
Rocky Enterprise Linux 9.2 Manual Pages on command 'ld.so.8'

$ man ld.so.8

LD.SO(8) Linux Programmer's Manual LD.SO(8)

NAME

 ld.so, ld-linux.so - dynamic linker/loader

SYNOPSIS

 The dynamic linker can be run either indirectly by running some dynamically linked program

 or shared object (in which case no command-line options to the dynamic linker can be

 passed and, in the ELF case, the dynamic linker which is stored in the .interp section of

 the program is executed) or directly by running:

 /lib/ld-linux.so.* [OPTIONS] [PROGRAM [ARGUMENTS]]

DESCRIPTION

 The programs ld.so and ld-linux.so* find and load the shared objects (shared libraries)

 needed by a program, prepare the program to run, and then run it.

 Linux binaries require dynamic linking (linking at run time) unless the -static option was

 given to ld(1) during compilation.

 The program ld.so handles a.out binaries, a binary format used long ago. The program

 ld-linux.so* (/lib/ld-linux.so.1 for libc5, /lib/ld-linux.so.2 for glibc2) handles bina?

 ries that are in the more modern ELF format. Both programs have the same behavior, and

 use the same support files and programs (ldd(1), ldconfig(8), and /etc/ld.so.conf).

 When resolving shared object dependencies, the dynamic linker first inspects each depen?

 dency string to see if it contains a slash (this can occur if a shared object pathname

 containing slashes was specified at link time). If a slash is found, then the dependency

 string is interpreted as a (relative or absolute) pathname, and the shared object is

 loaded using that pathname. Page 1/11

 If a shared object dependency does not contain a slash, then it is searched for in the

 following order:

 o Using the directories specified in the DT_RPATH dynamic section attribute of the binary

 if present and DT_RUNPATH attribute does not exist. Use of DT_RPATH is deprecated.

 o Using the environment variable LD_LIBRARY_PATH, unless the executable is being run in

 secure-execution mode (see below), in which case this variable is ignored.

 o Using the directories specified in the DT_RUNPATH dynamic section attribute of the bi?

 nary if present. Such directories are searched only to find those objects required by

 DT_NEEDED (direct dependencies) entries and do not apply to those objects' children,

 which must themselves have their own DT_RUNPATH entries. This is unlike DT_RPATH,

 which is applied to searches for all children in the dependency tree.

 o From the cache file /etc/ld.so.cache, which contains a compiled list of candidate

 shared objects previously found in the augmented library path. If, however, the binary

 was linked with the -z nodeflib linker option, shared objects in the default paths are

 skipped. Shared objects installed in hardware capability directories (see below) are

 preferred to other shared objects.

 o In the default path /lib, and then /usr/lib. (On some 64-bit architectures, the de?

 fault paths for 64-bit shared objects are /lib64, and then /usr/lib64.) If the binary

 was linked with the -z nodeflib linker option, this step is skipped.

 Dynamic string tokens

 In several places, the dynamic linker expands dynamic string tokens:

 o In the environment variables LD_LIBRARY_PATH, LD_PRELOAD, and LD_AUDIT,

 o inside the values of the dynamic section tags DT_NEEDED, DT_RPATH, DT_RUNPATH, DT_AU?

 DIT, and DT_DEPAUDIT of ELF binaries,

 o in the arguments to the ld.so command line options --audit, --library-path, and

 --preload (see below), and

 o in the filename arguments to the dlopen(3) and dlmopen(3) functions.

 The substituted tokens are as follows:

 $ORIGIN (or equivalently ${ORIGIN})

 This expands to the directory containing the program or shared object. Thus, an

 application located in somedir/app could be compiled with

 gcc -Wl,-rpath,'$ORIGIN/../lib'

 so that it finds an associated shared object in somedir/lib no matter where somedir Page 2/11

 is located in the directory hierarchy. This facilitates the creation of "turn-key"

 applications that do not need to be installed into special directories, but can in?

 stead be unpacked into any directory and still find their own shared objects.

 $LIB (or equivalently ${LIB})

 This expands to lib or lib64 depending on the architecture (e.g., on x86-64, it ex?

 pands to lib64 and on x86-32, it expands to lib).

 $PLATFORM (or equivalently ${PLATFORM})

 This expands to a string corresponding to the processor type of the host system

 (e.g., "x86_64"). On some architectures, the Linux kernel doesn't provide a plat?

 form string to the dynamic linker. The value of this string is taken from the

 AT_PLATFORM value in the auxiliary vector (see getauxval(3)).

 Note that the dynamic string tokens have to be quoted properly when set from a shell, to

 prevent their expansion as shell or environment variables.

OPTIONS

 --audit list

 Use objects named in list as auditors. The objects in list are delimited by

 colons.

 --inhibit-cache

 Do not use /etc/ld.so.cache.

 --library-path path

 Use path instead of LD_LIBRARY_PATH environment variable setting (see below). The

 names ORIGIN, LIB, and PLATFORM are interpreted as for the LD_LIBRARY_PATH environ?

 ment variable.

 --inhibit-rpath list

 Ignore RPATH and RUNPATH information in object names in list. This option is ig?

 nored when running in secure-execution mode (see below). The objects in list are

 delimited by colons or spaces.

 --list List all dependencies and how they are resolved.

 --preload list (since glibc 2.30)

 Preload the objects specified in list. The objects in list are delimited by colons

 or spaces. The objects are preloaded as explained in the description of the

 LD_PRELOAD environment variable below.

 By contrast with LD_PRELOAD, the --preload option provides a way to perform Page 3/11

 preloading for a single executable without affecting preloading performed in any

 child process that executes a new program.

 --verify

 Verify that program is dynamically linked and this dynamic linker can handle it.

ENVIRONMENT

 Various environment variables influence the operation of the dynamic linker.

 Secure-execution mode

 For security reasons, if the dynamic linker determines that a binary should be run in se?

 cure-execution mode, the effects of some environment variables are voided or modified, and

 furthermore those environment variables are stripped from the environment, so that the

 program does not even see the definitions. Some of these environment variables affect the

 operation of the dynamic linker itself, and are described below. Other environment vari?

 ables treated in this way include: GCONV_PATH, GETCONF_DIR, HOSTALIASES, LOCALDOMAIN, LOC?

 PATH, MALLOC_TRACE, NIS_PATH, NLSPATH, RESOLV_HOST_CONF, RES_OPTIONS, TMPDIR, and TZDIR.

 A binary is executed in secure-execution mode if the AT_SECURE entry in the auxiliary vec?

 tor (see getauxval(3)) has a nonzero value. This entry may have a nonzero value for vari?

 ous reasons, including:

 * The process's real and effective user IDs differ, or the real and effective group IDs

 differ. This typically occurs as a result of executing a set-user-ID or set-group-ID

 program.

 * A process with a non-root user ID executed a binary that conferred capabilities to the

 process.

 * A nonzero value may have been set by a Linux Security Module.

 Environment variables

 Among the more important environment variables are the following:

 LD_ASSUME_KERNEL (since glibc 2.2.3)

 Each shared object can inform the dynamic linker of the minimum kernel ABI version

 that it requires. (This requirement is encoded in an ELF note section that is

 viewable via readelf -n as a section labeled NT_GNU_ABI_TAG.) At run time, the dy?

 namic linker determines the ABI version of the running kernel and will reject load?

 ing shared objects that specify minimum ABI versions that exceed that ABI version.

 LD_ASSUME_KERNEL can be used to cause the dynamic linker to assume that it is run?

 ning on a system with a different kernel ABI version. For example, the following Page 4/11

 command line causes the dynamic linker to assume it is running on Linux 2.2.5 when

 loading the shared objects required by myprog:

 $ LD_ASSUME_KERNEL=2.2.5 ./myprog

 On systems that provide multiple versions of a shared object (in different directo?

 ries in the search path) that have different minimum kernel ABI version require?

 ments, LD_ASSUME_KERNEL can be used to select the version of the object that is

 used (dependent on the directory search order).

 Historically, the most common use of the LD_ASSUME_KERNEL feature was to manually

 select the older LinuxThreads POSIX threads implementation on systems that provided

 both LinuxThreads and NPTL (which latter was typically the default on such sys?

 tems); see pthreads(7).

 LD_BIND_NOW (since glibc 2.1.1)

 If set to a nonempty string, causes the dynamic linker to resolve all symbols at

 program startup instead of deferring function call resolution to the point when

 they are first referenced. This is useful when using a debugger.

 LD_LIBRARY_PATH

 A list of directories in which to search for ELF libraries at execution time. The

 items in the list are separated by either colons or semicolons, and there is no

 support for escaping either separator. A zero-length directory name indicates the

 current working directory.

 This variable is ignored in secure-execution mode.

 Within the pathnames specified in LD_LIBRARY_PATH, the dynamic linker expands the

 tokens $ORIGIN, $LIB, and $PLATFORM (or the versions using curly braces around the

 names) as described above in Dynamic string tokens. Thus, for example, the follow?

 ing would cause a library to be searched for in either the lib or lib64 subdirec?

 tory below the directory containing the program to be executed:

 $ LD_LIBRARY_PATH='$ORIGIN/$LIB' prog

 (Note the use of single quotes, which prevent expansion of $ORIGIN and $LIB as

 shell variables!)

 LD_PRELOAD

 A list of additional, user-specified, ELF shared objects to be loaded before all

 others. This feature can be used to selectively override functions in other shared

 objects. Page 5/11

 The items of the list can be separated by spaces or colons, and there is no support

 for escaping either separator. The objects are searched for using the rules given

 under DESCRIPTION. Objects are searched for and added to the link map in the left-

 to-right order specified in the list.

 In secure-execution mode, preload pathnames containing slashes are ignored. Fur?

 thermore, shared objects are preloaded only from the standard search directories

 and only if they have set-user-ID mode bit enabled (which is not typical).

 Within the names specified in the LD_PRELOAD list, the dynamic linker understands

 the tokens $ORIGIN, $LIB, and $PLATFORM (or the versions using curly braces around

 the names) as described above in Dynamic string tokens. (See also the discussion

 of quoting under the description of LD_LIBRARY_PATH.)

 There are various methods of specifying libraries to be preloaded, and these are

 handled in the following order:

 (1) The LD_PRELOAD environment variable.

 (2) The --preload command-line option when invoking the dynamic linker directly.

 (3) The /etc/ld.so.preload file (described below).

 LD_TRACE_LOADED_OBJECTS

 If set (to any value), causes the program to list its dynamic dependencies, as if

 run by ldd(1), instead of running normally.

 Then there are lots of more or less obscure variables, many obsolete or only for internal

 use.

 LD_AUDIT (since glibc 2.4)

 A list of user-specified, ELF shared objects to be loaded before all others in a

 separate linker namespace (i.e., one that does not intrude upon the normal symbol

 bindings that would occur in the process) These objects can be used to audit the

 operation of the dynamic linker. The items in the list are colon-separated, and

 there is no support for escaping the separator.

 LD_AUDIT is ignored in secure-execution mode.

 The dynamic linker will notify the audit shared objects at so-called auditing

 checkpoints?for example, loading a new shared object, resolving a symbol, or call?

 ing a symbol from another shared object?by calling an appropriate function within

 the audit shared object. For details, see rtld-audit(7). The auditing interface

 is largely compatible with that provided on Solaris, as described in its Linker and Page 6/11

 Libraries Guide, in the chapter Runtime Linker Auditing Interface.

 Within the names specified in the LD_AUDIT list, the dynamic linker understands the

 tokens $ORIGIN, $LIB, and $PLATFORM (or the versions using curly braces around the

 names) as described above in Dynamic string tokens. (See also the discussion of

 quoting under the description of LD_LIBRARY_PATH.)

 Since glibc 2.13, in secure-execution mode, names in the audit list that contain

 slashes are ignored, and only shared objects in the standard search directories

 that have the set-user-ID mode bit enabled are loaded.

 LD_BIND_NOT (since glibc 2.1.95)

 If this environment variable is set to a nonempty string, do not update the GOT

 (global offset table) and PLT (procedure linkage table) after resolving a function

 symbol. By combining the use of this variable with LD_DEBUG (with the categories

 bindings and symbols), one can observe all run-time function bindings.

 LD_DEBUG (since glibc 2.1)

 Output verbose debugging information about operation of the dynamic linker. The

 content of this variable is one of more of the following categories, separated by

 colons, commas, or (if the value is quoted) spaces:

 help Specifying help in the value of this variable does not run the speci?

 fied program, and displays a help message about which categories can be

 specified in this environment variable.

 all Print all debugging information (except statistics and unused; see be?

 low).

 bindings Display information about which definition each symbol is bound to.

 files Display progress for input file.

 libs Display library search paths.

 reloc Display relocation processing.

 scopes Display scope information.

 statistics Display relocation statistics.

 symbols Display search paths for each symbol look-up.

 unused Determine unused DSOs.

 versions Display version dependencies.

 Since glibc 2.3.4, LD_DEBUG is ignored in secure-execution mode, unless the file

 /etc/suid-debug exists (the content of the file is irrelevant). Page 7/11

 LD_DEBUG_OUTPUT (since glibc 2.1)

 By default, LD_DEBUG output is written to standard error. If LD_DEBUG_OUTPUT is

 defined, then output is written to the pathname specified by its value, with the

 suffix "." (dot) followed by the process ID appended to the pathname.

 LD_DEBUG_OUTPUT is ignored in secure-execution mode.

 LD_DYNAMIC_WEAK (since glibc 2.1.91)

 By default, when searching shared libraries to resolve a symbol reference, the dy?

 namic linker will resolve to the first definition it finds.

 Old glibc versions (before 2.2), provided a different behavior: if the linker found

 a symbol that was weak, it would remember that symbol and keep searching in the re?

 maining shared libraries. If it subsequently found a strong definition of the same

 symbol, then it would instead use that definition. (If no further symbol was

 found, then the dynamic linker would use the weak symbol that it initially found.)

 The old glibc behavior was nonstandard. (Standard practice is that the distinction

 between weak and strong symbols should have effect only at static link time.) In

 glibc 2.2, the dynamic linker was modified to provide the current behavior (which

 was the behavior that was provided by most other implementations at that time).

 Defining the LD_DYNAMIC_WEAK environment variable (with any value) provides the old

 (nonstandard) glibc behavior, whereby a weak symbol in one shared library may be

 overridden by a strong symbol subsequently discovered in another shared library.

 (Note that even when this variable is set, a strong symbol in a shared library will

 not override a weak definition of the same symbol in the main program.)

 Since glibc 2.3.4, LD_DYNAMIC_WEAK is ignored in secure-execution mode.

 LD_HWCAP_MASK (since glibc 2.1)

 Mask for hardware capabilities.

 LD_ORIGIN_PATH (since glibc 2.1)

 Path where the binary is found.

 Since glibc 2.4, LD_ORIGIN_PATH is ignored in secure-execution mode.

 LD_POINTER_GUARD (glibc from 2.4 to 2.22)

 Set to 0 to disable pointer guarding. Any other value enables pointer guarding,

 which is also the default. Pointer guarding is a security mechanism whereby some

 pointers to code stored in writable program memory (return addresses saved by

 setjmp(3) or function pointers used by various glibc internals) are mangled semi- Page 8/11

 randomly to make it more difficult for an attacker to hijack the pointers for use

 in the event of a buffer overrun or stack-smashing attack. Since glibc 2.23,

 LD_POINTER_GUARD can no longer be used to disable pointer guarding, which is now

 always enabled.

 LD_PROFILE (since glibc 2.1)

 The name of a (single) shared object to be profiled, specified either as a pathname

 or a soname. Profiling output is appended to the file whose name is: "$LD_PRO?

 FILE_OUTPUT/$LD_PROFILE.profile".

 Since glibc 2.2.5, LD_PROFILE is ignored in secure-execution mode.

 LD_PROFILE_OUTPUT (since glibc 2.1)

 Directory where LD_PROFILE output should be written. If this variable is not de?

 fined, or is defined as an empty string, then the default is /var/tmp.

 LD_PROFILE_OUTPUT is ignored in secure-execution mode; instead /var/profile is al?

 ways used. (This detail is relevant only before glibc 2.2.5, since in later glibc

 versions, LD_PROFILE is also ignored in secure-execution mode.)

 LD_SHOW_AUXV (since glibc 2.1)

 If this environment variable is defined (with any value), show the auxiliary array

 passed up from the kernel (see also getauxval(3)).

 Since glibc 2.3.4, LD_SHOW_AUXV is ignored in secure-execution mode.

 LD_TRACE_PRELINKING (since glibc 2.4)

 If this environment variable is defined, trace prelinking of the object whose name

 is assigned to this environment variable. (Use ldd(1) to get a list of the objects

 that might be traced.) If the object name is not recognized, then all prelinking

 activity is traced.

 LD_USE_LOAD_BIAS (since glibc 2.3.3)

 By default (i.e., if this variable is not defined), executables and prelinked

 shared objects will honor base addresses of their dependent shared objects and

 (nonprelinked) position-independent executables (PIEs) and other shared objects

 will not honor them. If LD_USE_LOAD_BIAS is defined with the value 1, both exe?

 cutables and PIEs will honor the base addresses. If LD_USE_LOAD_BIAS is defined

 with the value 0, neither executables nor PIEs will honor the base addresses.

 Since glibc 2.3.3, this variable is ignored in secure-execution mode.

 LD_VERBOSE (since glibc 2.1) Page 9/11

 If set to a nonempty string, output symbol versioning information about the program

 if the LD_TRACE_LOADED_OBJECTS environment variable has been set.

 LD_WARN (since glibc 2.1.3)

 If set to a nonempty string, warn about unresolved symbols.

 LD_PREFER_MAP_32BIT_EXEC (x86-64 only; since glibc 2.23)

 According to the Intel Silvermont software optimization guide, for 64-bit applica?

 tions, branch prediction performance can be negatively impacted when the target of

 a branch is more than 4 GB away from the branch. If this environment variable is

 set (to any value), the dynamic linker will first try to map executable pages using

 the mmap(2) MAP_32BIT flag, and fall back to mapping without that flag if that at?

 tempt fails. NB: MAP_32BIT will map to the low 2 GB (not 4 GB) of the address

 space.

 Because MAP_32BIT reduces the address range available for address space layout ran?

 domization (ASLR), LD_PREFER_MAP_32BIT_EXEC is always disabled in secure-execution

 mode.

FILES

 /lib/ld.so

 a.out dynamic linker/loader

 /lib/ld-linux.so.{1,2}

 ELF dynamic linker/loader

 /etc/ld.so.cache

 File containing a compiled list of directories in which to search for shared ob?

 jects and an ordered list of candidate shared objects. See ldconfig(8).

 /etc/ld.so.preload

 File containing a whitespace-separated list of ELF shared objects to be loaded be?

 fore the program. See the discussion of LD_PRELOAD above. If both LD_PRELOAD and

 /etc/ld.so.preload are employed, the libraries specified by LD_PRELOAD are pre?

 loaded first. /etc/ld.so.preload has a system-wide effect, causing the specified

 libraries to be preloaded for all programs that are executed on the system. (This

 is usually undesirable, and is typically employed only as an emergency remedy, for

 example, as a temporary workaround to a library misconfiguration issue.)

 lib*.so*

 shared objects Page 10/11

NOTES

 Hardware capabilities

 Some shared objects are compiled using hardware-specific instructions which do not exist

 on every CPU. Such objects should be installed in directories whose names define the re?

 quired hardware capabilities, such as /usr/lib/sse2/. The dynamic linker checks these di?

 rectories against the hardware of the machine and selects the most suitable version of a

 given shared object. Hardware capability directories can be cascaded to combine CPU fea?

 tures. The list of supported hardware capability names depends on the CPU. The following

 names are currently recognized:

 Alpha ev4, ev5, ev56, ev6, ev67

 MIPS loongson2e, loongson2f, octeon, octeon2

 PowerPC

 4xxmac, altivec, arch_2_05, arch_2_06, booke, cellbe, dfp, efpdouble, efpsingle,

 fpu, ic_snoop, mmu, notb, pa6t, power4, power5, power5+, power6x, ppc32, ppc601,

 ppc64, smt, spe, ucache, vsx

 SPARC flush, muldiv, stbar, swap, ultra3, v9, v9v, v9v2

 s390 dfp, eimm, esan3, etf3enh, g5, highgprs, hpage, ldisp, msa, stfle, z900, z990,

 z9-109, z10, zarch

 x86 (32-bit only)

 acpi, apic, clflush, cmov, cx8, dts, fxsr, ht, i386, i486, i586, i686, mca, mmx,

 mtrr, pat, pbe, pge, pn, pse36, sep, ss, sse, sse2, tm

SEE ALSO

 ld(1), ldd(1), pldd(1), sprof(1), dlopen(3), getauxval(3), elf(5), capabilities(7),

 rtld-audit(7), ldconfig(8), sln(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

GNU 2020-08-13 LD.SO(8)

Page 11/11

