
Rocky Enterprise Linux 9.2 Manual Pages on command 'kcmp.2'

$ man kcmp.2

KCMP(2) Linux Programmer's Manual KCMP(2)

NAME

 kcmp - compare two processes to determine if they share a kernel resource

SYNOPSIS

 #include <linux/kcmp.h>

 int kcmp(pid_t pid1, pid_t pid2, int type,

 unsigned long idx1, unsigned long idx2);

 Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION

 The kcmp() system call can be used to check whether the two processes identified by pid1

 and pid2 share a kernel resource such as virtual memory, file descriptors, and so on.

 Permission to employ kcmp() is governed by ptrace access mode PTRACE_MODE_READ_REALCREDS

 checks against both pid1 and pid2; see ptrace(2).

 The type argument specifies which resource is to be compared in the two processes. It has

 one of the following values:

 KCMP_FILE

 Check whether a file descriptor idx1 in the process pid1 refers to the same open

 file description (see open(2)) as file descriptor idx2 in the process pid2. The

 existence of two file descriptors that refer to the same open file description can

 occur as a result of dup(2) (and similar) fork(2), or passing file descriptors via

 a domain socket (see unix(7)).

 KCMP_FILES

 Check whether the processes share the same set of open file descriptors. The argu? Page 1/6

 ments idx1 and idx2 are ignored. See the discussion of the CLONE_FILES flag in

 clone(2).

 KCMP_FS

 Check whether the processes share the same filesystem information (i.e., file mode

 creation mask, working directory, and filesystem root). The arguments idx1 and

 idx2 are ignored. See the discussion of the CLONE_FS flag in clone(2).

 KCMP_IO

 Check whether the processes share I/O context. The arguments idx1 and idx2 are ig?

 nored. See the discussion of the CLONE_IO flag in clone(2).

 KCMP_SIGHAND

 Check whether the processes share the same table of signal dispositions. The argu?

 ments idx1 and idx2 are ignored. See the discussion of the CLONE_SIGHAND flag in

 clone(2).

 KCMP_SYSVSEM

 Check whether the processes share the same list of System V semaphore undo opera?

 tions. The arguments idx1 and idx2 are ignored. See the discussion of the

 CLONE_SYSVSEM flag in clone(2).

 KCMP_VM

 Check whether the processes share the same address space. The arguments idx1 and

 idx2 are ignored. See the discussion of the CLONE_VM flag in clone(2).

 KCMP_EPOLL_TFD (since Linux 4.13)

 Check whether the file descriptor idx1 of the process pid1 is present in the

 epoll(7) instance described by idx2 of the process pid2. The argument idx2 is a

 pointer to a structure where the target file is described. This structure has the

 form:

 struct kcmp_epoll_slot {

 __u32 efd;

 __u32 tfd;

 __u64 toff;

 };

 Within this structure, efd is an epoll file descriptor returned from epoll_create(2), tfd

 is a target file descriptor number, and toff is a target file offset counted from zero.

 Several different targets may be registered with the same file descriptor number and set? Page 2/6

 ting a specific offset helps to investigate each of them.

 Note the kcmp() is not protected against false positives which may occur if the processes

 are currently running. One should stop the processes by sending SIGSTOP (see signal(7))

 prior to inspection with this system call to obtain meaningful results.

RETURN VALUE

 The return value of a successful call to kcmp() is simply the result of arithmetic compar?

 ison of kernel pointers (when the kernel compares resources, it uses their memory ad?

 dresses).

 The easiest way to explain is to consider an example. Suppose that v1 and v2 are the ad?

 dresses of appropriate resources, then the return value is one of the following:

 0 v1 is equal to v2; in other words, the two processes share the resource.

 1 v1 is less than v2.

 2 v1 is greater than v2.

 3 v1 is not equal to v2, but ordering information is unavailable.

 On error, -1 is returned, and errno is set appropriately.

 kcmp() was designed to return values suitable for sorting. This is particularly handy if

 one needs to compare a large number of file descriptors.

ERRORS

 EBADF type is KCMP_FILE and fd1 or fd2 is not an open file descriptor.

 EFAULT The epoll slot addressed by idx2 is outside of the user's address space.

 EINVAL type is invalid.

 ENOENT The target file is not present in epoll(7) instance.

 EPERM Insufficient permission to inspect process resources. The CAP_SYS_PTRACE capabil?

 ity is required to inspect processes that you do not own. Other ptrace limitations

 may also apply, such as CONFIG_SECURITY_YAMA, which, when /proc/sys/ker?

 nel/yama/ptrace_scope is 2, limits kcmp() to child processes; see ptrace(2).

 ESRCH Process pid1 or pid2 does not exist.

VERSIONS

 The kcmp() system call first appeared in Linux 3.5.

CONFORMING TO

 kcmp() is Linux-specific and should not be used in programs intended to be portable.

NOTES

 Glibc does not provide a wrapper for this system call; call it using syscall(2). Page 3/6

 This system call is available only if the kernel was configured with CONFIG_CHECKPOINT_RE?

 STORE. The main use of the system call is for the checkpoint/restore in user space (CRIU)

 feature. The alternative to this system call would have been to expose suitable process

 information via the proc(5) filesystem; this was deemed to be unsuitable for security rea?

 sons.

 See clone(2) for some background information on the shared resources referred to on this

 page.

EXAMPLES

 The program below uses kcmp() to test whether pairs of file descriptors refer to the same

 open file description. The program tests different cases for the file descriptor pairs,

 as described in the program output. An example run of the program is as follows:

 $./a.out

 Parent PID is 1144

 Parent opened file on FD 3

 PID of child of fork() is 1145

 Compare duplicate FDs from different processes:

 kcmp(1145, 1144, KCMP_FILE, 3, 3) ==> same

 Child opened file on FD 4

 Compare FDs from distinct open()s in same process:

 kcmp(1145, 1145, KCMP_FILE, 3, 4) ==> different

 Child duplicated FD 3 to create FD 5

 Compare duplicated FDs in same process:

 kcmp(1145, 1145, KCMP_FILE, 3, 5) ==> same

 Program source

 #define _GNU_SOURCE

 #include <sys/syscall.h>

 #include <sys/wait.h>

 #include <sys/stat.h>

 #include <stdint.h>

 #include <stdlib.h>

 #include <stdio.h>

 #include <unistd.h>

 #include <fcntl.h> Page 4/6

 #include <linux/kcmp.h>

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 static int

 kcmp(pid_t pid1, pid_t pid2, int type,

 unsigned long idx1, unsigned long idx2)

 {

 return syscall(SYS_kcmp, pid1, pid2, type, idx1, idx2);

 }

 static void

 test_kcmp(char *msg, pid_t pid1, pid_t pid2, int fd_a, int fd_b)

 {

 printf("\t%s\n", msg);

 printf("\t\tkcmp(%jd, %jd, KCMP_FILE, %d, %d) ==> %s\n",

 (intmax_t) pid1, (intmax_t) pid2, fd_a, fd_b,

 (kcmp(pid1, pid2, KCMP_FILE, fd_a, fd_b) == 0) ?

 "same" : "different");

 }

 int

 main(int argc, char *argv[])

 {

 int fd1, fd2, fd3;

 char pathname[] = "/tmp/kcmp.test";

 fd1 = open(pathname, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR);

 if (fd1 == -1)

 errExit("open");

 printf("Parent PID is %jd\n", (intmax_t) getpid());

 printf("Parent opened file on FD %d\n\n", fd1);

 switch (fork()) {

 case -1:

 errExit("fork");

 case 0:

 printf("PID of child of fork() is %jd\n", (intmax_t) getpid()); Page 5/6

 test_kcmp("Compare duplicate FDs from different processes:",

 getpid(), getppid(), fd1, fd1);

 fd2 = open(pathname, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR);

 if (fd2 == -1)

 errExit("open");

 printf("Child opened file on FD %d\n", fd2);

 test_kcmp("Compare FDs from distinct open()s in same process:",

 getpid(), getpid(), fd1, fd2);

 fd3 = dup(fd1);

 if (fd3 == -1)

 errExit("dup");

 printf("Child duplicated FD %d to create FD %d\n", fd1, fd3);

 test_kcmp("Compare duplicated FDs in same process:",

 getpid(), getpid(), fd1, fd3);

 break;

 default:

 wait(NULL);

 }

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 clone(2), unshare(2)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 KCMP(2)

Page 6/6

