
Rocky Enterprise Linux 9.2 Manual Pages on command 'linkat.2'

$ man linkat.2

LINK(2) Linux Programmer's Manual LINK(2)

NAME

 link, linkat - make a new name for a file

SYNOPSIS

 #include <unistd.h>

 int link(const char *oldpath, const char *newpath);

 #include <fcntl.h> /* Definition of AT_* constants */

 #include <unistd.h>

 int linkat(int olddirfd, const char *oldpath,

 int newdirfd, const char *newpath, int flags);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 linkat():

 Since glibc 2.10:

 _POSIX_C_SOURCE >= 200809L

 Before glibc 2.10:

 _ATFILE_SOURCE

DESCRIPTION

 link() creates a new link (also known as a hard link) to an existing file.

 If newpath exists, it will not be overwritten.

 This new name may be used exactly as the old one for any operation; both names refer to

 the same file (and so have the same permissions and ownership) and it is impossible to

 tell which name was the "original".

 linkat() Page 1/5

 The linkat() system call operates in exactly the same way as link(), except for the dif?

 ferences described here.

 If the pathname given in oldpath is relative, then it is interpreted relative to the di?

 rectory referred to by the file descriptor olddirfd (rather than relative to the current

 working directory of the calling process, as is done by link() for a relative pathname).

 If oldpath is relative and olddirfd is the special value AT_FDCWD, then oldpath is inter?

 preted relative to the current working directory of the calling process (like link()).

 If oldpath is absolute, then olddirfd is ignored.

 The interpretation of newpath is as for oldpath, except that a relative pathname is inter?

 preted relative to the directory referred to by the file descriptor newdirfd.

 The following values can be bitwise ORed in flags:

 AT_EMPTY_PATH (since Linux 2.6.39)

 If oldpath is an empty string, create a link to the file referenced by olddirfd

 (which may have been obtained using the open(2) O_PATH flag). In this case, old?

 dirfd can refer to any type of file except a directory. This will generally not

 work if the file has a link count of zero (files created with O_TMPFILE and without

 O_EXCL are an exception). The caller must have the CAP_DAC_READ_SEARCH capability

 in order to use this flag. This flag is Linux-specific; define _GNU_SOURCE to ob?

 tain its definition.

 AT_SYMLINK_FOLLOW (since Linux 2.6.18)

 By default, linkat(), does not dereference oldpath if it is a symbolic link (like

 link()). The flag AT_SYMLINK_FOLLOW can be specified in flags to cause oldpath to

 be dereferenced if it is a symbolic link. If procfs is mounted, this can be used

 as an alternative to AT_EMPTY_PATH, like this:

 linkat(AT_FDCWD, "/proc/self/fd/<fd>", newdirfd,

 newname, AT_SYMLINK_FOLLOW);

 Before kernel 2.6.18, the flags argument was unused, and had to be specified as 0.

 See openat(2) for an explanation of the need for linkat().

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS

 EACCES Write access to the directory containing newpath is denied, or search permission is

 denied for one of the directories in the path prefix of oldpath or newpath. (See Page 2/5

 also path_resolution(7).)

 EDQUOT The user's quota of disk blocks on the filesystem has been exhausted.

 EEXIST newpath already exists.

 EFAULT oldpath or newpath points outside your accessible address space.

 EIO An I/O error occurred.

 ELOOP Too many symbolic links were encountered in resolving oldpath or newpath.

 EMLINK The file referred to by oldpath already has the maximum number of links to it. For

 example, on an ext4(5) filesystem that does not employ the dir_index feature, the

 limit on the number of hard links to a file is 65,000; on btrfs(5), the limit is

 65,535 links.

 ENAMETOOLONG

 oldpath or newpath was too long.

 ENOENT A directory component in oldpath or newpath does not exist or is a dangling sym?

 bolic link.

 ENOMEM Insufficient kernel memory was available.

 ENOSPC The device containing the file has no room for the new directory entry.

 ENOTDIR

 A component used as a directory in oldpath or newpath is not, in fact, a directory.

 EPERM oldpath is a directory.

 EPERM The filesystem containing oldpath and newpath does not support the creation of hard

 links.

 EPERM (since Linux 3.6)

 The caller does not have permission to create a hard link to this file (see the de?

 scription of /proc/sys/fs/protected_hardlinks in proc(5)).

 EPERM oldpath is marked immutable or append-only. (See ioctl_iflags(2).)

 EROFS The file is on a read-only filesystem.

 EXDEV oldpath and newpath are not on the same mounted filesystem. (Linux permits a

 filesystem to be mounted at multiple points, but link() does not work across dif?

 ferent mount points, even if the same filesystem is mounted on both.)

 The following additional errors can occur for linkat():

 EBADF olddirfd or newdirfd is not a valid file descriptor.

 EINVAL An invalid flag value was specified in flags.

 ENOENT AT_EMPTY_PATH was specified in flags, but the caller did not have the Page 3/5

 CAP_DAC_READ_SEARCH capability.

 ENOENT An attempt was made to link to the /proc/self/fd/NN file corresponding to a file

 descriptor created with

 open(path, O_TMPFILE | O_EXCL, mode);

 See open(2).

 ENOENT An attempt was made to link to a /proc/self/fd/NN file corresponding to a file that

 has been deleted.

 ENOENT oldpath is a relative pathname and olddirfd refers to a directory that has been

 deleted, or newpath is a relative pathname and newdirfd refers to a directory that

 has been deleted.

 ENOTDIR

 oldpath is relative and olddirfd is a file descriptor referring to a file other

 than a directory; or similar for newpath and newdirfd

 EPERM AT_EMPTY_PATH was specified in flags, oldpath is an empty string, and olddirfd

 refers to a directory.

VERSIONS

 linkat() was added to Linux in kernel 2.6.16; library support was added to glibc in ver?

 sion 2.4.

CONFORMING TO

 link(): SVr4, 4.3BSD, POSIX.1-2001 (but see NOTES), POSIX.1-2008.

 linkat(): POSIX.1-2008.

NOTES

 Hard links, as created by link(), cannot span filesystems. Use symlink(2) if this is re?

 quired.

 POSIX.1-2001 says that link() should dereference oldpath if it is a symbolic link. How?

 ever, since kernel 2.0, Linux does not do so: if oldpath is a symbolic link, then newpath

 is created as a (hard) link to the same symbolic link file (i.e., newpath becomes a sym?

 bolic link to the same file that oldpath refers to). Some other implementations behave in

 the same manner as Linux. POSIX.1-2008 changes the specification of link(), making it im?

 plementation-dependent whether or not oldpath is dereferenced if it is a symbolic link.

 For precise control over the treatment of symbolic links when creating a link, use

 linkat().

 Glibc notes Page 4/5

 On older kernels where linkat() is unavailable, the glibc wrapper function falls back to

 the use of link(), unless the AT_SYMLINK_FOLLOW is specified. When oldpath and newpath

 are relative pathnames, glibc constructs pathnames based on the symbolic links in

 /proc/self/fd that correspond to the olddirfd and newdirfd arguments.

BUGS

 On NFS filesystems, the return code may be wrong in case the NFS server performs the link

 creation and dies before it can say so. Use stat(2) to find out if the link got created.

SEE ALSO

 ln(1), open(2), rename(2), stat(2), symlink(2), unlink(2), path_resolution(7), symlink(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 LINK(2)

Page 5/5

