
Rocky Enterprise Linux 9.2 Manual Pages on command 'keytool.1'

$ man keytool.1

KEYTOOL(1) JDK Commands KEYTOOL(1)

NAME

 keytool - a key and certificate management utility

SYNOPSIS

 keytool [commands]

 commands

 Commands for keytool include the following:

 ? -certreq: Generates a certificate request

 ? -changealias: Changes an entry's alias

 ? -delete: Deletes an entry

 ? -exportcert: Exports certificate

 ? -genkeypair: Generates a key pair

 ? -genseckey: Generates a secret key

 ? -gencert: Generates a certificate from a certificate request

 ? -importcert: Imports a certificate or a certificate chain

 ? -importpass: Imports a password

 ? -importkeystore: Imports one or all entries from another keystore

 ? -keypasswd: Changes the key password of an entry

 ? -list: Lists entries in a keystore

 ? -printcert: Prints the content of a certificate

 ? -printcertreq: Prints the content of a certificate request

 ? -printcrl: Prints the content of a Certificate Revocation List (CRL) file

 ? -storepasswd: Changes the store password of a keystore Page 1/47

 ? -showinfo: Displays security-related information

 ? -version: Prints the program version

 See Commands and Options for a description of these commands with their options.

DESCRIPTION

 The keytool command is a key and certificate management utility. It enables users to ad?

 minister their own public/private key pairs and associated certificates for use in self-

 authentication (where a user authenticates themselves to other users and services) or data

 integrity and authentication services, by using digital signatures. The keytool command

 also enables users to cache the public keys (in the form of certificates) of their commu?

 nicating peers.

 A certificate is a digitally signed statement from one entity (person, company, and so

 on), which says that the public key (and some other information) of some other entity has

 a particular value. When data is digitally signed, the signature can be verified to check

 the data integrity and authenticity. Integrity means that the data hasn't been modified

 or tampered with, and authenticity means that the data comes from the individual who

 claims to have created and signed it.

 The keytool command also enables users to administer secret keys and passphrases used in

 symmetric encryption and decryption (Data Encryption Standard). It can also display other

 security-related information.

 The keytool command stores the keys and certificates in a keystore.

 The keytool command uses the jdk.certpath.disabledAlgorithms and jdk.security.legacyAlgo?

 rithms security properties to determine which algorithms are considered a security risk.

 It emits warnings when disabled or legacy algorithms are being used. The jdk.cert?

 path.disabledAlgorithms and jdk.security.legacyAlgorithms security properties are defined

 in the java.security file (located in the JDK's $JAVA_HOME/conf/security directory).

COMMAND AND OPTION NOTES

 The following notes apply to the descriptions in Commands and Options:

 ? All command and option names are preceded by a hyphen sign (-).

 ? Only one command can be provided.

 ? Options for each command can be provided in any order.

 ? There are two kinds of options, one is single-valued which should be only provided once.

 If a single-valued option is provided multiple times, the value of the last one is used.

 The other type is multi-valued, which can be provided multiple times and all values are Page 2/47

 used. The only multi-valued option currently supported is the -ext option used to gen?

 erate X.509v3 certificate extensions.

 ? All items not italicized or in braces ({ }) or brackets ([]) are required to appear as

 is.

 ? Braces surrounding an option signify that a default value is used when the option isn't

 specified on the command line. Braces are also used around the -v, -rfc, and -J op?

 tions, which have meaning only when they appear on the command line. They don't have

 any default values.

 ? Brackets surrounding an option signify that the user is prompted for the values when the

 option isn't specified on the command line. For the -keypass option, if you don't spec?

 ify the option on the command line, then the keytool command first attempts to use the

 keystore password to recover the private/secret key. If this attempt fails, then the

 keytool command prompts you for the private/secret key password.

 ? Items in italics (option values) represent the actual values that must be supplied. For

 example, here is the format of the -printcert command:

 keytool -printcert {-file cert_file} {-v}

 When you specify a -printcert command, replace cert_file with the actual file name, as

 follows: keytool -printcert -file VScert.cer

 ? Option values must be enclosed in quotation marks when they contain a blank (space).

COMMANDS AND OPTIONS

 The keytool commands and their options can be grouped by the tasks that they perform.

 Commands for Creating or Adding Data to the Keystore:

 ? -gencert

 ? -genkeypair

 ? -genseckey

 ? -importcert

 ? -importpass

 Commands for Importing Contents from Another Keystore:

 ? -importkeystore

 Commands for Generating a Certificate Request:

 ? -certreq

 Commands for Exporting Data:

 ? -exportcert Page 3/47

 Commands for Displaying Data:

 ? -list

 ? -printcert

 ? -printcertreq

 ? -printcrl

 Commands for Managing the Keystore:

 ? -storepasswd

 ? -keypasswd

 ? -delete

 ? -changealias

 Commands for Displaying Security-related Information:

 ? -showinfo

 Commands for Displaying Program Version:

 ? -version

COMMANDS FOR CREATING OR ADDING DATA TO THE KEYSTORE

 -gencert

 The following are the available options for the -gencert command:

 ? {-rfc}: Output in RFC (Request For Comment) style

 ? {-infile infile}: Input file name

 ? {-outfile outfile}: Output file name

 ? {-alias alias}: Alias name of the entry to process

 ? {-sigalg sigalg}: Signature algorithm name

 ? {-dname dname}: Distinguished name

 ? {-startdate startdate}: Certificate validity start date and time

 ? {-ext ext}*: X.509 extension

 ? {-validity days}: Validity number of days

 ? [-keypass arg]: Key password

 ? {-keystore keystore}: Keystore name

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Adds a security provider by name (such as

 SunPKCS11) with an optional configure argument. The value of the security Page 4/47

 provider is the name of a security provider that is defined in a module.

 For example,

 keytool -addprovider SunPKCS11 -providerarg some.cfg ...

 Note:

 For compatibility reasons, the SunPKCS11 provider can still be loaded with

 -providerclass sun.security.pkcs11.SunPKCS11 even if it is now defined in a mod?

 ule. This is the only module included in the JDK that needs a configuration, and

 therefore the most widely used with the -providerclass option. For legacy secu?

 rity providers located on classpath and loaded by reflection, -providerclass

 should still be used.

 ? {-providerclass class [-providerarg arg]}: Add security provider by fully quali?

 fied class name with an optional configure argument.

 For example, if MyProvider is a legacy provider loaded via reflection,

 keytool -providerclass com.example.MyProvider ...

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 ? {-protected}: Password provided through a protected mechanism

 Use the -gencert command to generate a certificate as a response to a certificate

 request file (which can be created by the keytool -certreq command). The command

 reads the request either from infile or, if omitted, from the standard input, signs

 it by using the alias's private key, and outputs the X.509 certificate into either

 outfile or, if omitted, to the standard output. When -rfc is specified, the output

 format is Base64-encoded PEM; otherwise, a binary DER is created.

 The -sigalg value specifies the algorithm that should be used to sign the certifi?

 cate. The startdate argument is the start time and date that the certificate is

 valid. The days argument tells the number of days for which the certificate should

 be considered valid.

 When dname is provided, it is used as the subject of the generated certificate.

 Otherwise, the one from the certificate request is used.

 The -ext value shows what X.509 extensions will be embedded in the certificate.

 Read Common Command Options for the grammar of -ext.

 The -gencert option enables you to create certificate chains. The following exam?

 ple creates a certificate, e1, that contains three certificates in its certificate Page 5/47

 chain.

 The following commands creates four key pairs named ca, ca1, ca2, and e1:

 keytool -alias ca -dname CN=CA -genkeypair -keyalg rsa

 keytool -alias ca1 -dname CN=CA -genkeypair -keyalg rsa

 keytool -alias ca2 -dname CN=CA -genkeypair -keyalg rsa

 keytool -alias e1 -dname CN=E1 -genkeypair -keyalg rsa

 The following two commands create a chain of signed certificates; ca signs ca1 and

 ca1 signs ca2, all of which are self-issued:

 keytool -alias ca1 -certreq |

 keytool -alias ca -gencert -ext san=dns:ca1 |

 keytool -alias ca1 -importcert

 keytool -alias ca2 -certreq |

 keytool -alias ca1 -gencert -ext san=dns:ca2 |

 keytool -alias ca2 -importcert

 The following command creates the certificate e1 and stores it in the e1.cert file,

 which is signed by ca2. As a result, e1 should contain ca, ca1, and ca2 in its

 certificate chain:

 keytool -alias e1 -certreq | keytool -alias ca2 -gencert > e1.cert

 -genkeypair

 The following are the available options for the -genkeypair command:

 ? {-alias alias}: Alias name of the entry to process

 ? -keyalg alg: Key algorithm name

 ? {-keysize size}: Key bit size

 ? {-groupname name}: Group name. For example, an Elliptic Curve name.

 ? {-sigalg alg}: Signature algorithm name

 ? {-signer alias}: Signer alias

 ? [-signerkeypass arg]: Signer key password

 ? [-dname name]: Distinguished name

 ? {-startdate date}: Certificate validity start date and time

 ? {-ext value}*: X.509 extension

 ? {-validity days}: Validity number of days

 ? [-keypass arg]: Key password

 ? {-keystore keystore}: Keystore name Page 6/47

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider by name (such as

 SunPKCS11) with an optional configure argument.

 ? {-providerclass class [-providerarg arg] }: Add security provider by fully quali?

 fied class name with an optional configure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 ? {-protected}: Password provided through a protected mechanism

 Use the -genkeypair command to generate a key pair (a public key and associated

 private key). When the -signer option is not specified, the public key is wrapped

 in an X.509 v3 self-signed certificate and stored as a single-element certificate

 chain. When the -signer option is specified, a new certificate is generated and

 signed by the designated signer and stored as a multiple-element certificate chain

 (containing the generated certificate itself, and the signer's certificate chain).

 The certificate chain and private key are stored in a new keystore entry that is

 identified by its alias.

 The -keyalg value specifies the algorithm to be used to generate the key pair, and

 the -keysize value specifies the size of each key to be generated. The -sigalg

 value specifies the algorithm that should be used to sign the certificate. This

 algorithm must be compatible with the -keyalg value.

 The -groupname value specifies the named group (for example, the standard or prede?

 fined name of an Elliptic Curve) of the key to be generated. Only one of -group?

 name and -keysize can be specified.

 The -signer value specifies the alias of a PrivateKeyEntry for the signer that al?

 ready exists in the keystore. This option is used to sign the certificate with the

 signer's private key. This is especially useful for key agreement algorithms (i.e.

 the -keyalg value is XDH, X25519, X448, or DH) as these keys cannot be used for

 digital signatures, and therefore a self-signed certificate cannot be created.

 The -signerkeypass value specifies the password of the signer's private key. It

 can be specified if the private key of the signer entry is protected by a password

 different from the store password. Page 7/47

 The -dname value specifies the X.500 Distinguished Name to be associated with the

 value of -alias. If the -signer option is not specified, the issuer and subject

 fields of the self-signed certificate are populated with the specified distin?

 guished name. If the -signer option is specified, the subject field of the cer?

 tificate is populated with the specified distinguished name and the issuer field is

 populated with the subject field of the signer's certificate. If a distinguished

 name is not provided at the command line, then the user is prompted for one.

 The value of -keypass is a password used to protect the private key of the generat?

 ed key pair. If a password is not provided, then the user is prompted for it. If

 you press the Return key at the prompt, then the key password is set to the same

 password as the keystore password. The -keypass value must have at least six char?

 acters.

 The value of -startdate specifies the issue time of the certificate, also known as

 the "Not Before" value of the X.509 certificate's Validity field.

 The option value can be set in one of these two forms:

 ([+-]nnn[ymdHMS])+

 [yyyy/mm/dd] [HH:MM:SS]

 With the first form, the issue time is shifted by the specified value from the cur?

 rent time. The value is a concatenation of a sequence of subvalues. Inside each

 subvalue, the plus sign (+) means shift forward, and the minus sign (-) means shift

 backward. The time to be shifted is nnn units of years, months, days, hours, min?

 utes, or seconds (denoted by a single character of y, m, d, H, M, or S respective?

 ly). The exact value of the issue time is calculated by using the java.util.Grego?

 rianCalendar.add(int field, int amount) method on each subvalue, from left to

 right. For example, the issue time can be specified by:

 Calendar c = new GregorianCalendar();

 c.add(Calendar.YEAR, -1);

 c.add(Calendar.MONTH, 1);

 c.add(Calendar.DATE, -1);

 return c.getTime()

 With the second form, the user sets the exact issue time in two parts,

 year/month/day and hour:minute:second (using the local time zone). The user can

 provide only one part, which means the other part is the same as the current date Page 8/47

 (or time). The user must provide the exact number of digits shown in the format

 definition (padding with 0 when shorter). When both date and time are provided,

 there is one (and only one) space character between the two parts. The hour should

 always be provided in 24-hour format.

 When the option isn't provided, the start date is the current time. The option can

 only be provided one time.

 The value of date specifies the number of days (starting at the date specified by

 -startdate, or the current date when -startdate isn't specified) for which the cer?

 tificate should be considered valid.

 -genseckey

 The following are the available options for the -genseckey command:

 ? {-alias alias}: Alias name of the entry to process

 ? [-keypass arg]: Key password

 ? -keyalg alg: Key algorithm name

 ? {-keysize size}: Key bit size

 ? {-keystore keystore}: Keystore name

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider by name (such as

 SunPKCS11) with an optional configure argument.

 ? {-providerclass class [-providerarg arg]}: Add security provider by fully quali?

 fied class name with an optional configure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 ? {-protected}: Password provided through a protected mechanism

 Use the -genseckey command to generate a secret key and store it in a new Key?

 Store.SecretKeyEntry identified by alias.

 The value of -keyalg specifies the algorithm to be used to generate the secret key,

 and the value of -keysize specifies the size of the key that is generated. The

 -keypass value is a password that protects the secret key. If a password is not

 provided, then the user is prompted for it. If you press the Return key at the

 prompt, then the key password is set to the same password that is used for the Page 9/47

 -keystore. The -keypass value must contain at least six characters.

 -importcert

 The following are the available options for the -importcert command:

 ? {-noprompt}: Do not prompt

 ? {-trustcacerts}: Trust certificates from cacerts

 ? {-protected}: Password is provided through protected mechanism

 ? {-alias alias}: Alias name of the entry to process

 ? {-file file}: Input file name

 ? [-keypass arg]: Key password

 ? {-keystore keystore}: Keystore name

 ? {-cacerts}: Access the cacerts keystore

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider by name (such as

 SunPKCS11) with an optional configure argument.

 ? {-providerclass class [-providerarg arg]}: Add security provider by fully quali?

 fied class name with an optional configure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 Use the -importcert command to read the certificate or certificate chain (where the

 latter is supplied in a PKCS#7 formatted reply or in a sequence of X.509 certifi?

 cates) from -file file, and store it in the keystore entry identified by -alias.

 If -file file is not specified, then the certificate or certificate chain is read

 from stdin.

 The keytool command can import X.509 v1, v2, and v3 certificates, and PKCS#7 for?

 matted certificate chains consisting of certificates of that type. The data to be

 imported must be provided either in binary encoding format or in printable encoding

 format (also known as Base64 encoding) as defined by the Internet RFC 1421 stan?

 dard. In the latter case, the encoding must be bounded at the beginning by a

 string that starts with -----BEGIN, and bounded at the end by a string that starts

 with -----END.

 You import a certificate for two reasons: To add it to the list of trusted certifi? Page 10/47

 cates, and to import a certificate reply received from a certificate authority (CA)

 as the result of submitting a Certificate Signing Request (CSR) to that CA. See

 the -certreq command in Commands for Generating a Certificate Request.

 The type of import is indicated by the value of the -alias option. If the alias

 doesn't point to a key entry, then the keytool command assumes you are adding a

 trusted certificate entry. In this case, the alias shouldn't already exist in the

 keystore. If the alias does exist, then the keytool command outputs an error be?

 cause a trusted certificate already exists for that alias, and doesn't import the

 certificate. If -alias points to a key entry, then the keytool command assumes

 that you're importing a certificate reply.

 -importpass

 The following are the available options for the -importpass command:

 ? {-alias alias}: Alias name of the entry to process

 ? [-keypass arg]: Key password

 ? {-keyalg alg}: Key algorithm name

 ? {-keysize size}: Key bit size

 ? {-keystore keystore}: Keystore name

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider by name (such as

 SunPKCS11) with an optional configure argument.

 ? {-providerclass class [-providerarg arg]}: Add security provider by fully quali?

 fied class name with an optional configure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 ? {-protected}: Password provided through a protected mechanism

 Use the -importpass command to imports a passphrase and store it in a new Key?

 Store.SecretKeyEntry identified by -alias. The passphrase may be supplied via the

 standard input stream; otherwise the user is prompted for it. The -keypass option

 provides a password to protect the imported passphrase. If a password is not pro?

 vided, then the user is prompted for it. If you press the Return key at the

 prompt, then the key password is set to the same password as that used for the key? Page 11/47

 store. The -keypass value must contain at least six characters.

COMMANDS FOR IMPORTING CONTENTS FROM ANOTHER KEYSTORE

 -importkeystore

 The following are the available options for the -importkeystore command:

 ? -srckeystore keystore: Source keystore name

 ? {-destkeystore keystore}: Destination keystore name

 ? {-srcstoretype type}: Source keystore type

 ? {-deststoretype type}: Destination keystore type

 ? [-srcstorepass arg]: Source keystore password

 ? [-deststorepass arg]: Destination keystore password

 ? {-srcprotected}: Source keystore password protected

 ? {-destprotected}: Destination keystore password protected

 ? {-srcprovidername name}: Source keystore provider name

 ? {-destprovidername name}: Destination keystore provider name

 ? {-srcalias alias}: Source alias

 ? {-destalias alias}: Destination alias

 ? [-srckeypass arg]: Source key password

 ? [-destkeypass arg]: Destination key password

 ? {-noprompt}: Do not prompt

 ? {-addprovider name [-providerarg arg]: Add security provider by name (such as

 SunPKCS11) with an optional configure argument.

 ? {-providerclass class [-providerarg arg]}: Add security provider by fully quali?

 fied class name with an optional configure argument

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 Note:

 This is the first line of all options:

 -srckeystore keystore -destkeystore keystore

 Use the -importkeystore command to import a single entry or all entries from a

 source keystore to a destination keystore.

 Note:

 If you do not specify -destkeystore when using the keytool -importkeystore command,

 then the default keystore used is $HOME/.keystore. Page 12/47

 When the -srcalias option is provided, the command imports the single entry identi?

 fied by the alias to the destination keystore. If a destination alias isn't pro?

 vided with -destalias, then -srcalias is used as the destination alias. If the

 source entry is protected by a password, then -srckeypass is used to recover the

 entry. If -srckeypass isn't provided, then the keytool command attempts to use

 -srcstorepass to recover the entry. If -srcstorepass is not provided or is incor?

 rect, then the user is prompted for a password. The destination entry is protected

 with -destkeypass. If -destkeypass isn't provided, then the destination entry is

 protected with the source entry password. For example, most third-party tools re?

 quire storepass and keypass in a PKCS #12 keystore to be the same. To create a

 PKCS#12 keystore for these tools, always specify a -destkeypass that is the same as

 -deststorepass.

 If the -srcalias option isn't provided, then all entries in the source keystore are

 imported into the destination keystore. Each destination entry is stored under the

 alias from the source entry. If the source entry is protected by a password, then

 -srcstorepass is used to recover the entry. If -srcstorepass is not provided or is

 incorrect, then the user is prompted for a password. If a source keystore entry

 type isn't supported in the destination keystore, or if an error occurs while stor?

 ing an entry into the destination keystore, then the user is prompted either to

 skip the entry and continue or to quit. The destination entry is protected with

 the source entry password.

 If the destination alias already exists in the destination keystore, then the user

 is prompted either to overwrite the entry or to create a new entry under a differ?

 ent alias name.

 If the -noprompt option is provided, then the user isn't prompted for a new desti?

 nation alias. Existing entries are overwritten with the destination alias name.

 Entries that can't be imported are skipped and a warning is displayed.

COMMANDS FOR GENERATING A CERTIFICATE REQUEST

 -certreq

 The following are the available options for the -certreq command:

 ? {-alias alias}: Alias name of the entry to process

 ? {-sigalg alg}: Signature algorithm name

 ? {-file file}: Output file name Page 13/47

 ? [-keypass arg]: Key password

 ? {-keystore keystore}: Keystore name

 ? {-dname name}: Distinguished name

 ? {-ext value}: X.509 extension

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider by name (such as

 SunPKCS11) with an optional configure argument.

 ? {-providerclass class [-providerarg arg]}: Add security provider by fully quali?

 fied class name with an optional configure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 ? {-protected}: Password provided through a protected mechanism

 Use the -certreq command to generate a Certificate Signing Request (CSR) using the

 PKCS #10 format.

 A CSR is intended to be sent to a CA. The CA authenticates the certificate re?

 questor (usually offline) and returns a certificate or certificate chain to replace

 the existing certificate chain (initially a self-signed certificate) in the key?

 store.

 The private key associated with alias is used to create the PKCS #10 certificate

 request. To access the private key, the correct password must be provided. If

 -keypass isn't provided at the command line and is different from the password used

 to protect the integrity of the keystore, then the user is prompted for it. If

 -dname is provided, then it is used as the subject in the CSR. Otherwise, the

 X.500 Distinguished Name associated with alias is used.

 The -sigalg value specifies the algorithm that should be used to sign the CSR.

 The CSR is stored in the -file file. If a file is not specified, then the CSR is

 output to -stdout.

 Use the -importcert command to import the response from the CA.

COMMANDS FOR EXPORTING DATA

 -exportcert

 The following are the available options for the -exportcert command: Page 14/47

 ? {-rfc}: Output in RFC style

 ? {-alias alias}: Alias name of the entry to process

 ? {-file file}: Output file name

 ? {-keystore keystore}: Keystore name

 ? {-cacerts}: Access the cacerts keystore

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider by name (such as

 SunPKCS11) with an optional configure argument.

 ? {-providerclass class [-providerarg arg] }: Add security provider by fully quali?

 fied class name with an optional configure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 ? {-protected}: Password provided through a protected mechanism

 Use the -exportcert command to read a certificate from the keystore that is associ?

 ated with -alias alias and store it in the -file file. When a file is not speci?

 fied, the certificate is output to stdout.

 By default, the certificate is output in binary encoding. If the -rfc option is

 specified, then the output in the printable encoding format defined by the Internet

 RFC 1421 Certificate Encoding Standard.

 If -alias refers to a trusted certificate, then that certificate is output. Other?

 wise, -alias refers to a key entry with an associated certificate chain. In that

 case, the first certificate in the chain is returned. This certificate authenti?

 cates the public key of the entity addressed by -alias.

COMMANDS FOR DISPLAYING DATA

 -list The following are the available options for the -list command:

 ? {-rfc}: Output in RFC style

 ? {-alias alias}: Alias name of the entry to process

 ? {-keystore keystore}: Keystore name

 ? {-cacerts}: Access the cacerts keystore

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type Page 15/47

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider by name (such as

 SunPKCS11) with an optional configure argument.

 ? {-providerclass class [-providerarg arg] }: Add security provider by fully quali?

 fied class name with an optional configure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 ? {-protected}: Password provided through a protected mechanism

 Use the -list command to print the contents of the keystore entry identified by

 -alias to stdout. If -alias alias is not specified, then the contents of the en?

 tire keystore are printed.

 By default, this command prints the SHA-256 fingerprint of a certificate. If the

 -v option is specified, then the certificate is printed in human-readable format,

 with additional information such as the owner, issuer, serial number, and any ex?

 tensions. If the -rfc option is specified, then the certificate contents are

 printed by using the printable encoding format, as defined by the Internet RFC 1421

 Certificate Encoding Standard.

 Note:

 You can't specify both -v and -rfc in the same command. Otherwise, an error is re?

 ported.

 -printcert

 The following are the available options for the -printcert command:

 ? {-rfc}: Output in RFC style

 ? {-file cert_file}: Input file name

 ? {-sslserver server[:port]}:: Secure Sockets Layer (SSL) server host and port

 ? {-jarfile JAR_file}: Signed .jar file

 ? {-keystore keystore}: Keystore name

 ? {-trustcacerts}: Trust certificates from cacerts

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider by name (such as

 SunPKCS11) with an optional configure argument. Page 16/47

 ? {-providerclass class [-providerarg arg]}: Add security provider by fully quali?

 fied class name with an optional configure argument.

 ? {-providerpath list}: Provider classpath

 ? {-protected}: Password is provided through protected mechanism

 ? {-v}: Verbose output

 Use the -printcert command to read and print the certificate from -file cert_file,

 the SSL server located at -sslserver server[:port], or the signed JAR file speci?

 fied by -jarfile JAR_file. It prints its contents in a human-readable format.

 When a port is not specified, the standard HTTPS port 443 is assumed.

 Note:

 The -sslserver and -file options can't be provided in the same command. Otherwise,

 an error is reported. If you don't specify either option, then the certificate is

 read from stdin.

 When-rfc is specified, the keytool command prints the certificate in PEM mode as

 defined by the Internet RFC 1421 Certificate Encoding standard.

 If the certificate is read from a file or stdin, then it might be either binary en?

 coded or in printable encoding format, as defined by the RFC 1421 Certificate En?

 coding standard.

 If the SSL server is behind a firewall, then the -J-Dhttps.proxyHost=proxyhost and

 -J-Dhttps.proxyPort=proxyport options can be specified on the command line for

 proxy tunneling.

 Note:

 This command can be used independently of a keystore. This command does not check

 for the weakness of a certificate's signature algorithm if it is a trusted certifi?

 cate in the user keystore (specified by -keystore) or in the cacerts keystore (if

 -trustcacerts is specified).

 -printcertreq

 The following are the available options for the -printcertreq command:

 ? {-file file}: Input file name

 ? {-v}: Verbose output

 Use the -printcertreq command to print the contents of a PKCS #10 format certifi?

 cate request, which can be generated by the keytool -certreq command. The command

 reads the request from file. If there is no file, then the request is read from Page 17/47

 the standard input.

 -printcrl

 The following are the available options for the -printcrl command:

 ? {-file crl}: Input file name

 ? {-keystore keystore}: Keystore name

 ? {-trustcacerts}: Trust certificates from cacerts

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider by name (such as

 SunPKCS11) with an optional configure argument.

 ? {-providerclass class [-providerarg arg]}: Add security provider by fully quali?

 fied class name with an optional configure argument.

 ? {-providerpath list}: Provider classpath

 ? {-protected}: Password is provided through protected mechanism

 ? {-v}: Verbose output

 Use the -printcrl command to read the Certificate Revocation List (CRL) from -file

 crl . A CRL is a list of the digital certificates that were revoked by the CA that

 issued them. The CA generates the crl file.

 Note:

 This command can be used independently of a keystore. This command attempts to

 verify the CRL using a certificate from the user keystore (specified by -keystore)

 or the cacerts keystore (if -trustcacerts is specified), and will print out a warn?

 ing if it cannot be verified.

COMMANDS FOR MANAGING THE KEYSTORE

 -storepasswd

 The following are the available options for the -storepasswd command:

 ? [-new arg]: New password

 ? {-keystore keystore}: Keystore name

 ? {-cacerts}: Access the cacerts keystore

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name Page 18/47

 ? {-addprovider name [-providerarg arg]}: Add security provider by name (such as

 SunPKCS11) with an optional configure argument.

 ? {-providerclass class [-providerarg arg]}: Add security provider by fully quali?

 fied class name with an optional configure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 Use the -storepasswd command to change the password used to protect the integrity

 of the keystore contents. The new password is set by -new arg and must contain at

 least six characters.

 -keypasswd

 The following are the available options for the -keypasswd command:

 ? {-alias alias}: Alias name of the entry to process

 ? [-keypass old_keypass]: Key password

 ? [-new new_keypass]: New password

 ? {-keystore keystore}: Keystore name

 ? {-storepass arg}: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider by name (such as

 SunPKCS11) with an optional configure argument.

 ? {-providerclass class [-providerarg arg]}: Add security provider by fully quali?

 fied class name with an optional configure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 Use the -keypasswd command to change the password (under which private/secret keys

 identified by -alias are protected) from -keypass old_keypass to -new new_keypass.

 The password value must contain at least six characters.

 If the -keypass option isn't provided at the command line and the -keypass password

 is different from the keystore password (-storepass arg), then the user is prompted

 for it.

 If the -new option isn't provided at the command line, then the user is prompted

 for it.

 -delete Page 19/47

 The following are the available options for the -delete command:

 ? [-alias alias]: Alias name of the entry to process

 ? {-keystore keystore}: Keystore name

 ? {-cacerts}: Access the cacerts keystore

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider by name (such as

 SunPKCS11) with an optional configure argument.

 ? {-providerclass class [-providerarg arg]}: Add security provider by fully quali?

 fied class name with an optional configure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 ? {-protected}: Password provided through a protected mechanism

 Use the -delete command to delete the -alias alias entry from the keystore. When

 not provided at the command line, the user is prompted for the alias.

 -changealias

 The following are the available options for the -changealias command:

 ? {-alias alias}: Alias name of the entry to process

 ? [-destalias alias]: Destination alias

 ? [-keypass arg]: Key password

 ? {-keystore keystore}: Keystore name

 ? {-cacerts}: Access the cacerts keystore

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider by name (such as

 SunPKCS11) with an optional configure argument.

 ? {-providerclass class [-providerarg arg]}: Add security provider by fully quali?

 fied class name with an optional configure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 ? {-protected}: Password provided through a protected mechanism Page 20/47

 Use the -changealias command to move an existing keystore entry from -alias alias

 to a new -destalias alias. If a destination alias is not provided, then the com?

 mand prompts you for one. If the original entry is protected with an entry pass?

 word, then the password can be supplied with the -keypass option. If a key pass?

 word is not provided, then the -storepass (if provided) is attempted first. If the

 attempt fails, then the user is prompted for a password.

COMMANDS FOR DISPLAYING SECURITY-RELATED INFORMATION

 -showinfo

 The following are the available options for the -showinfo command:

 ? {-tls}: Displays TLS configuration information

 ? {-v}: Verbose output

 Use the -showinfo command to display various security-related information. The

 -tls option displays TLS configurations, such as the list of enabled protocols and

 cipher suites.

COMMANDS FOR DISPLAYING PROGRAM VERSION

 You can use -version to print the program version of keytool.

COMMANDS FOR DISPLAYING HELP INFORMATION

 You can use --help to display a list of keytool commands or to display help information

 about a specific keytool command.

 ? To display a list of keytool commands, enter:

 keytool --help

 ? To display help information about a specific keytool command, enter:

 keytool -<command> --help

COMMON COMMAND OPTIONS

 The -v option can appear for all commands except --help. When the -v option appears, it

 signifies verbose mode, which means that more information is provided in the output.

 The -Joption argument can appear for any command. When the -Joption is used, the speci?

 fied option string is passed directly to the Java interpreter. This option doesn't con?

 tain any spaces. It's useful for adjusting the execution environment or memory usage.

 For a list of possible interpreter options, enter java -h or java -X at the command line.

 These options can appear for all commands operating on a keystore:

 -storetype storetype

 This qualifier specifies the type of keystore to be instantiated. Page 21/47

 -keystore keystore

 The keystore location.

 If the JKS storetype is used and a keystore file doesn't yet exist, then certain

 keytool commands can result in a new keystore file being created. For example, if

 keytool -genkeypair is called and the -keystore option isn't specified, the default

 keystore file named .keystore is created in the user's home directory if it doesn't

 already exist. Similarly, if the -keystore ks_file option is specified but ks_file

 doesn't exist, then it is created. For more information on the JKS storetype, see

 the KeyStore Implementation section in KeyStore aliases.

 Note that the input stream from the -keystore option is passed to the KeyStore.load

 method. If NONE is specified as the URL, then a null stream is passed to the Key?

 Store.load method. NONE should be specified if the keystore isn't file-based. For

 example, when the keystore resides on a hardware token device.

 -cacerts cacerts

 Operates on the cacerts keystore . This option is equivalent to -keystore

 path_to_cacerts -storetype type_of_cacerts. An error is reported if the -keystore

 or -storetype option is used with the -cacerts option.

 -storepass [:env | :file] argument

 The password that is used to protect the integrity of the keystore.

 If the modifier env or file isn't specified, then the password has the value argu?

 ment, which must contain at least six characters. Otherwise, the password is re?

 trieved as follows:

 ? env: Retrieve the password from the environment variable named argument.

 ? file: Retrieve the password from the file named argument.

 Note: All other options that require passwords, such as -keypass, -srckeypass,

 -destkeypass, -srcstorepass, and -deststorepass, accept the env and file modifiers.

 Remember to separate the password option and the modifier with a colon (:).

 The password must be provided to all commands that access the keystore contents.

 For such commands, when the -storepass option isn't provided at the command line,

 the user is prompted for it.

 When retrieving information from the keystore, the password is optional. If a

 password is not specified, then the integrity of the retrieved information can't be

 verified and a warning is displayed. Page 22/47

 -providername name

 Used to identify a cryptographic service provider's name when listed in the securi?

 ty properties file.

 -addprovider name

 Used to add a security provider by name (such as SunPKCS11) .

 -providerclass class

 Used to specify the name of a cryptographic service provider's master class file

 when the service provider isn't listed in the security properties file.

 -providerpath list

 Used to specify the provider classpath.

 -providerarg arg

 Used with the -addprovider or -providerclass option to represent an optional string

 input argument for the constructor of class name.

 -protected=true|false

 Specify this value as true when a password must be specified by way of a protected

 authentication path, such as a dedicated PIN reader. Because there are two key?

 stores involved in the -importkeystore command, the following two options, -srcpro?

 tected and -destprotected, are provided for the source keystore and the destination

 keystore respectively.

 -ext {name{:critical} {=value}}

 Denotes an X.509 certificate extension. The option can be used in -genkeypair and

 -gencert to embed extensions into the generated certificate, or in -certreq to show

 what extensions are requested in the certificate request. The option can appear

 multiple times. The name argument can be a supported extension name (see Supported

 Named Extensions) or an arbitrary OID number. The value argument, when provided,

 denotes the argument for the extension. When value is omitted, the default value

 of the extension or the extension itself requires no argument. The :critical modi?

 fier, when provided, means the extension's isCritical attribute is true; otherwise,

 it is false. You can use :c in place of :critical.

 -conf file

 Specifies a pre-configured options file.

PRE-CONFIGURED OPTIONS FILE

 A pre-configured options file is a Java properties file that can be specified with the Page 23/47

 -conf option. Each property represents the default option(s) for a keytool command using

 "keytool.command_name" as the property name. A special property named "keytool.all" rep?

 resents the default option(s) applied to all commands. A property value can include

 ${prop} which will be expanded to the system property associated with it. If an option

 value includes white spaces inside, it should be surrounded by quotation marks (" or ').

 All property names must be in lower case.

 When keytool is launched with a pre-configured options file, the value for "keytool.all"

 (if it exists) is prepended to the keytool command line first, with the value for the com?

 mand name (if it exists) comes next, and the existing options on the command line at last.

 For a single-valued option, this allows the property for a specific command to override

 the "keytool.all" value, and the value specified on the command line to override both.

 For multiple-valued options, all of them will be used by keytool.

 For example, given the following file named preconfig:

 # A tiny pre-configured options file

 keytool.all = -keystore ${user.home}/ks

 keytool.list = -v

 keytool.genkeypair = -keyalg rsa

 keytool -conf preconfig -list is identical to

 keytool -keystore ~/ks -v -list

 keytool -conf preconfig -genkeypair -alias me is identical to

 keytool -keystore ~/ks -keyalg rsa -genkeypair -alias me

 keytool -conf preconfig -genkeypair -alias you -keyalg ec is identical to

 keytool -keystore ~/ks -keyalg rsa -genkeypair -alias you -keyalg ec

 which is equivalent to

 keytool -keystore ~/ks -genkeypair -alias you -keyalg ec

 because -keyalg is a single-valued option and the ec value specified on the command line

 overrides the preconfigured options file.

EXAMPLES OF OPTION VALUES

 The following examples show the defaults for various option values:

 -alias "mykey"

 -keysize

 2048 (when using -genkeypair and -keyalg is "DSA")

 3072 (when using -genkeypair and -keyalg is "RSA", "RSASSA-PSS", or "DH") Page 24/47

 384 (when using -genkeypair and -keyalg is "EC")

 255 (when using -genkeypair and -keyalg is "EdDSA", or "XDH)

 56 (when using -genseckey and -keyalg is "DES")

 168 (when using -genseckey and -keyalg is "DESede")

 -validity 90

 -keystore <the file named .keystore in the user's home directory>

 -destkeystore <the file named .keystore in the user's home directory>

 -storetype <the value of the "keystore.type" property in the

 security properties file, which is returned by the static

 getDefaultType method in java.security.KeyStore>

 -file

 stdin (if reading)

 stdout (if writing)

 -protected false

 When generating a certificate or a certificate request, the default signature algorithm

 (-sigalg option) is derived from the algorithm of the underlying private key to provide an

 appropriate level of security strength as follows:

 Default Signature Algorithms

 keyalg keysize default sigalg

 ???

 DSA any size SHA256withDSA

 RSA < 624 SHA256withRSA (keysize

 is too small for using

 SHA-384)

 <= 7680 SHA384withRSA

 > 7680 SHA512withRSA

 EC < 512 SHA384withECDSA

 >= 512 SHA512withECDSA

 RSASSA-PSS < 624 RSASSA-PSS (with

 SHA-256, keysize is too

 small for

 using SHA-384)

 <= 7680 RSASSA-PSS (with Page 25/47

 SHA-384)

 > 7680 RSASSA-PSS (with

 SHA-512)

 EdDSA 255 Ed25519

 448 Ed448

 Ed25519 255 Ed25519

 Ed448 448 Ed448

 ? An RSASSA-PSS signature algorithm uses a MessageDigest algorithm as its hash and MGF1

 algorithms.

 ? EdDSA supports 2 key sizes: Ed25519 and Ed448. When generating an EdDSA key pair using

 -keyalg EdDSA, a user can specify -keysize 255 or -keysize 448 to generate Ed25519 or

 Ed448 key pairs. When no -keysize is specified, an Ed25519 key pair is generated. A

 user can also directly specify -keyalg Ed25519 or -keyalg Ed448 to generate a key pair

 with the expected key size.

 Note:

 To improve out of the box security, default key size and signature algorithm names are pe?

 riodically updated to stronger values with each release of the JDK. If interoperability

 with older releases of the JDK is important, make sure that the defaults are supported by

 those releases. Alternatively, you can use the -keysize or -sigalg options to override

 the default values at your own risk.

SUPPORTED NAMED EXTENSIONS

 The keytool command supports these named extensions. The names aren't case-sensitive.

 BC or BasicContraints

 Values:

 The full form is ca:{true|false}[,pathlen:len] or len, which is short for

 ca:true,pathlen:len.

 When len is omitted, the resulting value is ca:true.

 KU or KeyUsage

 Values:

 usage(, usage)*

 usage can be one of the following:

 ? digitalSignature

 ? nonRepudiation (contentCommitment) Page 26/47

 ? keyEncipherment

 ? dataEncipherment

 ? keyAgreement

 ? keyCertSign

 ? cRLSign

 ? encipherOnly

 ? decipherOnly

 Provided there is no ambiguity, the usage argument can be abbreviated with the

 first few letters (such as dig for digitalSignature) or in camel-case style (such

 as dS for digitalSignature or cRLS for cRLSign). The usage values are case-sensi?

 tive.

 EKU or ExtendedKeyUsage

 Values:

 usage(, usage)*

 usage can be one of the following:

 ? anyExtendedKeyUsage

 ? serverAuth

 ? clientAuth

 ? codeSigning

 ? emailProtection

 ? timeStamping

 ? OCSPSigning

 ? Any OID string

 Provided there is no ambiguity, the usage argument can be abbreviated with the

 first few letters or in camel-case style. The usage values are case-sensitive.

 SAN or SubjectAlternativeName

 Values:

 type:value(, type:value)*

 type can be one of the following:

 ? EMAIL

 ? URI

 ? DNS

 ? IP Page 27/47

 ? OID

 The value argument is the string format value for the type.

 IAN or IssuerAlternativeName

 Values:

 Same as SAN or SubjectAlternativeName.

 SIA or SubjectInfoAccess

 Values:

 method:location-type:location-value(, method:location-type:location-value)*

 method can be one of the following:

 ? timeStamping

 ? caRepository

 ? Any OID

 The location-type and location-value arguments can be any type:value supported by

 the SubjectAlternativeName extension.

 AIA or AuthorityInfoAccess

 Values:

 Same as SIA or SubjectInfoAccess.

 The method argument can be one of the following:

 ? ocsp

 ? caIssuers

 ? Any OID

 When name is OID, the value is the hexadecimal dumped Definite Encoding Rules (DER) encod?

 ing of the extnValue for the extension excluding the OCTET STRING type and length bytes.

 Other than standard hexadecimal numbers (0-9, a-f, A-F), any extra characters are ignored

 in the HEX string. Therefore, both 01:02:03:04 and 01020304 are accepted as identical

 values. When there is no value, the extension has an empty value field.

 A special name honored, used only in -gencert, denotes how the extensions included in the

 certificate request should be honored. The value for this name is a comma-separated list

 of all (all requested extensions are honored), name{:[critical|non-critical]} (the named

 extension is honored, but it uses a different isCritical attribute), and -name (used with

 all, denotes an exception). Requested extensions aren't honored by default.

 If, besides the-ext honored option, another named or OID -ext option is provided, this ex?

 tension is added to those already honored. However, if this name (or OID) also appears in Page 28/47

 the honored value, then its value and criticality override that in the request. If an ex?

 tension of the same type is provided multiple times through either a name or an OID, only

 the last extension is used.

 The subjectKeyIdentifier extension is always created. For non-self-signed certificates,

 the authorityKeyIdentifier is created.

 CAUTION:

 Users should be aware that some combinations of extensions (and other certificate fields)

 may not conform to the Internet standard. See Certificate Conformance Warning.

EXAMPLES OF TASKS IN CREATING A KEYSTORE

 The following examples describe the sequence actions in creating a keystore for managing

 public/private key pairs and certificates from trusted entities.

 ? Generating the Key Pair

 ? Requesting a Signed Certificate from a CA

 ? Importing a Certificate for the CA

 ? Importing the Certificate Reply from the CA

 ? Exporting a Certificate That Authenticates the Public Key

 ? Importing the Keystore

 ? Generating Certificates for an SSL Server

GENERATING THE KEY PAIR

 Create a keystore and then generate the key pair.

 You can enter the command as a single line such as the following:

 keytool -genkeypair -dname "cn=myname, ou=mygroup, o=mycompany, c=mycountry" -alias

 business -keyalg rsa -keypass password -keystore /working/mykeystore -storepass

 password -validity 180

 The command creates the keystore named mykeystore in the working directory (provided it

 doesn't already exist), and assigns it the password specified by -keypass. It generates a

 public/private key pair for the entity whose distinguished name is myname, mygroup, my?

 company, and a two-letter country code of mycountry. It uses the RSA key generation algo?

 rithm to create the keys; both are 3072 bits.

 The command uses the default SHA384withRSA signature algorithm to create a self-signed

 certificate that includes the public key and the distinguished name information. The cer?

 tificate is valid for 180 days, and is associated with the private key in a keystore entry

 referred to by -alias business. The private key is assigned the password specified by Page 29/47

 -keypass.

 The command is significantly shorter when the option defaults are accepted. In this case,

 only -keyalg is required, and the defaults are used for unspecified options that have de?

 fault values. You are prompted for any required values. You could have the following:

 keytool -genkeypair -keyalg rsa

 In this case, a keystore entry with the alias mykey is created, with a newly generated key

 pair and a certificate that is valid for 90 days. This entry is placed in your home di?

 rectory in a keystore named .keystore . .keystore is created if it doesn't already exist.

 You are prompted for the distinguished name information, the keystore password, and the

 private key password.

 Note:

 The rest of the examples assume that you responded to the prompts with values equal to

 those specified in the first -genkeypair command. For example, a distinguished name of

 cn=myname, ou=mygroup, o=mycompany, c=mycountry).

REQUESTING A SIGNED CERTIFICATE FROM A CA

 Note:

 Generating the key pair created a self-signed certificate; however, a certificate is more

 likely to be trusted by others when it is signed by a CA.

 To get a CA signature, complete the following process:

 1. Generate a CSR:

 keytool -certreq -file myname.csr

 This creates a CSR for the entity identified by the default alias mykey and puts the

 request in the file named myname.csr.

 2. Submit myname.csr to a CA, such as DigiCert.

 The CA authenticates you, the requestor (usually offline), and returns a certificate,

 signed by them, authenticating your public key. In some cases, the CA returns a chain of

 certificates, each one authenticating the public key of the signer of the previous cer?

 tificate in the chain.

IMPORTING A CERTIFICATE FOR THE CA

 To import a certificate for the CA, complete the following process:

 1. Before you import the certificate reply from a CA, you need one or more trusted cer?

 tificates either in your keystore or in the cacerts keystore file. See -importcert in

 Commands. Page 30/47

 ? If the certificate reply is a certificate chain, then you need the top certificate

 of the chain. The root CA certificate that authenticates the public key of the CA.

 ? If the certificate reply is a single certificate, then you need a certificate for

 the issuing CA (the one that signed it). If that certificate isn't self-signed,

 then you need a certificate for its signer, and so on, up to a self-signed root CA

 certificate.

 The cacerts keystore ships with a set of root certificates issued by the CAs of the

 Oracle Java Root Certificate program [http://www.oracle.com/technetwork/ja?

 va/javase/javasecarootcertsprogram-1876540.html]. If you request a signed certificate

 from a CA, and a certificate authenticating that CA's public key hasn't been added to

 cacerts, then you must import a certificate from that CA as a trusted certificate.

 A certificate from a CA is usually self-signed or signed by another CA. If it is

 signed by another CA, you need a certificate that authenticates that CA's public key.

 For example, you have obtained a X.cer file from a company that is a CA and the file

 is supposed to be a self-signed certificate that authenticates that CA's public key.

 Before you import it as a trusted certificate, you should ensure that the certificate

 is valid by:

 1. Viewing it with the keytool -printcert command or the keytool -importcert command

 without using the -noprompt option. Make sure that the displayed certificate fin?

 gerprints match the expected fingerprints.

 2. Calling the person who sent the certificate, and comparing the fingerprints that

 you see with the ones that they show or that a secure public key repository shows.

 Only when the fingerprints are equal is it assured that the certificate wasn't re?

 placed in transit with somebody else's certificate (such as an attacker's certifi?

 cate). If such an attack takes place, and you didn't check the certificate before you

 imported it, then you would be trusting anything that the attacker signed.

 2. Replace the self-signed certificate with a certificate chain, where each certificate in

 the chain authenticates the public key of the signer of the previous certificate in the

 chain, up to a root CA.

 If you trust that the certificate is valid, then you can add it to your keystore by

 entering the following command:

 keytool -importcert -alias alias -file *X*.cer`

 This command creates a trusted certificate entry in the keystore from the data in the Page 31/47

 CA certificate file and assigns the values of the alias to the entry.

IMPORTING THE CERTIFICATE REPLY FROM THE CA

 After you import a certificate that authenticates the public key of the CA that you sub?

 mitted your certificate signing request to (or there is already such a certificate in the

 cacerts file), you can import the certificate reply and replace your self-signed certifi?

 cate with a certificate chain.

 The certificate chain is one of the following:

 ? Returned by the CA when the CA reply is a chain.

 ? Constructed when the CA reply is a single certificate. This certificate chain is con?

 structed by using the certificate reply and trusted certificates available either in the

 keystore where you import the reply or in the cacerts keystore file.

 For example, if you sent your certificate signing request to DigiCert, then you can import

 their reply by entering the following command:

 Note:

 In this example, the returned certificate is named DCmyname.cer.

 keytool -importcert -trustcacerts -file DCmyname.cer

EXPORTING A CERTIFICATE THAT AUTHENTICATES THE PUBLIC KEY

 Note:

 If you used the jarsigner command to sign a Java Archive (JAR) file, then clients that use

 the file will want to authenticate your signature.

 One way that clients can authenticate you is by importing your public key certificate into

 their keystore as a trusted entry. You can then export the certificate and supply it to

 your clients.

 For example:

 1. Copy your certificate to a file named myname.cer by entering the following command:

 Note:

 In this example, the entry has an alias of mykey.

 keytool -exportcert -alias mykey -file myname.cer

 2. With the certificate and the signed JAR file, a client can use the jarsigner command to

 authenticate your signature.

IMPORTING THE KEYSTORE

 Use the importkeystore command to import an entire keystore into another keystore. This

 imports all entries from the source keystore, including keys and certificates, to the des? Page 32/47

 tination keystore with a single command. You can use this command to import entries from

 a different type of keystore. During the import, all new entries in the destination key?

 store will have the same alias names and protection passwords (for secret keys and private

 keys). If the keytool command can't recover the private keys or secret keys from the

 source keystore, then it prompts you for a password. If it detects alias duplication,

 then it asks you for a new alias, and you can specify a new alias or simply allow the key?

 tool command to overwrite the existing one.

 For example, import entries from a typical JKS type keystore key.jks into a PKCS #11 type

 hardware-based keystore, by entering the following command:

 keytool -importkeystore -srckeystore key.jks -destkeystore NONE -srcstoretype JKS

 -deststoretype PKCS11 -srcstorepass password -deststorepass password

 The importkeystore command can also be used to import a single entry from a source key?

 store to a destination keystore. In this case, besides the options you used in the previ?

 ous example, you need to specify the alias you want to import. With the -srcalias option

 specified, you can also specify the destination alias name, protection password for a se?

 cret or private key, and the destination protection password you want as follows:

 keytool -importkeystore -srckeystore key.jks -destkeystore NONE -srcstoretype JKS

 -deststoretype PKCS11 -srcstorepass password -deststorepass password -srcalias

 myprivatekey -destalias myoldprivatekey -srckeypass password -destkeypass password

 -noprompt

GENERATING CERTIFICATES FOR AN SSL SERVER

 The following are keytool commands used to generate key pairs and certificates for three

 entities:

 ? Root CA (root)

 ? Intermediate CA (ca)

 ? SSL server (server)

 Ensure that you store all the certificates in the same keystore.

 keytool -genkeypair -keystore root.jks -alias root -ext bc:c -keyalg rsa

 keytool -genkeypair -keystore ca.jks -alias ca -ext bc:c -keyalg rsa

 keytool -genkeypair -keystore server.jks -alias server -keyalg rsa

 keytool -keystore root.jks -alias root -exportcert -rfc > root.pem

 keytool -storepass password -keystore ca.jks -certreq -alias ca |

 keytool -storepass password -keystore root.jks Page 33/47

 -gencert -alias root -ext BC=0 -rfc > ca.pem

 keytool -keystore ca.jks -importcert -alias ca -file ca.pem

 keytool -storepass password -keystore server.jks -certreq -alias server |

 keytool -storepass password -keystore ca.jks -gencert -alias ca

 -ext ku:c=dig,kE -rfc > server.pem

 cat root.pem ca.pem server.pem |

 keytool -keystore server.jks -importcert -alias server

TERMS

 Keystore

 A keystore is a storage facility for cryptographic keys and certificates.

 Keystore entries

 Keystores can have different types of entries. The two most applicable entry types

 for the keytool command include the following:

 Key entries: Each entry holds very sensitive cryptographic key information, which

 is stored in a protected format to prevent unauthorized access. Typically, a key

 stored in this type of entry is a secret key, or a private key accompanied by the

 certificate chain for the corresponding public key. See Certificate Chains. The

 keytool command can handle both types of entries, while the jarsigner tool only

 handles the latter type of entry, that is private keys and their associated cer?

 tificate chains.

 Trusted certificate entries: Each entry contains a single public key certificate

 that belongs to another party. The entry is called a trusted certificate because

 the keystore owner trusts that the public key in the certificate belongs to the

 identity identified by the subject (owner) of the certificate. The issuer of the

 certificate vouches for this, by signing the certificate.

 Keystore aliases

 All keystore entries (key and trusted certificate entries) are accessed by way of

 unique aliases.

 An alias is specified when you add an entity to the keystore with the -genseckey

 command to generate a secret key, the -genkeypair command to generate a key pair

 (public and private key), or the -importcert command to add a certificate or cer?

 tificate chain to the list of trusted certificates. Subsequent keytool commands

 must use this same alias to refer to the entity. Page 34/47

 For example, you can use the alias duke to generate a new public/private key pair

 and wrap the public key into a self-signed certificate with the following command.

 See Certificate Chains.

 keytool -genkeypair -alias duke -keyalg rsa -keypass passwd

 This example specifies an initial passwd required by subsequent commands to access

 the private key associated with the alias duke. If you later want to change Duke's

 private key password, use a command such as the following:

 keytool -keypasswd -alias duke -keypass passwd -new newpasswd

 This changes the initial passwd to newpasswd. A password shouldn't be specified on

 a command line or in a script unless it is for testing purposes, or you are on a

 secure system. If you don't specify a required password option on a command line,

 then you are prompted for it.

 Keystore implementation

 The KeyStore class provided in the java.security package supplies well-defined in?

 terfaces to access and modify the information in a keystore. It is possible for

 there to be multiple different concrete implementations, where each implementation

 is that for a particular type of keystore.

 Currently, two command-line tools (keytool and jarsigner) make use of keystore im?

 plementations. Because the KeyStore class is public, users can write additional

 security applications that use it.

 In JDK 9 and later, the default keystore implementation is PKCS12. This is a cross

 platform keystore based on the RSA PKCS12 Personal Information Exchange Syntax

 Standard. This standard is primarily meant for storing or transporting a user's

 private keys, certificates, and miscellaneous secrets. There is another built-in

 implementation, provided by Oracle. It implements the keystore as a file with a

 proprietary keystore type (format) named JKS. It protects each private key with

 its individual password, and also protects the integrity of the entire keystore

 with a (possibly different) password.

 Keystore implementations are provider-based. More specifically, the application

 interfaces supplied by KeyStore are implemented in terms of a Service Provider In?

 terface (SPI). That is, there is a corresponding abstract KeystoreSpi class, also

 in the java.security package, which defines the Service Provider Interface methods

 that providers must implement. The term provider refers to a package or a set of Page 35/47

 packages that supply a concrete implementation of a subset of services that can be

 accessed by the Java Security API. To provide a keystore implementation, clients

 must implement a provider and supply a KeystoreSpi subclass implementation, as de?

 scribed in Steps to Implement and Integrate a Provider.

 Applications can choose different types of keystore implementations from different

 providers, using the getInstance factory method supplied in the KeyStore class. A

 keystore type defines the storage and data format of the keystore information, and

 the algorithms used to protect private/secret keys in the keystore and the integ?

 rity of the keystore. Keystore implementations of different types aren't compati?

 ble.

 The keytool command works on any file-based keystore implementation. It treats the

 keystore location that is passed to it at the command line as a file name and con?

 verts it to a FileInputStream, from which it loads the keystore information.)The

 jarsigner commands can read a keystore from any location that can be specified with

 a URL.

 For keytool and jarsigner, you can specify a keystore type at the command line,

 with the -storetype option.

 If you don't explicitly specify a keystore type, then the tools choose a keystore

 implementation based on the value of the keystore.type property specified in the

 security properties file. The security properties file is called java.security,

 and resides in the security properties directory:

 ? Linux and macOS: java.home/lib/security

 ? Windows: java.home\lib\security

 Each tool gets the keystore.type value and then examines all the currently in?

 stalled providers until it finds one that implements a keystores of that type. It

 then uses the keystore implementation from that provider.The KeyStore class defines

 a static method named getDefaultType that lets applications retrieve the value of

 the keystore.type property. The following line of code creates an instance of the

 default keystore type as specified in the keystore.type property:

 KeyStore keyStore = KeyStore.getInstance(KeyStore.getDefaultType());

 The default keystore type is pkcs12, which is a cross-platform keystore based on

 the RSA PKCS12 Personal Information Exchange Syntax Standard. This is specified by

 the following line in the security properties file: Page 36/47

 keystore.type=pkcs12

 To have the tools utilize a keystore implementation other than the default, you can

 change that line to specify a different keystore type. For example, if you want to

 use the Oracle's jks keystore implementation, then change the line to the follow?

 ing:

 keystore.type=jks

 Note:

 Case doesn't matter in keystore type designations. For example, JKS would be con?

 sidered the same as jks.

 Certificate

 A certificate (or public-key certificate) is a digitally signed statement from one

 entity (the issuer), saying that the public key and some other information of an?

 other entity (the subject) has some specific value. The following terms are relat?

 ed to certificates:

 ? Public Keys: These are numbers associated with a particular entity, and are in?

 tended to be known to everyone who needs to have trusted interactions with that

 entity. Public keys are used to verify signatures.

 ? Digitally Signed: If some data is digitally signed, then it is stored with the

 identity of an entity and a signature that proves that entity knows about the da?

 ta. The data is rendered unforgeable by signing with the entity's private key.

 ? Identity: A known way of addressing an entity. In some systems, the identity is

 the public key, and in others it can be anything from an Oracle Solaris UID to an

 email address to an X.509 distinguished name.

 ? Signature: A signature is computed over some data using the private key of an en?

 tity. The signer, which in the case of a certificate is also known as the is?

 suer.

 ? Private Keys: These are numbers, each of which is supposed to be known only to

 the particular entity whose private key it is (that is, it is supposed to be kept

 secret). Private and public keys exist in pairs in all public key cryptography

 systems (also referred to as public key crypto systems). In a typical public key

 crypto system, such as DSA, a private key corresponds to exactly one public key.

 Private keys are used to compute signatures.

 ? Entity: An entity is a person, organization, program, computer, business, bank, Page 37/47

 or something else you are trusting to some degree.

 Public key cryptography requires access to users' public keys. In a large-scale

 networked environment, it is impossible to guarantee that prior relationships be?

 tween communicating entities were established or that a trusted repository exists

 with all used public keys. Certificates were invented as a solution to this public

 key distribution problem. Now a Certification Authority (CA) can act as a trusted

 third party. CAs are entities such as businesses that are trusted to sign (issue)

 certificates for other entities. It is assumed that CAs only create valid and re?

 liable certificates because they are bound by legal agreements. There are many

 public Certification Authorities, such as DigiCert, Comodo, Entrust, and so on.

 You can also run your own Certification Authority using products such as Microsoft

 Certificate Server or the Entrust CA product for your organization. With the key?

 tool command, it is possible to display, import, and export certificates. It is

 also possible to generate self-signed certificates.

 The keytool command currently handles X.509 certificates.

 X.509 Certificates

 The X.509 standard defines what information can go into a certificate and describes

 how to write it down (the data format). All the data in a certificate is encoded

 with two related standards called ASN.1/DER. Abstract Syntax Notation 1 describes

 data. The Definite Encoding Rules describe a single way to store and transfer that

 data.

 All X.509 certificates have the following data, in addition to the signature:

 ? Version: This identifies which version of the X.509 standard applies to this cer?

 tificate, which affects what information can be specified in it. Thus far, three

 versions are defined. The keytool command can import and export v1, v2, and v3

 certificates. It generates v3 certificates.

 ? X.509 Version 1 has been available since 1988, is widely deployed, and is the

 most generic.

 ? X.509 Version 2 introduced the concept of subject and issuer unique identifiers

 to handle the possibility of reuse of subject or issuer names over time. Most

 certificate profile documents strongly recommend that names not be reused and

 that certificates shouldn't make use of unique identifiers. Version 2 certifi?

 cates aren't widely used. Page 38/47

 ? X.509 Version 3 is the most recent (1996) and supports the notion of extensions

 where anyone can define an extension and include it in the certificate. Some

 common extensions are: KeyUsage (limits the use of the keys to particular pur?

 poses such as signing-only) and AlternativeNames (allows other identities to

 also be associated with this public key, for example. DNS names, email ad?

 dresses, IP addresses). Extensions can be marked critical to indicate that the

 extension should be checked and enforced or used. For example, if a certifi?

 cate has the KeyUsage extension marked critical and set to keyCertSign, then

 when this certificate is presented during SSL communication, it should be re?

 jected because the certificate extension indicates that the associated private

 key should only be used for signing certificates and not for SSL use.

 ? Serial number: The entity that created the certificate is responsible for assign?

 ing it a serial number to distinguish it from other certificates it issues. This

 information is used in numerous ways. For example, when a certificate is revoked

 its serial number is placed in a Certificate Revocation List (CRL).

 ? Signature algorithm identifier: This identifies the algorithm used by the CA to

 sign the certificate.

 ? Issuer name: The X.500 Distinguished Name of the entity that signed the certifi?

 cate. This is typically a CA. Using this certificate implies trusting the enti?

 ty that signed this certificate. In some cases, such as root or top-level CA

 certificates, the issuer signs its own certificate.

 ? Validity period: Each certificate is valid only for a limited amount of time.

 This period is described by a start date and time and an end date and time, and

 can be as short as a few seconds or almost as long as a century. The validity

 period chosen depends on a number of factors, such as the strength of the private

 key used to sign the certificate, or the amount one is willing to pay for a cer?

 tificate. This is the expected period that entities can rely on the public val?

 ue, when the associated private key has not been compromised.

 ? Subject name: The name of the entity whose public key the certificate identifies.

 This name uses the X.500 standard, so it is intended to be unique across the In?

 ternet. This is the X.500 Distinguished Name (DN) of the entity. For example,

 CN=Java Duke, OU=Java Software Division, O=Oracle Corporation, C=US

 These refer to the subject's common name (CN), organizational unit (OU), organi? Page 39/47

 zation (O), and country (C).

 ? Subject public key information: This is the public key of the entity being named

 with an algorithm identifier that specifies which public key crypto system this

 key belongs to and any associated key parameters.

 Certificate Chains

 The keytool command can create and manage keystore key entries that each contain a

 private key and an associated certificate chain. The first certificate in the

 chain contains the public key that corresponds to the private key.

 When keys are first generated, the chain usually starts off containing a single el?

 ement, a self-signed certificate. See -genkeypair in Commands. A self-signed cer?

 tificate is one for which the issuer (signer) is the same as the subject. The sub?

 ject is the entity whose public key is being authenticated by the certificate.

 When the -genkeypair command is called to generate a new public/private key pair,

 it also wraps the public key into a self-signed certificate (unless the -signer op?

 tion is specified).

 Later, after a Certificate Signing Request (CSR) was generated with the -certreq

 command and sent to a Certification Authority (CA), the response from the CA is im?

 ported with -importcert, and the self-signed certificate is replaced by a chain of

 certificates. At the bottom of the chain is the certificate (reply) issued by the

 CA authenticating the subject's public key. The next certificate in the chain is

 one that authenticates the CA's public key.

 In many cases, this is a self-signed certificate, which is a certificate from the

 CA authenticating its own public key, and the last certificate in the chain. In

 other cases, the CA might return a chain of certificates. In this case, the bottom

 certificate in the chain is the same (a certificate signed by the CA, authenticat?

 ing the public key of the key entry), but the second certificate in the chain is a

 certificate signed by a different CA that authenticates the public key of the CA

 you sent the CSR to. The next certificate in the chain is a certificate that au?

 thenticates the second CA's key, and so on, until a self-signed root certificate is

 reached. Each certificate in the chain (after the first) authenticates the public

 key of the signer of the previous certificate in the chain.

 Many CAs only return the issued certificate, with no supporting chain, especially

 when there is a flat hierarchy (no intermediates CAs). In this case, the certifi? Page 40/47

 cate chain must be established from trusted certificate information already stored

 in the keystore.

 A different reply format (defined by the PKCS #7 standard) includes the supporting

 certificate chain in addition to the issued certificate. Both reply formats can be

 handled by the keytool command.

 The top-level (root) CA certificate is self-signed. However, the trust into the

 root's public key doesn't come from the root certificate itself, but from other

 sources such as a newspaper. This is because anybody could generate a self-signed

 certificate with the distinguished name of, for example, the DigiCert root CA. The

 root CA public key is widely known. The only reason it is stored in a certificate

 is because this is the format understood by most tools, so the certificate in this

 case is only used as a vehicle to transport the root CA's public key. Before you

 add the root CA certificate to your keystore, you should view it with the -print?

 cert option and compare the displayed fingerprint with the well-known fingerprint

 obtained from a newspaper, the root CA's Web page, and so on.

 cacerts Certificates File

 A certificates file named cacerts resides in the security properties directory:

 ? Linux and macOS: JAVA_HOME/lib/security

 ? Windows: JAVA_HOME\lib\security

 The cacerts file represents a system-wide keystore with CA certificates. System

 administrators can configure and manage that file with the keytool command by spec?

 ifying jks as the keystore type. The cacerts keystore file ships with a default

 set of root CA certificates. For Linux, macOS, and Windows, you can list the de?

 fault certificates with the following command:

 keytool -list -cacerts

 The initial password of the cacerts keystore file is changeit. System administra?

 tors should change that password and the default access permission of that file up?

 on installing the SDK.

 Note:

 It is important to verify your cacerts file. Because you trust the CAs in the cac?

 erts file as entities for signing and issuing certificates to other entities, you

 must manage the cacerts file carefully. The cacerts file should contain only cer?

 tificates of the CAs you trust. It is your responsibility to verify the trusted Page 41/47

 root CA certificates bundled in the cacerts file and make your own trust decisions.

 To remove an untrusted CA certificate from the cacerts file, use the -delete option

 of the keytool command. You can find the cacerts file in the JDK's $JA?

 VA_HOME/lib/security directory. Contact your system administrator if you don't

 have permission to edit this file.

 Internet RFC 1421 Certificate Encoding Standard

 Certificates are often stored using the printable encoding format defined by the

 Internet RFC 1421 standard, instead of their binary encoding. This certificate

 format, also known as Base64 encoding, makes it easy to export certificates to oth?

 er applications by email or through some other mechanism.

 Certificates read by the -importcert and -printcert commands can be in either this

 format or binary encoded. The -exportcert command by default outputs a certificate

 in binary encoding, but will instead output a certificate in the printable encoding

 format, when the -rfc option is specified.

 The -list command by default prints the SHA-256 fingerprint of a certificate. If

 the -v option is specified, then the certificate is printed in human-readable for?

 mat. If the -rfc option is specified, then the certificate is output in the print?

 able encoding format.

 In its printable encoding format, the encoded certificate is bounded at the begin?

 ning and end by the following text:

 -----BEGIN CERTIFICATE-----

 encoded certificate goes here.

 -----END CERTIFICATE-----

 X.500 Distinguished Names

 X.500 Distinguished Names are used to identify entities, such as those that are

 named by the subject and issuer (signer) fields of X.509 certificates. The keytool

 command supports the following subparts:

 ? commonName: The common name of a person such as Susan Jones.

 ? organizationUnit: The small organization (such as department or division) name.

 For example, Purchasing.

 ? localityName: The locality (city) name, for example, Palo Alto.

 ? stateName: State or province name, for example, California.

 ? country: Two-letter country code, for example, CH. Page 42/47

 When you supply a distinguished name string as the value of a -dname option, such

 as for the -genkeypair command, the string must be in the following format:

 CN=cName, OU=orgUnit, O=org, L=city, S=state, C=countryCode

 All the following items represent actual values and the previous keywords are ab?

 breviations for the following:

 CN=commonName

 OU=organizationUnit

 O=organizationName

 L=localityName

 S=stateName

 C=country

 A sample distinguished name string is:

 CN=Mark Smith, OU=Java, O=Oracle, L=Cupertino, S=California, C=US

 A sample command using such a string is:

 keytool -genkeypair -dname "CN=Mark Smith, OU=Java, O=Oracle, L=Cupertino,

 S=California, C=US" -alias mark -keyalg rsa

 Case doesn't matter for the keyword abbreviations. For example, CN, cn, and Cn are

 all treated the same.

 Order matters; each subcomponent must appear in the designated order. However, it

 isn't necessary to have all the subcomponents. You can use a subset, for example:

 CN=Smith, OU=Java, O=Oracle, C=US

 If a distinguished name string value contains a comma, then the comma must be es?

 caped by a backslash (\) character when you specify the string on a command line,

 as in:

 cn=Jack, ou=Java\, Product Development, o=Oracle, c=US

 It is never necessary to specify a distinguished name string on a command line.

 When the distinguished name is needed for a command, but not supplied on the com?

 mand line, the user is prompted for each of the subcomponents. In this case, a

 comma doesn't need to be escaped by a backslash (\).

WARNINGS

IMPORTING TRUSTED CERTIFICATES WARNING

 Important: Be sure to check a certificate very carefully before importing it as a trusted

 certificate. Page 43/47

 Windows Example:

 View the certificate first with the -printcert command or the -importcert command without

 the -noprompt option. Ensure that the displayed certificate fingerprints match the ex?

 pected ones. For example, suppose someone sends or emails you a certificate that you put

 it in a file named \tmp\cert. Before you consider adding the certificate to your list of

 trusted certificates, you can execute a -printcert command to view its fingerprints, as

 follows:

 keytool -printcert -file \tmp\cert

 Owner: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll

 Issuer: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll

 Serial Number: 59092b34

 Valid from: Thu Jun 24 18:01:13 PDT 2016 until: Wed Jun 23 17:01:13 PST 2016

 Certificate Fingerprints:

 SHA-1: 20:B6:17:FA:EF:E5:55:8A:D0:71:1F:E8:D6:9D:C0:37:13:0E:5E:FE

 SHA-256: 90:7B:70:0A:EA:DC:16:79:92:99:41:FF:8A:FE:EB:90:

 17:75:E0:90:B2:24:4D:3A:2A:16:A6:E4:11:0F:67:A4

 Linux Example:

 View the certificate first with the -printcert command or the -importcert command without

 the -noprompt option. Ensure that the displayed certificate fingerprints match the ex?

 pected ones. For example, suppose someone sends or emails you a certificate that you put

 it in a file named /tmp/cert. Before you consider adding the certificate to your list of

 trusted certificates, you can execute a -printcert command to view its fingerprints, as

 follows:

 keytool -printcert -file /tmp/cert

 Owner: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll

 Issuer: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll

 Serial Number: 59092b34

 Valid from: Thu Jun 24 18:01:13 PDT 2016 until: Wed Jun 23 17:01:13 PST 2016

 Certificate Fingerprints:

 SHA-1: 20:B6:17:FA:EF:E5:55:8A:D0:71:1F:E8:D6:9D:C0:37:13:0E:5E:FE

 SHA-256: 90:7B:70:0A:EA:DC:16:79:92:99:41:FF:8A:FE:EB:90:

 17:75:E0:90:B2:24:4D:3A:2A:16:A6:E4:11:0F:67:A4

 Then call or otherwise contact the person who sent the certificate and compare the finger? Page 44/47

 prints that you see with the ones that they show. Only when the fingerprints are equal is

 it guaranteed that the certificate wasn't replaced in transit with somebody else's cer?

 tificate such as an attacker's certificate. If such an attack took place, and you didn't

 check the certificate before you imported it, then you would be trusting anything the at?

 tacker signed, for example, a JAR file with malicious class files inside.

 Note:

 It isn't required that you execute a -printcert command before importing a certificate.

 This is because before you add a certificate to the list of trusted certificates in the

 keystore, the -importcert command prints out the certificate information and prompts you

 to verify it. You can then stop the import operation. However, you can do this only when

 you call the -importcert command without the -noprompt option. If the -noprompt option is

 specified, then there is no interaction with the user.

PASSWORDS WARNING

 Most commands that operate on a keystore require the store password. Some commands re?

 quire a private/secret key password. Passwords can be specified on the command line in

 the -storepass and -keypass options. However, a password shouldn't be specified on a com?

 mand line or in a script unless it is for testing, or you are on a secure system. When

 you don't specify a required password option on a command line, you are prompted for it.

CERTIFICATE CONFORMANCE WARNING

 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)

 Profile [https://tools.ietf.org/rfc/rfc5280.txt] defined a profile on conforming X.509

 certificates, which includes what values and value combinations are valid for certificate

 fields and extensions.

 The keytool command doesn't enforce all of these rules so it can generate certificates

 that don't conform to the standard, such as self-signed certificates that would be used

 for internal testing purposes. Certificates that don't conform to the standard might be

 rejected by the JDK or other applications. Users should ensure that they provide the cor?

 rect options for -dname, -ext, and so on.

IMPORT A NEW TRUSTED CERTIFICATE

 Before you add the certificate to the keystore, the keytool command verifies it by at?

 tempting to construct a chain of trust from that certificate to a self-signed certificate

 (belonging to a root CA), using trusted certificates that are already available in the

 keystore. Page 45/47

 If the -trustcacerts option was specified, then additional certificates are considered for

 the chain of trust, namely the certificates in a file named cacerts.

 If the keytool command fails to establish a trust path from the certificate to be imported

 up to a self-signed certificate (either from the keystore or the cacerts file), then the

 certificate information is printed, and the user is prompted to verify it by comparing the

 displayed certificate fingerprints with the fingerprints obtained from some other (trust?

 ed) source of information, which might be the certificate owner. Be very careful to en?

 sure the certificate is valid before importing it as a trusted certificate. The user then

 has the option of stopping the import operation. If the -noprompt option is specified,

 then there is no interaction with the user.

IMPORT A CERTIFICATE REPLY

 When you import a certificate reply, the certificate reply is validated with trusted cer?

 tificates from the keystore, and optionally, the certificates configured in the cacerts

 keystore file when the -trustcacerts option is specified.

 The methods of determining whether the certificate reply is trusted are as follows:

 ? If the reply is a single X.509 certificate, then the keytool command attempts to estab?

 lish a trust chain, starting at the certificate reply and ending at a self-signed cer?

 tificate (belonging to a root CA). The certificate reply and the hierarchy of certifi?

 cates is used to authenticate the certificate reply from the new certificate chain of

 aliases. If a trust chain can't be established, then the certificate reply isn't im?

 ported. In this case, the keytool command doesn't print the certificate and prompt the

 user to verify it, because it is very difficult for a user to determine the authenticity

 of the certificate reply.

 ? If the reply is a PKCS #7 formatted certificate chain or a sequence of X.509 certifi?

 cates, then the chain is ordered with the user certificate first followed by zero or

 more CA certificates. If the chain ends with a self-signed root CA certificate and the-

 trustcacerts option was specified, the keytool command attempts to match it with any of

 the trusted certificates in the keystore or the cacerts keystore file. If the chain

 doesn't end with a self-signed root CA certificate and the -trustcacerts option was

 specified, the keytool command tries to find one from the trusted certificates in the

 keystore or the cacerts keystore file and add it to the end of the chain. If the cer?

 tificate isn't found and the -noprompt option isn't specified, the information of the

 last certificate in the chain is printed, and the user is prompted to verify it. Page 46/47

 If the public key in the certificate reply matches the user's public key already stored

 with alias, then the old certificate chain is replaced with the new certificate chain in

 the reply. The old chain can only be replaced with a valid keypass, and so the password

 used to protect the private key of the entry is supplied. If no password is provided, and

 the private key password is different from the keystore password, the user is prompted for

 it.

 This command was named -import in earlier releases. This old name is still supported in

 this release. The new name, -importcert, is preferred.

JDK 21 2023 KEYTOOL(1)

Page 47/47

