
Rocky Enterprise Linux 9.2 Manual Pages on command 'keyrings.7'

$ man keyrings.7

KEYRINGS(7) Linux Programmer's Manual KEYRINGS(7)

NAME

 keyrings - in-kernel key management and retention facility

DESCRIPTION

 The Linux key-management facility is primarily a way for various kernel components to re?

 tain or cache security data, authentication keys, encryption keys, and other data in the

 kernel.

 System call interfaces are provided so that user-space programs can manage those objects

 and also use the facility for their own purposes; see add_key(2), request_key(2), and

 keyctl(2).

 A library and some user-space utilities are provided to allow access to the facility. See

 keyctl(1), keyctl(3), and keyutils(7) for more information.

 Keys

 A key has the following attributes:

 Serial number (ID)

 This is a unique integer handle by which a key is referred to in system calls. The

 serial number is sometimes synonymously referred as the key ID. Programmatically,

 key serial numbers are represented using the type key_serial_t.

 Type A key's type defines what sort of data can be held in the key, how the proposed

 content of the key will be parsed, and how the payload will be used.

 There are a number of general-purpose types available, plus some specialist types

 defined by specific kernel components.

 Description (name) Page 1/14

 The key description is a printable string that is used as the search term for the

 key (in conjunction with the key type) as well as a display name. During searches,

 the description may be partially matched or exactly matched.

 Payload (data)

 The payload is the actual content of a key. This is usually set when a key is cre?

 ated, but it is possible for the kernel to upcall to user space to finish the in?

 stantiation of a key if that key wasn't already known to the kernel when it was re?

 quested. For further details, see request_key(2).

 A key's payload can be read and updated if the key type supports it and if suitable

 permission is granted to the caller.

 Access rights

 Much as files do, each key has an owning user ID, an owning group ID, and a secu?

 rity label. Each key also has a set of permissions, though there are more than for

 a normal UNIX file, and there is an additional category?possessor?beyond the usual

 user, group, and other (see Possession, below).

 Note that keys are quota controlled, since they require unswappable kernel memory.

 The owning user ID specifies whose quota is to be debited.

 Expiration time

 Each key can have an expiration time set. When that time is reached, the key is

 marked as being expired and accesses to it fail with the error EKEYEXPIRED. If not

 deleted, updated, or replaced, then, after a set amount of time, an expired key is

 automatically removed (garbage collected) along with all links to it, and attempts

 to access the key fail with the error ENOKEY.

 Reference count

 Each key has a reference count. Keys are referenced by keyrings, by currently ac?

 tive users, and by a process's credentials. When the reference count reaches zero,

 the key is scheduled for garbage collection.

 Key types

 The kernel provides several basic types of key:

 "keyring"

 Keyrings are special keys which store a set of links to other keys (including other

 keyrings), analogous to a directory holding links to files. The main purpose of a

 keyring is to prevent other keys from being garbage collected because nothing Page 2/14

 refers to them.

 Keyrings with descriptions (names) that begin with a period ('.') are reserved to

 the implementation.

 "user" This is a general-purpose key type. The key is kept entirely within kernel memory.

 The payload may be read and updated by user-space applications.

 The payload for keys of this type is a blob of arbitrary data of up to 32,767

 bytes.

 The description may be any valid string, though it is preferred that it start with

 a colon-delimited prefix representing the service to which the key is of interest

 (for instance "afs:mykey").

 "logon" (since Linux 3.3)

 This key type is essentially the same as "user", but it does not provide reading

 (i.e., the keyctl(2) KEYCTL_READ operation), meaning that the key payload is never

 visible from user space. This is suitable for storing username-password pairs that

 should not be readable from user space.

 The description of a "logon" key must start with a non-empty colon-delimited prefix

 whose purpose is to identify the service to which the key belongs. (Note that this

 differs from keys of the "user" type, where the inclusion of a prefix is recom?

 mended but is not enforced.)

 "big_key" (since Linux 3.13)

 This key type is similar to the "user" key type, but it may hold a payload of up to

 1 MiB in size. This key type is useful for purposes such as holding Kerberos

 ticket caches.

 The payload data may be stored in a tmpfs filesystem, rather than in kernel memory,

 if the data size exceeds the overhead of storing the data in the filesystem.

 (Storing the data in a filesystem requires filesystem structures to be allocated in

 the kernel. The size of these structures determines the size threshold above which

 the tmpfs storage method is used.) Since Linux 4.8, the payload data is encrypted

 when stored in tmpfs, thereby preventing it from being written unencrypted into

 swap space.

 There are more specialized key types available also, but they aren't discussed here be?

 cause they aren't intended for normal user-space use.

 Key type names that begin with a period ('.') are reserved to the implementation. Page 3/14

 Keyrings

 As previously mentioned, keyrings are a special type of key that contain links to other

 keys (which may include other keyrings). Keys may be linked to by multiple keyrings.

 Keyrings may be considered as analogous to UNIX directories where each directory contains

 a set of hard links to files.

 Various operations (system calls) may be applied only to keyrings:

 Adding A key may be added to a keyring by system calls that create keys. This prevents

 the new key from being immediately deleted when the system call releases its last

 reference to the key.

 Linking

 A link may be added to a keyring pointing to a key that is already known, provided

 this does not create a self-referential cycle.

 Unlinking

 A link may be removed from a keyring. When the last link to a key is removed, that

 key will be scheduled for deletion by the garbage collector.

 Clearing

 All the links may be removed from a keyring.

 Searching

 A keyring may be considered the root of a tree or subtree in which keyrings form

 the branches and non-keyrings the leaves. This tree may be searched for a key

 matching a particular type and description.

 See keyctl_clear(3), keyctl_link(3), keyctl_search(3), and keyctl_unlink(3) for more in?

 formation.

 Anchoring keys

 To prevent a key from being garbage collected, it must be anchored to keep its reference

 count elevated when it is not in active use by the kernel.

 Keyrings are used to anchor other keys: each link is a reference on a key. Note that

 keyrings themselves are just keys and are also subject to the same anchoring requirement

 to prevent them being garbage collected.

 The kernel makes available a number of anchor keyrings. Note that some of these keyrings

 will be created only when first accessed.

 Process keyrings

 Process credentials themselves reference keyrings with specific semantics. These Page 4/14

 keyrings are pinned as long as the set of credentials exists, which is usually as

 long as the process exists.

 There are three keyrings with different inheritance/sharing rules: the ses?

 sion-keyring(7) (inherited and shared by all child processes), the

 process-keyring(7) (shared by all threads in a process) and the thread-keyring(7)

 (specific to a particular thread).

 As an alternative to using the actual keyring IDs, in calls to add_key(2),

 keyctl(2), and request_key(2), the special keyring values KEY_SPEC_SESSION_KEYRING,

 KEY_SPEC_PROCESS_KEYRING, and KEY_SPEC_THREAD_KEYRING can be used to refer to the

 caller's own instances of these keyrings.

 User keyrings

 Each UID known to the kernel has a record that contains two keyrings: the

 user-keyring(7) and the user-session-keyring(7). These exist for as long as the

 UID record in the kernel exists.

 As an alternative to using the actual keyring IDs, in calls to add_key(2),

 keyctl(2), and request_key(2), the special keyring values KEY_SPEC_USER_KEYRING and

 KEY_SPEC_USER_SESSION_KEYRING can be used to refer to the caller's own instances of

 these keyrings.

 A link to the user keyring is placed in a new session keyring by pam_keyinit(8)

 when a new login session is initiated.

 Persistent keyrings

 There is a persistent-keyring(7) available to each UID known to the system. It may

 persist beyond the life of the UID record previously mentioned, but has an expira?

 tion time set such that it is automatically cleaned up after a set time. The per?

 sistent keyring permits, for example, cron(8) scripts to use credentials that are

 left in the persistent keyring after the user logs out.

 Note that the expiration time of the persistent keyring is reset every time the

 persistent key is requested.

 Special keyrings

 There are special keyrings owned by the kernel that can anchor keys for special

 purposes. An example of this is the system keyring used for holding encryption

 keys for module signature verification.

 These special keyrings are usually closed to direct alteration by user space. Page 5/14

 An originally planned "group keyring", for storing keys associated with each GID known to

 the kernel, is not so far implemented, is unlikely to be implemented. Nevertheless, the

 constant KEY_SPEC_GROUP_KEYRING has been defined for this keyring.

 Possession

 The concept of possession is important to understanding the keyrings security model.

 Whether a thread possesses a key is determined by the following rules:

 (1) Any key or keyring that does not grant search permission to the caller is ignored in

 all the following rules.

 (2) A thread possesses its session-keyring(7), process-keyring(7), and thread-keyring(7)

 directly because those keyrings are referred to by its credentials.

 (3) If a keyring is possessed, then any key it links to is also possessed.

 (4) If any key a keyring links to is itself a keyring, then rule (3) applies recursively.

 (5) If a process is upcalled from the kernel to instantiate a key (see request_key(2)),

 then it also possesses the requester's keyrings as in rule (1) as if it were the re?

 quester.

 Note that possession is not a fundamental property of a key, but must rather be calculated

 each time the key is needed.

 Possession is designed to allow set-user-ID programs run from, say a user's shell to ac?

 cess the user's keys. Granting permissions to the key possessor while denying them to the

 key owner and group allows the prevention of access to keys on the basis of UID and GID

 matches.

 When it creates the session keyring, pam_keyinit(8) adds a link to the user-keyring(7),

 thus making the user keyring and anything it contains possessed by default.

 Access rights

 Each key has the following security-related attributes:

 * The owning user ID

 * The ID of a group that is permitted to access the key

 * A security label

 * A permissions mask

 The permissions mask contains four sets of rights. The first three sets are mutually ex?

 clusive. One and only one will be in force for a particular access check. In order of

 descending priority, these three sets are:

 user The set specifies the rights granted if the key's user ID matches the caller's Page 6/14

 filesystem user ID.

 group The set specifies the rights granted if the user ID didn't match and the key's

 group ID matches the caller's filesystem GID or one of the caller's supplementary

 group IDs.

 other The set specifies the rights granted if neither the key's user ID nor group ID

 matched.

 The fourth set of rights is:

 possessor

 The set specifies the rights granted if a key is determined to be possessed by the

 caller.

 The complete set of rights for a key is the union of whichever of the first three sets is

 applicable plus the fourth set if the key is possessed.

 The set of rights that may be granted in each of the four masks is as follows:

 view The attributes of the key may be read. This includes the type, description, and

 access rights (excluding the security label).

 read For a key: the payload of the key may be read. For a keyring: the list of serial

 numbers (keys) to which the keyring has links may be read.

 write The payload of the key may be updated and the key may be revoked. For a keyring,

 links may be added to or removed from the keyring, and the keyring may be cleared

 completely (all links are removed),

 search For a key (or a keyring): the key may be found by a search. For a keyring: keys

 and keyrings that are linked to by the keyring may be searched.

 link Links may be created from keyrings to the key. The initial link to a key that is

 established when the key is created doesn't require this permission.

 setattr

 The ownership details and security label of the key may be changed, the key's expi?

 ration time may be set, and the key may be revoked.

 In addition to access rights, any active Linux Security Module (LSM) may prevent access to

 a key if its policy so dictates. A key may be given a security label or other attribute

 by the LSM; this label is retrievable via keyctl_get_security(3).

 See keyctl_chown(3), keyctl_describe(3), keyctl_get_security(3), keyctl_setperm(3), and

 selinux(8) for more information.

 Searching for keys Page 7/14

 One of the key features of the Linux key-management facility is the ability to find a key

 that a process is retaining. The request_key(2) system call is the primary point of ac?

 cess for user-space applications to find a key. (Internally, the kernel has something

 similar available for use by internal components that make use of keys.)

 The search algorithm works as follows:

 (1) The process keyrings are searched in the following order: the thread thread-keyring(7)

 if it exists, the process-keyring(7) if it exists, and then either the ses?

 sion-keyring(7) if it exists or the user-session-keyring(7) if that exists.

 (2) If the caller was a process that was invoked by the request_key(2) upcall mechanism,

 then the keyrings of the original caller of request_key(2) will be searched as well.

 (3) The search of a keyring tree is in breadth-first order: each keyring is searched first

 for a match, then the keyrings referred to by that keyring are searched.

 (4) If a matching key is found that is valid, then the search terminates and that key is

 returned.

 (5) If a matching key is found that has an error state attached, that error state is noted

 and the search continues.

 (6) If no valid matching key is found, then the first noted error state is returned; oth?

 erwise, an ENOKEY error is returned.

 It is also possible to search a specific keyring, in which case only steps (3) to (6) ap?

 ply.

 See request_key(2) and keyctl_search(3) for more information.

 On-demand key creation

 If a key cannot be found, request_key(2) will, if given a callout_info argument, create a

 new key and then upcall to user space to instantiate the key. This allows keys to be cre?

 ated on an as-needed basis.

 Typically, this will involve the kernel creating a new process that executes the re?

 quest-key(8) program, which will then execute the appropriate handler based on its config?

 uration.

 The handler is passed a special authorization key that allows it and only it to instanti?

 ate the new key. This is also used to permit searches performed by the handler program to

 also search the requester's keyrings.

 See request_key(2), keyctl_assume_authority(3), keyctl_instantiate(3), keyctl_negate(3),

 keyctl_reject(3), request-key(8), and request-key.conf(5) for more information. Page 8/14

 /proc files

 The kernel provides various /proc files that expose information about keys or define lim?

 its on key usage.

 /proc/keys (since Linux 2.6.10)

 This file exposes a list of the keys for which the reading thread has view permis?

 sion, providing various information about each key. The thread need not possess

 the key for it to be visible in this file.

 The only keys included in the list are those that grant view permission to the

 reading process (regardless of whether or not it possesses them). LSM security

 checks are still performed, and may filter out further keys that the process is not

 authorized to view.

 An example of the data that one might see in this file (with the columns numbered

 for easy reference below) is the following:

 (1) (2) (3)(4) (5) (6) (7) (8) (9)

 009a2028 I--Q--- 1 perm 3f010000 1000 1000 user krb_ccache:primary: 12

 1806c4ba I--Q--- 1 perm 3f010000 1000 1000 keyring _pid: 2

 25d3a08f I--Q--- 1 perm 1f3f0000 1000 65534 keyring _uid_ses.1000: 1

 28576bd8 I--Q--- 3 perm 3f010000 1000 1000 keyring _krb: 1

 2c546d21 I--Q--- 190 perm 3f030000 1000 1000 keyring _ses: 2

 30a4e0be I------ 4 2d 1f030000 1000 65534 keyring _persistent.1000: 1

 32100fab I--Q--- 4 perm 1f3f0000 1000 65534 keyring _uid.1000: 2

 32a387ea I--Q--- 1 perm 3f010000 1000 1000 keyring _pid: 2

 3ce56aea I--Q--- 5 perm 3f030000 1000 1000 keyring _ses: 1

 The fields shown in each line of this file are as follows:

 ID (1) The ID (serial number) of the key, expressed in hexadecimal.

 Flags (2)

 A set of flags describing the state of the key:

 I The key has been instantiated.

 R The key has been revoked.

 D The key is dead (i.e., the key type has been unregistered). (A key may

 be briefly in this state during garbage collection.)

 Q The key contributes to the user's quota.

 U The key is under construction via a callback to user space; see re? Page 9/14

 quest-key(2).

 N The key is negatively instantiated.

 i The key has been invalidated.

 Usage (3)

 This is a count of the number of kernel credential structures that are pin?

 ning the key (approximately: the number of threads and open file references

 that refer to this key).

 Timeout (4)

 The amount of time until the key will expire, expressed in human-readable

 form (weeks, days, hours, minutes, and seconds). The string perm here means

 that the key is permanent (no timeout). The string expd means that the key

 has already expired, but has not yet been garbage collected.

 Permissions (5)

 The key permissions, expressed as four hexadecimal bytes containing, from

 left to right, the possessor, user, group, and other permissions. Within

 each byte, the permission bits are as follows:

 0x01 view

 Ox02 read

 0x04 write

 0x08 search

 0x10 link

 0x20 setattr

 UID (6)

 The user ID of the key owner.

 GID (7)

 The group ID of the key. The value -1 here means that the key has no group

 ID; this can occur in certain circumstances for keys created by the kernel.

 Type (8)

 The key type (user, keyring, etc.)

 Description (9)

 The key description (name). This field contains descriptive information

 about the key. For most key types, it has the form

 name[: extra-info] Page 10/14

 The name subfield is the key's description (name). The optional extra-info

 field provides some further information about the key. The information that

 appears here depends on the key type, as follows:

 "user" and "logon"

 The size in bytes of the key payload (expressed in decimal).

 "keyring"

 The number of keys linked to the keyring, or the string empty if

 there are no keys linked to the keyring.

 "big_key"

 The payload size in bytes, followed either by the string [file], if

 the key payload exceeds the threshold that means that the payload is

 stored in a (swappable) tmpfs(5) filesystem, or otherwise the string

 [buff], indicating that the key is small enough to reside in kernel

 memory.

 For the ".request_key_auth" key type (authorization key; see re?

 quest_key(2)), the description field has the form shown in the following ex?

 ample:

 key:c9a9b19 pid:28880 ci:10

 The three subfields are as follows:

 key The hexadecimal ID of the key being instantiated in the requesting

 program.

 pid The PID of the requesting program.

 ci The length of the callout data with which the requested key should be

 instantiated (i.e., the length of the payload associated with the au?

 thorization key).

 /proc/key-users (since Linux 2.6.10)

 This file lists various information for each user ID that has at least one key on

 the system. An example of the data that one might see in this file is the follow?

 ing:

 0: 10 9/9 2/1000000 22/25000000

 42: 9 9/9 8/200 106/20000

 1000: 11 11/11 10/200 271/20000

 The fields shown in each line are as follows: Page 11/14

 uid The user ID.

 usage This is a kernel-internal usage count for the kernel structure used to

 record key users.

 nkeys/nikeys

 The total number of keys owned by the user, and the number of those keys

 that have been instantiated.

 qnkeys/maxkeys

 The number of keys owned by the user, and the maximum number of keys that

 the user may own.

 qnbytes/maxbytes

 The number of bytes consumed in payloads of the keys owned by this user, and

 the upper limit on the number of bytes in key payloads for that user.

 /proc/sys/kernel/keys/gc_delay (since Linux 2.6.32)

 The value in this file specifies the interval, in seconds, after which revoked and

 expired keys will be garbage collected. The purpose of having such an interval is

 so that there is a window of time where user space can see an error (respectively

 EKEYREVOKED and EKEYEXPIRED) that indicates what happened to the key.

 The default value in this file is 300 (i.e., 5 minutes).

 /proc/sys/kernel/keys/persistent_keyring_expiry (since Linux 3.13)

 This file defines an interval, in seconds, to which the persistent keyring's expi?

 ration timer is reset each time the keyring is accessed (via keyctl_get_persis?

 tent(3) or the keyctl(2) KEYCTL_GET_PERSISTENT operation.)

 The default value in this file is 259200 (i.e., 3 days).

 The following files (which are writable by privileged processes) are used to enforce quo?

 tas on the number of keys and number of bytes of data that can be stored in key payloads:

 /proc/sys/kernel/keys/maxbytes (since Linux 2.6.26)

 This is the maximum number of bytes of data that a nonroot user can hold in the

 payloads of the keys owned by the user.

 The default value in this file is 20,000.

 /proc/sys/kernel/keys/maxkeys (since Linux 2.6.26)

 This is the maximum number of keys that a nonroot user may own.

 The default value in this file is 200.

 /proc/sys/kernel/keys/root_maxbytes (since Linux 2.6.26) Page 12/14

 This is the maximum number of bytes of data that the root user (UID 0 in the root

 user namespace) can hold in the payloads of the keys owned by root.

 The default value in this file is 25,000,000 (20,000 before Linux 3.17).

 /proc/sys/kernel/keys/root_maxkeys (since Linux 2.6.26)

 This is the maximum number of keys that the root user (UID 0 in the root user name?

 space) may own.

 The default value in this file is 1,000,000 (200 before Linux 3.17).

 With respect to keyrings, note that each link in a keyring consumes 4 bytes of the keyring

 payload.

 Users

 The Linux key-management facility has a number of users and usages, but is not limited to

 those that already exist.

 In-kernel users of this facility include:

 Network filesystems - DNS

 The kernel uses the upcall mechanism provided by the keys to upcall to user space

 to do DNS lookups and then to cache the results.

 AF_RXRPC and kAFS - Authentication

 The AF_RXRPC network protocol and the in-kernel AFS filesystem use keys to store

 the ticket needed to do secured or encrypted traffic. These are then looked up by

 network operations on AF_RXRPC and filesystem operations on kAFS.

 NFS - User ID mapping

 The NFS filesystem uses keys to store mappings of foreign user IDs to local user

 IDs.

 CIFS - Password

 The CIFS filesystem uses keys to store passwords for accessing remote shares.

 Module verification

 The kernel build process can be made to cryptographically sign modules. That sig?

 nature is then checked when a module is loaded.

 User-space users of this facility include:

 Kerberos key storage

 The MIT Kerberos 5 facility (libkrb5) can use keys to store authentication tokens

 which can be made to be automatically cleaned up a set time after the user last

 uses them, but until then permits them to hang around after the user has logged out Page 13/14

 so that cron(8) scripts can use them.

SEE ALSO

 keyctl(1), add_key(2), keyctl(2), request_key(2), keyctl(3), keyutils(7),

 persistent-keyring(7), process-keyring(7), session-keyring(7), thread-keyring(7),

 user-keyring(7), user-session-keyring(7), pam_keyinit(8), request-key(8)

 The kernel source files Documentation/crypto/asymmetric-keys.txt and under

 Documentation/security/keys (or, before Linux 4.13, in the file

 Documentation/security/keys.txt).

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 KEYRINGS(7)

Page 14/14

