

 The LIRC device's ioctl definition is bound by the ioctl function definition of struct

 file_operations, leaving us with an unsigned int for the ioctl command and an unsigned

 long for the argument. For the purposes of ioctl portability across 32-bit and 64-bit ar?

 chitectures, these values are capped to their 32-bit sizes. Page 2/7

 #include <linux/lirc.h> /* But see BUGS */

 int ioctl(int fd, int cmd, ...);

 The following ioctls can be used to probe or change specific lirc hardware settings. Many

 require a third argument, usually an int. referred to below as val.

 Always Supported Commands

 /dev/lirc* devices always support the following commands:

 LIRC_GET_FEATURES (void)

 Returns a bit mask of combined features bits; see FEATURES.

 If a device returns an error code for LIRC_GET_FEATURES, it is safe to assume it is not a

 lirc device.

 Optional Commands

 Some lirc devices support the commands listed below. Unless otherwise stated, these fail

 with the error ENOTTY if the operation isn't supported, or with the error EINVAL if the

 operation failed, or invalid arguments were provided. If a driver does not announce sup?

 port of certain features, invoking the corresponding ioctls will fail with the error

 ENOTTY.

 LIRC_GET_REC_MODE (void)

 If the lirc device has no receiver, this operation fails with the error ENOTTY.

 Otherwise, it returns the receive mode, which will be one of:

 LIRC_MODE_MODE2

 The driver returns a sequence of pulse/space durations.

 LIRC_MODE_SCANCODE

 The driver returns struct lirc_scancode values, each of which represents a

 decoded button press.

 LIRC_SET_REC_MODE (int)

 Set the receive mode. val is either LIRC_MODE_SCANCODE or LIRC_MODE_MODE2. If the

 lirc device has no receiver, this operation fails with the error ENOTTY.

 LIRC_GET_SEND_MODE (void)

 Return the send mode. LIRC_MODE_PULSE or LIRC_MODE_SCANCODE is supported. If the

 lirc device cannot send, this operation fails with the error ENOTTY.

 LIRC_SET_SEND_MODE (int)

 Set the send mode. val is either LIRC_MODE_SCANCODE or LIRC_MODE_PULSE. If the

 lirc device cannot send, this operation fails with the error ENOTTY. Page 3/7

 LIRC_SET_SEND_CARRIER (int)

 Set the modulation frequency. The argument is the frequency (Hz).

 LIRC_SET_SEND_DUTY_CYCLE (int)

 Set the carrier duty cycle. val is a number in the range [0,100] which describes

 the pulse width as a percentage of the total cycle. Currently, no special meaning

 is defined for 0 or 100, but the values are reserved for future use.

 LIRC_GET_MIN_TIMEOUT (void), LIRC_GET_MAX_TIMEOUT (void)

 Some devices have internal timers that can be used to detect when there has been no

 IR activity for a long time. This can help lircd(8) in detecting that an IR signal

 is finished and can speed up the decoding process. These operations return integer

 values with the minimum/maximum timeout that can be set (microseconds). Some de?

 vices have a fixed timeout. For such drivers, LIRC_GET_MIN_TIMEOUT and

 LIRC_GET_MAX_TIMEOUT will fail with the error ENOTTY.

 LIRC_SET_REC_TIMEOUT (int)

 Set the integer value for IR inactivity timeout (microseconds). To be accepted,

 the value must be within the limits defined by LIRC_GET_MIN_TIMEOUT and

 LIRC_GET_MAX_TIMEOUT. A value of 0 (if supported by the hardware) disables all

 hardware timeouts and data should be reported as soon as possible. If the exact

 value cannot be set, then the next possible value greater than the given value

 should be set.

 LIRC_GET_REC_TIMEOUT (void)

 Return the current inactivity timeout (microseconds). Available since Linux 4.18.

 LIRC_SET_REC_TIMEOUT_REPORTS (int)

 Enable (val is 1) or disable (val is 0) timeout packages in LIRC_MODE_MODE2. The

 behavior of this operation has varied across kernel versions:

 * Since Linux 4.16: each time the lirc device is opened, timeout reports are by

 default enabled for the resulting file descriptor. The LIRC_SET_REC_TIMEOUT op?

 eration can be used to disable (and, if desired, to later re-enable) the timeout

 on the file descriptor.

 * In Linux 4.15 and earlier: timeout reports are disabled by default, and enabling

 them (via LIRC_SET_REC_TIMEOUT) on any file descriptor associated with the lirc

 device has the effect of enabling timeouts for all file descriptors referring to

 that device (until timeouts are disabled again). Page 4/7

 LIRC_SET_REC_CARRIER (int)

 Set the upper bound of the receive carrier frequency (Hz). See LIRC_SET_REC_CAR?

 RIER_RANGE.

 LIRC_SET_REC_CARRIER_RANGE (int)

 Sets the lower bound of the receive carrier frequency (Hz). For this to take af?

 fect, first set the lower bound using the LIRC_SET_REC_CARRIER_RANGE ioctl, and

 then the upper bound using the LIRC_SET_REC_CARRIER ioctl.

 LIRC_SET_MEASURE_CARRIER_MODE (int)

 Enable (val is 1) or disable (val is 0) the measure mode. If enabled, from the

 next key press on, the driver will send LIRC_MODE2_FREQUENCY packets. By default,

 this should be turned off.

 LIRC_GET_REC_RESOLUTION (void)

 Return the driver resolution (microseconds).

 LIRC_SET_TRANSMITTER_MASK (int)

 Enable the set of transmitters specified in val, which contains a bit mask where

 each enabled transmitter is a 1. The first transmitter is encoded by the least

 significant bit, and so on. When an invalid bit mask is given, for example a bit

 is set even though the device does not have so many transmitters, this operation

 returns the number of available transmitters and does nothing otherwise.

 LIRC_SET_WIDEBAND_RECEIVER (int)

 Some devices are equipped with a special wide band receiver which is intended to be

 used to learn the output of an existing remote. This ioctl can be used to enable

 (val equals 1) or disable (val equals 0) this functionality. This might be useful

 for devices that otherwise have narrow band receivers that prevent them to be used

 with certain remotes. Wide band receivers may also be more precise. On the other

 hand, their disadvantage usually is reduced range of reception.

 Note: wide band receiver may be implicitly enabled if you enable carrier reports.

 In that case, it will be disabled as soon as you disable carrier reports. Trying

 to disable a wide band receiver while carrier reports are active will do nothing.

FEATURES

 the LIRC_GET_FEATURES ioctl returns a bit mask describing features of the driver. The

 following bits may be returned in the mask:

 LIRC_CAN_REC_MODE2 Page 5/7

 The driver is capable of receiving using LIRC_MODE_MODE2.

 LIRC_CAN_REC_SCANCODE

 The driver is capable of receiving using LIRC_MODE_SCANCODE.

 LIRC_CAN_SET_SEND_CARRIER

 The driver supports changing the modulation frequency using LIRC_SET_SEND_CARRIER.

 LIRC_CAN_SET_SEND_DUTY_CYCLE

 The driver supports changing the duty cycle using LIRC_SET_SEND_DUTY_CYCLE.

 LIRC_CAN_SET_TRANSMITTER_MASK

 The driver supports changing the active transmitter(s) using LIRC_SET_TRANSMIT?

 TER_MASK.

 LIRC_CAN_SET_REC_CARRIER

 The driver supports setting the receive carrier frequency using LIRC_SET_REC_CAR?

 RIER. Any lirc device since the drivers were merged in kernel release 2.6.36 must

 have LIRC_CAN_SET_REC_CARRIER_RANGE set if LIRC_CAN_SET_REC_CARRIER feature is set.

 LIRC_CAN_SET_REC_CARRIER_RANGE

 The driver supports LIRC_SET_REC_CARRIER_RANGE. The lower bound of the carrier

 must first be set using the LIRC_SET_REC_CARRIER_RANGE ioctl, before using the

 LIRC_SET_REC_CARRIER ioctl to set the upper bound.

 LIRC_CAN_GET_REC_RESOLUTION

 The driver supports LIRC_GET_REC_RESOLUTION.

 LIRC_CAN_SET_REC_TIMEOUT

 The driver supports LIRC_SET_REC_TIMEOUT.

 LIRC_CAN_MEASURE_CARRIER

 The driver supports measuring of the modulation frequency using LIRC_SET_MEA?

 SURE_CARRIER_MODE.

 LIRC_CAN_USE_WIDEBAND_RECEIVER

 The driver supports learning mode using LIRC_SET_WIDEBAND_RECEIVER.

 LIRC_CAN_SEND_PULSE

 The driver supports sending using LIRC_MODE_PULSE or LIRC_MODE_SCANCODE

BUGS

 Using these devices requires the kernel source header file lirc.h. This file is not

 available before kernel release 4.6. Users of older kernels could use the file bundled in

 ?http://www.lirc.org?. Page 6/7

SEE ALSO

 ir-ctl(1), lircd(8), bpf(2)

 https://www.kernel.org/doc/html/latest/media/uapi/rc/lirc-dev.html

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2019-03-06 LIRC(4)

Page 7/7

