
Rocky Enterprise Linux 9.2 Manual Pages on command 'keymaps.5'

$ man keymaps.5

KEYMAPS(5) File Formats Manual KEYMAPS(5)

NAME

 keymaps - keyboard table descriptions for loadkeys and dumpkeys

DESCRIPTION

 These files are used by loadkeys(1) to modify the translation tables used by the kernel

 keyboard driver and generated by dumpkeys(1) from those translation tables.

 The format of these files is vaguely similar to the one accepted by xmodmap(1). The file

 consists of charset or key or string definition lines interspersed with comments.

 Comments are introduced with ! or # characters and continue to the end of the line. Any?

 thing following one of these characters on that line is ignored. Note that comments need

 not begin from column one as with xmodmap(1).

 The syntax of keymap files is line oriented; a complete definition must fit on a single

 logical line. Logical lines can, however, be split into multiple physical lines by ending

 each subline with the backslash character (\).

INCLUDE FILES

 A keymap can include other keymaps using the syntax

 include "pathname"

CHARSET DEFINITIONS

 A character set definition line is of the form:

 charset "iso-8859-x"

 It defines how following keysyms are to be interpreted. For example, in iso-8859-1 the

 symbol mu (or micro) has code 0265, while in iso-8859-7 the letter mu has code 0354.

COMPLETE KEYCODE DEFINITIONS Page 1/7

 Each complete key definition line is of the form:

 keycode keynumber = keysym keysym keysym...

 keynumber is the internal identification number of the key, roughly equivalent to the scan

 code of it. keynumber can be given in decimal, octal or hexadecimal notation. Octal is

 denoted by a leading zero and hexadecimal by the prefix 0x.

 Each of the keysyms represent keyboard actions, of which up to 256 can be bound to a sin?

 gle key. The actions available include outputting character codes or character sequences,

 switching consoles or keymaps, booting the machine etc. (The complete list can be obtained

 from dumpkeys(1) by saying dumpkeys -l .)

 Each keysym may be prefixed by a '+' (plus sign), in wich case this keysym is treated as a

 "letter" and therefore affected by the "CapsLock" the same way as by "Shift" (to be cor?

 rect, the CapsLock inverts the Shift state). The ASCII letters ('a'-'z' and 'A'-'Z') are

 made CapsLock'able by default. If Shift+CapsLock should not produce a lower case symbol,

 put lines like

 keycode 30 = +a A

 in the map file.

 Which of the actions bound to a given key is taken when it is pressed depends on what mod?

 ifiers are in effect at that moment. The keyboard driver supports 9 modifiers. These mod?

 ifiers are labeled (completely arbitrarily) Shift, AltGr, Control, Alt, ShiftL, ShiftR,

 CtrlL, CtrlR and CapsShift. Each of these modifiers has an associated weight of power of

 two according to the following table:

 modifier weight

 Shift 1

 AltGr 2

 Control 4

 Alt 8

 ShiftL 16

 ShiftR 32

 CtrlL 64

 CtrlR 128

 CapsShift 256

 The effective action of a key is found out by adding up the weights of all the modifiers

 in effect. By default, no modifiers are in effect, so action number zero, i.e. the one in Page 2/7

 the first column in a key definition line, is taken when the key is pressed or released.

 When e.g. Shift and Alt modifiers are in effect, action number nine (from the 10th column)

 is the effective one.

 Changing the state of what modifiers are in effect can be achieved by binding appropriate

 key actions to desired keys. For example, binding the symbol Shift to a key sets the Shift

 modifier in effect when that key is pressed and cancels the effect of that modifier when

 the key is released. Binding AltGr_Lock to a key sets AltGr in effect when the key is

 pressed and cancels the effect when the key is pressed again. (By default Shift, AltGr,

 Control and Alt are bound to the keys that bear a similar label; AltGr may denote the

 right Alt key.)

 Note that you should be very careful when binding the modifier keys, otherwise you can end

 up with an unusable keyboard mapping. If you for example define a key to have Control in

 its first column and leave the rest of the columns to be VoidSymbols, you're in trouble.

 This is because pressing the key puts Control modifier in effect and the following actions

 are looked up from the fifth column (see the table above). So, when you release the key,

 the action from the fifth column is taken. It has VoidSymbol in it, so nothing happens.

 This means that the Control modifier is still in effect, although you have released the

 key. Re-pressing and releasing the key has no effect. To avoid this, you should always

 define all the columns to have the same modifier symbol. There is a handy short-hand nota?

 tion for this, see below.

 keysyms can be given in decimal, octal, hexadecimal, unicode or symbolic notation. The

 numeric notations use the same format as with keynumber. Unicode notation is "U+" fol?

 lowed by four hexadecimal digits. The symbolic notation resembles that used by

 xmodmap(1). Notable differences are the number symbols. The numeric symbols '0', ..., '9'

 of xmodmap(1) are replaced with the corresponding words 'zero', 'one', ... 'nine' to avoid

 confusion with the numeric notation.

 It should be noted that using numeric notation for the keysyms is highly unportable as the

 key action numbers may vary from one kernel version to another and the use of numeric no?

 tations is thus strongly discouraged. They are intended to be used only when you know

 there is a supported keyboard action in your kernel for which your current version of

 loadkeys(1) has no symbolic name.

 There is a number of short-hand notations to add readability and reduce typing work and

 the probability of typing-errors. Page 3/7

 First of all, you can give a map specification line, of the form

 keymaps 0-2,4-5,8,12

 to indicate that the lines of the keymap will not specify all 256 columns, but only the

 indicated ones. (In the example: only the plain, Shift, AltGr, Control, Control+Shift, Alt

 and Control+Alt maps, that is, 7 columns instead of 256.) When no such line is given, the

 keymaps 0-M will be defined, where M+1 is the maximum number of entries found in any defi?

 nition line.

 Next, you can leave off any trailing VoidSymbol entries from a key definition line.

 VoidSymbol denotes a keyboard action which produces no output and has no other effects ei?

 ther. For example, to define key number 30 to output 'a' unshifted, 'A' when pressed with

 Shift and do nothing when pressed with AltGr or other modifiers, you can write

 keycode 30 = a A

 instead of the more verbose

 keycode 30 = a A VoidSymbol VoidSymbol \

 VoidSymbol VoidSymbol VoidSymbol ...

 For added convenience, you can usually get off with still more terse definitions. If you

 enter a key definition line with only and exactly one action code after the equals sign,

 it has a special meaning. If the code (numeric or symbolic) is not an ASCII letter, it

 means the code is implicitly replicated through all columns being defined. If, on the

 other hand, the action code is an ASCII character in the range 'a', ..., 'z' or 'A', ...,

 'Z' in the ASCII collating sequence, the following definitions are made for the different

 modifier combinations, provided these are actually being defined. (The table lists the

 two possible cases: either the single action code is a lower case letter, denoted by 'x'

 or an upper case letter, denoted by 'Y'.)

 modifier symbol

 none x Y

 Shift X y

 AltGr x Y

 Shift+AltGr X y

 Control Control_x Control_y

 Shift+Control Control_x Control_y

 AltGr+Control Control_x Control_y

 Shift+AltGr+Control Control_x Control_y Page 4/7

 Alt Meta_x Meta_Y

 Shift+Alt Meta_X Meta_y

 AltGr+Alt Meta_x Meta_Y

 Shift+AltGr+Alt Meta_X Meta_y

 Control+Alt Meta_Control_x Meta_Control_y

 Shift+Control+Alt Meta_Control_x Meta_Control_y

 AltGr+Control+Alt Meta_Control_x Meta_Control_y

 Shift+AltGr+Control+Alt Meta_Control_x Meta_Control_y

SINGLE MODIFIER DEFINITIONS

 All the previous forms of key definition lines always define all the M+1 possible modifier

 combinations being defined, whether the line actually contains that many action codes or

 not. There is, however, a variation of the definition syntax for defining only single ac?

 tions to a particular modifier combination of a key. This is especially useful, if you

 load a keymap which doesn't match your needs in only some modifier combinations, like

 AltGr+function keys. You can then make a small local file redefining only those modifier

 combinations and loading it after the main file. The syntax of this form is:

 { plain | <modifier sequence> } keycode keynumber = keysym

 , e.g.,

 plain keycode 14 = BackSpace

 control alt keycode 83 = Boot

 alt keycode 105 = Decr_Console

 alt keycode 106 = Incr_Console

 Using "plain" will define only the base entry of a key (i.e. the one with no modifiers in

 effect) without affecting the bindings of other modifier combinations of that key.

STRING DEFINITIONS

 In addition to comments and key definition lines, a keymap can contain string definitions.

 These are used to define what each function key action code sends. The syntax of string

 definitions is:

 string keysym = "text"

 text can contain literal characters, octal character codes in the format of backslash fol?

 lowed by up to three octal digits, and the three escape sequences \n, \\, and \", for new?

 line, backslash and quote, respectively.

COMPOSE DEFINITIONS Page 5/7

 Then there may also be compose definitions. They have syntax

 compose 'char' 'char' to 'char'

 and describe how two bytes are combined to form a third one (when a dead accent or compose

 key is used). This is used to get accented letters and the like on a standard keyboard.

ABBREVIATIONS

 Various abbreviations can be used with kbd-0.96 and later.

 strings as usual

 Defines the usual values of the strings (but not the keys they are bound to).

 compose as usual for "iso-8859-1"

 Defines the usual compose combinations.

 To find out what keysyms there are available for use in keymaps, use the command

 dumpkeys --long-info

 Unfortunately, there is currently no description of what each symbol does. It has to be

 guessed from the name or figured out from the kernel sources.

EXAMPLES

 (Be careful to use a keymaps line, like the first line of `dumpkeys`, or "keymaps 0-15" or

 so.)

 The following entry exchanges the left Control key and the Caps Lock key on the keyboard:

 keycode 58 = Control

 keycode 29 = Caps_Lock

 Key number 58 is normally the Caps Lock key, and key number 29 is normally the Control

 key.

 The following entry sets the Shift and Caps Lock keys to behave more nicely, like in older

 typewriters. That is, pressing Caps Lock key once or more sets the keyboard in CapsLock

 state and pressing either of the Shift keys releases it.

 keycode 42 = Uncaps_Shift

 keycode 54 = Uncaps_Shift

 keycode 58 = Caps_On

 The following entry sets the layout of the edit pad in the enhanced keyboard to be more

 like that in the VT200 series terminals:

 keycode 102 = Insert

 keycode 104 = Remove

 keycode 107 = Prior Page 6/7

 shift keycode 107 = Scroll_Backward

 keycode 110 = Find

 keycode 111 = Select

 control alt keycode 111 = Boot

 control altgr keycode 111 = Boot

 Here's an example to bind the string "du\ndf\n" to the key AltGr-D. We use the "spare" ac?

 tion code F100 not normally bound to any key.

 altgr keycode 32 = F100

 string F100 = "du\ndf\n"

SEE ALSO

 loadkeys(1), dumpkeys(1), showkey(1), xmodmap(1)

kbd 24 April 1998 KEYMAPS(5)

Page 7/7

