
Rocky Enterprise Linux 9.2 Manual Pages on command 'jshell.1'

$ man jshell.1

JSHELL(1) JDK Commands JSHELL(1)

NAME

 jshell - interactively evaluate declarations, statements, and expressions of the Java pro?

 gramming language in a read-eval-print loop (REPL)

SYNOPSIS

 jshell [options] [load-files]

 options

 Command-line options, separated by spaces. See Options for jshell.

 load-files

 One or more scripts to run when the tool is started. Scripts can contain any valid

 code snippets or JShell commands.

 The script can be a local file or one of following predefined scripts:

 DEFAULT

 Loads the default entries, which are commonly used as imports.

 JAVASE Imports all Java SE packages.

 PRINTING

 Defines print, println, and printf as jshell methods for use within the

 tool.

 TOOLING

 Defines javac, jar, and other methods for running JDK tools via their com?

 mand-line interface within the jshell tool.

 For more than one script, use a space to separate the names. Scripts are run in

 the order in which they're entered on the command line. Command-line scripts are Page 1/21

 run after startup scripts. To run a script after JShell is started, use the /open

 command.

 To accept input from standard input and suppress the interactive I/O, enter a hy?

 phen (-) for load-files. This option enables the use of the jshell tool in pipe

 chains.

DESCRIPTION

 JShell provides a way to interactively evaluate declarations, statements, and expressions

 of the Java programming language, making it easier to learn the language, explore unfamil?

 iar code and APIs, and prototype complex code. Java statements, variable definitions,

 method definitions, class definitions, import statements, and expressions are accepted.

 The bits of code entered are called snippets.

 As snippets are entered, they're evaluated, and feedback is provided. Feedback varies

 from the results and explanations of actions to nothing, depending on the snippet entered

 and the feedback mode chosen. Errors are described regardless of the feedback mode.

 Start with the verbose mode to get the most feedback while learning the tool.

 Command-line options are available for configuring the initial environment when JShell is

 started. Within JShell, commands are available for modifying the environment as needed.

 Existing snippets can be loaded from a file to initialize a JShell session, or at any time

 within a session. Snippets can be modified within the session to try out different varia?

 tions and make corrections. To keep snippets for later use, save them to a file.

OPTIONS FOR JSHELL

 --add-exports module/package

 Specifies a package to be considered as exported from its defining module.

 --add-modules module[,module...]

 Specifies the root modules to resolve in addition to the initial module.

 -Cflag Provides a flag to pass to the compiler. To pass more than one flag, provide an

 instance of this option for each flag or flag argument needed.

 --class-path path

 Specifies the directories and archives that are searched to locate class files.

 This option overrides the path in the CLASSPATH environment variable. If the envi?

 ronment variable isn't set and this option isn't used, then the current directory

 is searched. For Linux and macOS, use a colon (:) to separate items in the path.

 For Windows, use a semicolon (;) to separate items. Page 2/21

 --enable-preview

 Allows code to depend on the preview features of this release.

 --execution specification

 Specifies an alternate execution engine, where specification is an ExecutionControl

 spec. See the documentation of the package jdk.jshell.spi for the syntax of the

 spec.

 --feedback mode

 Sets the initial level of feedback provided in response to what's entered. The

 initial level can be overridden within a session by using the /set feedback mode

 command. The default is normal.

 The following values are valid for mode:

 verbose

 Provides detailed feedback for entries. Additional information about the

 action performed is displayed after the result of the action. The next

 prompt is separated from the feedback by a blank line.

 normal Provides an average amount of feedback. The next prompt is separated from

 the feedback by a blank line.

 concise

 Provides minimal feedback. The next prompt immediately follows the code

 snippet or feedback.

 silent Provides no feedback. The next prompt immediately follows the code snippet.

 custom Provides custom feedback based on how the mode is defined. Custom feedback

 modes are created within JShell by using the /set mode command.

 --help or -h or -?

 Prints a summary of standard options and exits the tool.

 --help-extra or -X

 Prints a summary of nonstandard options and exits the tool. Nonstandard options

 are subject to change without notice.

 -Jflag Provides a flag to pass to the runtime system. To pass more than one flag, provide

 an instance of this option for each flag or flag argument needed.

 --module-path modulepath

 Specifies where to find application modules. For Linux and macOS, use a colon (:)

 to separate items in the path. For Windows, use a semicolon (;) to separate items. Page 3/21

 --no-startup

 Prevents startup scripts from running when JShell starts. Use this option to run

 only the scripts entered on the command line when JShell is started, or to start

 JShell without any preloaded information if no scripts are entered. This option

 can't be used if the --startup option is used.

 -q Sets the feedback mode to concise, which is the same as entering --feedback con?

 cise.

 -Rflag Provides a flag to pass to the remote runtime system. To pass more than one flag,

 provide an instance of this option for each flag or flag argument to pass.

 -s Sets the feedback mode to silent, which is the same as entering --feedback silent.

 --show-version

 Prints version information and enters the tool.

 --startup file

 Overrides the default startup script for this session. The script can contain any

 valid code snippets or commands.

 The script can be a local file or one of the following predefined scripts:

 DEFAULT

 Loads the default entries, which are commonly used as imports.

 JAVASE Imports all Java SE packages.

 PRINTING

 Defines print, println, and printf as jshell methods for use within the

 tool.

 TOOLING

 Defines javac, jar, and other methods for running JDK tools via their com?

 mand-line interface within the jshell tool.

 For more than one script, provide a separate instance of this option for each

 script. Startup scripts are run when JShell is first started and when the session

 is restarted with the /reset, /reload, or /env command. Startup scripts are run in

 the order in which they're entered on the command line.

 This option can't be used if the --no-startup option is used.

 -v Sets the feedback mode to verbose, which is the same as entering --feedback ver?

 bose.

 --version Page 4/21

 Prints version information and exits the tool.

JSHELL COMMANDS

 Within the jshell tool, commands are used to modify the environment and manage code snip?

 pets.

 /drop {name|id|startID-endID} [{name|id|startID-endID}...]

 Drops snippets identified by name, ID, or ID range, making them inactive. For a

 range of IDs, provide the starting ID and ending ID separated with a hyphen. To

 provide a list, separate the items in the list with a space. Use the /list command

 to see the IDs of code snippets.

 /edit [option]

 Opens an editor. If no option is entered, then the editor opens with the active

 snippets.

 The following options are valid:

 {name|id|startID-endID} [{name|id|startID-endID}...]

 Opens the editor with the snippets identified by name, ID, or ID range. For

 a range of IDs, provide the starting ID and ending ID separated with a hy?

 phen. To provide a list, separate the items in the list with a space. Use

 the /list command to see the IDs of code snippets.

 -all Opens the editor with all snippets, including startup snippets and snippets

 that failed, were overwritten, or were dropped.

 -start Opens the editor with startup snippets that were evaluated when JShell was

 started.

 To exit edit mode, close the editor window, or respond to the prompt provided if

 the -wait option was used when the editor was set.

 Use the /set editor command to specify the editor to use. If no editor is set,

 then the following environment variables are checked in order: JSHELLEDITOR, VIS?

 UAL, and EDITOR. If no editor is set in JShell and none of the editor environment

 variables is set, then a simple default editor is used.

 /env [options]

 Displays the environment settings, or updates the environment settings and restarts

 the session. If no option is entered, then the current environment settings are

 displayed. If one or more options are entered, then the session is restarted as

 follows: Page 5/21

 ? Updates the environment settings with the provided options.

 ? Resets the execution state.

 ? Runs the startup scripts.

 ? Silently replays the history in the order entered. The history includes all

 valid snippets or /drop commands entered at the jshell prompt, in scripts entered

 on the command line, or scripts entered with the /open command.

 Environment settings entered on the command line or provided with a previous /re?

 set, /env, or /reload command are maintained unless an option is entered that over?

 writes the setting.

 The following options are valid:

 --add-modules module[,module...]

 Specifies the root modules to resolve in addition to the initial module.

 --add-exports source-module/package=target-module[,target-module]*

 Adds an export of package from source-module to target-module.

 --class-path path

 Specifies the directories and archives that are searched to locate class

 files. This option overrides the path in the CLASSPATH environment vari?

 able. If the environment variable isn't set and this option isn't used,

 then the current directory is searched. For Linux and macOS, use a colon

 (:) to separate items in the path. For Windows, use a semicolon (;) to sep?

 arate items.

 --module-path modulepath

 Specifies where to find application modules. For Linux and macOS, use a

 colon (:) to separate items in the path. For Windows, use a semicolon (;)

 to separate items.

 /exit [integer-expression-snippet]

 Exits the tool. If no snippet is entered, the exit status is zero. If a snippet

 is entered and the result of the snippet is an integer, the result is used as the

 exit status. If an error occurs, or the result of the snippet is not an integer,

 an error is displayed and the tool remains active.

 /history

 Displays what was entered in this session.

 /help [command|subject] Page 6/21

 Displays information about commands and subjects. If no options are entered, then

 a summary of information for all commands and a list of available subjects are dis?

 played. If a valid command is provided, then expanded information for that command

 is displayed. If a valid subject is entered, then information about that subject

 is displayed.

 The following values for subject are valid:

 context

 Describes the options that are available for configuring the environment.

 intro Provides an introduction to the tool.

 shortcuts

 Describes keystrokes for completing commands and snippets. See Input Short?

 cuts.

 /imports

 Displays the current active imports, including those from the startup scripts and

 scripts that were entered on the command line when JShell was started.

 /list [option]

 Displays a list of snippets and their IDs. If no option is entered, then all ac?

 tive snippets are displayed, but startup snippets aren't.

 The following options are valid:

 {name|id|startID-endID} [{name|id|startID-endID}...]

 Displays the snippets identified by name, ID, or ID range. For a range of

 IDs, provide the starting ID and ending ID separated with a hyphen. To pro?

 vide a list, separate the items in the list with a space.

 -all Displays all snippets, including startup snippets and snippets that failed,

 were overwritten, or were dropped. IDs that begin with s are startup snip?

 pets. IDs that begin with e are snippets that failed.

 -start Displays startup snippets that were evaluated when JShell was started.

 /methods [option]

 Displays information about the methods that were entered. If no option is entered,

 then the name, parameter types, and return type of all active methods are dis?

 played.

 The following options are valid:

 {name|id|startID-endID} [{name|id|startID-endID}...] Page 7/21

 Displays information for methods identified by name, ID, or ID range. For a

 range of IDs, provide the starting ID and ending ID separated with a hyphen.

 To provide a list, separate the items in the list with a space. Use the

 /list command to see the IDs of code snippets.

 -all Displays information for all methods, including those added when JShell was

 started, and methods that failed, were overwritten, or were dropped.

 -start Displays information for startup methods that were added when JShell was

 started.

 /open file

 Opens the script specified and reads the snippets into the tool. The script can be

 a local file or one of the following predefined scripts:

 DEFAULT

 Loads the default entries, which are commonly used as imports.

 JAVASE Imports all Java SE packages.

 PRINTING

 Defines print, println, and printf as jshell methods for use within the

 tool.

 TOOLING

 Defines javac, jar, and other methods for running JDK tools via their com?

 mand-line interface within the jshell tool.

 /reload [options]

 Restarts the session as follows:

 ? Updates the environment settings with the provided options, if any.

 ? Resets the execution state.

 ? Runs the startup scripts.

 ? Replays the history in the order entered. The history includes all valid snip?

 pets or /drop commands entered at the jshell prompt, in scripts entered on the

 command line, or scripts entered with the /open command.

 Environment settings entered on the command line or provided with a previous /re?

 set, /env, or /reload command are maintained unless an option is entered that over?

 writes the setting.

 The following options are valid:

 --add-modules module[,module...] Page 8/21

 Specifies the root modules to resolve in addition to the initial module.

 --add-exports source-module/package=target-module[,target-module]*

 Adds an export of package from source-module to target-module.

 --class-path path

 Specifies the directories and archives that are searched to locate class

 files. This option overrides the path in the CLASSPATH environment vari?

 able. If the environment variable isn't set and this option isn't used,

 then the current directory is searched. For Linux and macOS, use a colon

 (:) to separate items in the path. For Windows, use a semicolon (;) to sep?

 arate items.

 --module-path modulepath

 Specifies where to find application modules. For Linux and macOS, use a

 colon (:) to separate items in the path. For Windows, use a semicolon (;)

 to separate items.

 -quiet Replays the valid history without displaying it. Errors are displayed.

 -restore

 Resets the environment to the state at the start of the previous run of the

 tool or to the last time a /reset, /reload, or /env command was executed in

 the previous run. The valid history since that point is replayed. Use this

 option to restore a previous JShell session.

 /reset [options]

 Discards all entered snippets and restarts the session as follows:

 ? Updates the environment settings with the provided options, if any.

 ? Resets the execution state.

 ? Runs the startup scripts.

 History is not replayed. All code that was entered is lost.

 Environment settings entered on the command line or provided with a previous /re?

 set, /env, or /reload command are maintained unless an option is entered that over?

 writes the setting.

 The following options are valid:

 --add-modules module[,module...]

 Specifies the root modules to resolve in addition to the initial module.

 --add-exports source-module/package=target-module[,target-module]* Page 9/21

 Adds an export of package from source-module to target-module.

 --class-path path

 Specifies the directories and archives that are searched to locate class

 files. This option overrides the path in the CLASSPATH environment vari?

 able. If the environment variable isn't set and this option isn't used,

 then the current directory is searched. For Linux and macOS, use a colon

 (:) to separate items in the path. For Windows, use a semicolon (;) to sep?

 arate items.

 --module-path modulepath

 Specifies where to find application modules. For Linux and macOS, use a

 colon (:) to separate items in the path. For Windows, use a semicolon (;)

 to separate items.

 /save [options] file

 Saves snippets and commands to the file specified. If no options are entered, then

 active snippets are saved.

 The following options are valid:

 {name|id|startID-endID} [{name|id|startID-endID}...]

 Saves the snippets and commands identified by name, ID, or ID range. For a

 range of IDs, provide the starting ID and ending ID separated with a hyphen.

 To provide a list, separate the items in the list with a space. Use the

 /list command to see the IDs of the code snippets.

 -all Saves all snippets, including startup snippets and snippets that were over?

 written or failed.

 -history

 Saves the sequential history of all commands and snippets entered in the

 current session.

 -start Saves the current startup settings. If no startup scripts were provided,

 then an empty file is saved.

 /set [setting]

 Sets configuration information, including the external editor, startup settings,

 and feedback mode. This command is also used to create a custom feedback mode with

 customized prompt, format, and truncation values. If no setting is entered, then

 the current setting for the editor, startup settings, and feedback mode are dis? Page 10/21

 played.

 The following values are valid for setting:

 editor [options] [command]

 Sets the command used to start an external editor when the /edit command is

 entered. The command can include command arguments separated by spaces. If

 no command or options are entered, then the current setting is displayed.

 The following options are valid:

 -default

 Sets the editor to the default editor provided with JShell. This op?

 tion can't be used if a command for starting an editor is entered.

 -delete

 Sets the editor to the one in effect when the session started. If

 used with the -retain option, then the retained editor setting is

 deleted and the editor is set to the first of the following environ?

 ment variables found: JSHELLEDITOR, VISUAL, or EDITOR. If none of

 the editor environment variables are set, then this option sets the

 editor to the default editor.

 This option can't be used if a command for starting an editor is en?

 tered.

 -retain

 Saves the editor setting across sessions. If no other option or a

 command is entered, then the current setting is saved.

 -wait Prompts the user to indicate when editing is complete. Otherwise

 control returns to JShell when the editor exits. Use this option if

 the editor being used exits immediately, for example, when an edit

 window already exists. This option is valid only when a command for

 starting an editor is entered.

 feedback [mode]

 Sets the feedback mode used to respond to input. If no mode is entered,

 then the current mode is displayed.

 The following modes are valid: concise, normal, silent, verbose, and any

 custom mode created with the /set mode command.

 format mode field "format-string" selector Page 11/21

 Sets the format of the feedback provided in response to input. If no mode

 is entered, then the current formats for all fields for all feedback modes

 are displayed. If only a mode is entered, then the current formats for that

 mode are displayed. If only a mode and field are entered, then the current

 formats for that field are displayed.

 To define a format, the following arguments are required:

 mode Specifies a feedback mode to which the response format is applied.

 Only custom modes created with the /set mode command can be modified.

 field Specifies a context-specific field to which the response format is

 applied. The fields are described in the online help, which is ac?

 cessed from JShell using the /help /set format command.

 "format-string"

 Specifies the string to use as the response format for the specified

 field and selector. The structure of the format string is described

 in the online help, which is accessed from JShell using the /help

 /set format command.

 selector

 Specifies the context in which the response format is applied. The

 selectors are described in the online help, which is accessed from

 JShell using the /help /set format command.

 mode [mode-name] [existing-mode] [options]

 Creates a custom feedback mode with the mode name provided. If no mode name

 is entered, then the settings for all modes are displayed, which includes

 the mode, prompt, format, and truncation settings. If the name of an exist?

 ing mode is provided, then the settings from the existing mode are copied to

 the mode being created.

 The following options are valid:

 -command|-quiet

 Specifies the level of feedback displayed for commands when using the

 mode. This option is required when creating a feedback mode. Use

 -command to show information and verification feedback for commands.

 Use -quiet to show only essential feedback for commands, such as er?

 ror messages. Page 12/21

 -delete

 Deletes the named feedback mode for this session. The name of the

 mode to delete is required. To permanently delete a retained mode,

 use the -retain option with this option. Predefined modes can't be

 deleted.

 -retain

 Saves the named feedback mode across sessions. The name of the mode

 to retain is required.

 Configure the new feedback mode using the /set prompt, /set format, and /set

 truncation commands.

 To start using the new mode, use the /set feedback command.

 prompt mode "prompt-string" "continuation-prompt-string"

 Sets the prompts for input within JShell. If no mode is entered, then the

 current prompts for all feedback modes are displayed. If only a mode is en?

 tered, then the current prompts for that mode are displayed.

 To define a prompt, the following arguments are required:

 mode Specifies the feedback mode to which the prompts are applied. Only

 custom modes created with the /set mode command can be modified.

 "prompt-string"

 Specifies the string to use as the prompt for the first line of in?

 put.

 "continuation-prompt-string"

 Specifies the string to use as the prompt for the additional input

 lines needed to complete a snippet.

 start [-retain] [file [file...]|option]

 Sets the names of the startup scripts used when the next /reset, /reload, or

 /env command is entered. If more than one script is entered, then the

 scripts are run in the order entered. If no scripts or options are entered,

 then the current startup settings are displayed.

 The scripts can be local files or one of the following predefined scripts:

 DEFAULT

 Loads the default entries, which are commonly used as imports.

 JAVASE Imports all Java SE packages. Page 13/21

 PRINTING

 Defines print, println, and printf as jshell methods for use within

 the tool.

 TOOLING

 Defines javac, jar, and other methods for running JDK tools via their

 command-line interface within the jshell tool.

 The following options are valid:

 -default

 Sets the startup settings to the default settings.

 -none Specifies that no startup settings are used.

 Use the -retain option to save the start setting across sessions.

 truncation mode length selector

 Sets the maximum length of a displayed value. If no mode is entered, then

 the current truncation values for all feedback modes are displayed. If only

 a mode is entered, then the current truncation values for that mode are dis?

 played.

 To define truncation values, the following arguments are required:

 mode Specifies the feedback mode to which the truncation value is applied.

 Only custom modes created with the /set mode command can be modified.

 length Specifies the unsigned integer to use as the maximum length for the

 specified selector.

 selector

 Specifies the context in which the truncation value is applied. The

 selectors are described in the online help, which is accessed from

 JShell using the /help /set truncation command.

 /types [option]

 Displays classes, interfaces, and enums that were entered. If no option is en?

 tered, then all current active classes, interfaces, and enums are displayed.

 The following options are valid:

 {name|id|startID-endID} [{name|id|startID-endID}...]

 Displays information for classes, interfaces, and enums identified by name,

 ID, or ID range. For a range of IDs, provide the starting ID and ending ID

 separated with a hyphen. To provide a list, separate the items in the list Page 14/21

 with a space. Use the /list command to see the IDs of the code snippets.

 -all Displays information for all classes, interfaces, and enums, including those

 added when JShell was started, and classes, interfaces, and enums that

 failed, were overwritten, or were dropped.

 -start Displays information for startup classes, interfaces, and enums that were

 added when JShell was started.

 /vars [option]

 Displays the name, type, and value of variables that were entered. If no option is

 entered, then all current active variables are displayed.

 The following options are valid:

 {name|id|startID-endID} [{name|id|startID-endID}...]

 Displays information for variables identified by name, ID, or ID range. For

 a range of IDs, provide the starting ID and ending ID separated with a hy?

 phen. To provide a list, separate the items in the list with a space. Use

 the /list command to see the IDs of the code snippets.

 -all Displays information for all variables, including those added when JShell

 was started, and variables that failed, were overwritten, or were dropped.

 -start Displays information for startup variables that were added when JShell was

 started.

 /? Same as the /help command.

 /! Reruns the last snippet.

 /{name|id|startID-endID} [{name|id|startID-endID}...]

 Reruns the snippets identified by ID, range of IDs, or name. For a range of IDs,

 provide the starting ID and ending ID separated with a hyphen. To provide a list,

 separate the items in the list with a space. The first item in the list must be an

 ID or ID range. Use the /list command to see the IDs of the code snippets.

 /-n Reruns the -nth previous snippet. For example, if 15 code snippets were entered,

 then /-4 runs the 11th snippet. Commands aren't included in the count.

INPUT SHORTCUTS

 The following shortcuts are available for entering commands and snippets in JShell.

 Tab completion

 <tab> When entering snippets, commands, subcommands, command arguments, or command op?

 tions, use the Tab key to automatically complete the item. If the item can't be Page 15/21

 determined from what was entered, then possible options are provided.

 When entering a method call, use the Tab key after the method call's opening paren?

 thesis to see the parameters for the method. If the method has more than one sig?

 nature, then all signatures are displayed. Pressing the Tab key a second time dis?

 plays the description of the method and the parameters for the first signature.

 Continue pressing the Tab key for a description of any additional signatures.

 Shift+<Tab> V

 After entering a complete expression, use this key sequence to convert the expres?

 sion to a variable declaration of a type determined by the type of the expression.

 Shift+<Tab> M

 After entering a complete expression or statement, use this key sequence to convert

 the expression or statement to a method declaration. If an expression is entered,

 the return type is based on the type of the expression.

 Shift+<Tab> I

 When an identifier is entered that can't be resolved, use this key sequence to show

 possible imports that resolve the identifier based on the content of the specified

 class path.

 Command abbreviations

 An abbreviation of a command is accepted if the abbreviation uniquely identifies a com?

 mand. For example, /l is recognized as the /list command. However, /s isn't a valid ab?

 breviation because it can't be determined if the /set or /save command is meant. Use /se

 for the /set command or /sa for the /save command.

 Abbreviations are also accepted for subcommands, command arguments, and command options.

 For example, use /m -a to display all methods.

 History navigation

 A history of what was entered is maintained across sessions. Use the up and down arrows

 to scroll through commands and snippets from the current and past sessions. Use the Ctrl

 key with the up and down arrows to skip all but the first line of multiline snippets.

 History search

 Use the Ctrl+R key combination to search the history for the string entered. The prompt

 changes to show the string and the match. Ctrl+R searches backwards from the current lo?

 cation in the history through earlier entries. Ctrl+S searches forward from the current

 location in the history though later entries. Page 16/21

INPUT EDITING

 The editing capabilities of JShell are similar to that of other common shells. Keyboard

 keys and key combinations provide line editing shortcuts. The Ctrl key and Meta key are

 used in key combinations. If your keyboard doesn't have a Meta key, then the Alt key is

 often mapped to provide Meta key functionality.

 Line Editing Shortcuts

 Key or Key Combination Action

 ??

 Return Enter the current line.

 Left arrow Move the cursor to the left one

 character.

 Right arrow Move the cursor to the right one

 character.

 Ctrl+A Move the cursor to the beginning

 of the line.

 Ctrl+E Move the cursor to the end of

 the line.

 Meta+B Move the cursor to the left one

 word.

 Meta+F Move the cursor to the right one

 word.

 Delete Delete the character under the

 cursor.

 Backspace Delete the character before the

 cursor.

 Ctrl+K Delete the text from the cursor

 to the end of the line.

 Meta+D Delete the text from the cursor

 to the end of the word.

 Ctrl+W Delete the text from the cursor

 to the previous white space.

 Ctrl+Y Paste the most recently deleted

 text into the line. Page 17/21

 Meta+Y After Ctrl+Y, press to cycle

 through the previously deleted

 text.

EXAMPLE OF STARTING AND STOPPING A JSHELL SESSION

 JShell is provided with the JDK. To start a session, enter jshell on the command line. A

 welcome message is printed, and a prompt for entering commands and snippets is provided.

 % jshell

 | Welcome to JShell -- Version 9

 | For an introduction type: /help intro

 jshell>

 To see which snippets were automatically loaded when JShell started, use the /list -start

 command. The default startup snippets are import statements for common packages. The ID

 for each snippet begins with the letter s, which indicates it's a startup snippet.

 jshell> /list -start

 s1 : import java.io.*;

 s2 : import java.math.*;

 s3 : import java.net.*;

 s4 : import java.nio.file.*;

 s5 : import java.util.*;

 s6 : import java.util.concurrent.*;

 s7 : import java.util.function.*;

 s8 : import java.util.prefs.*;

 s9 : import java.util.regex.*;

 s10 : import java.util.stream.*;

 jshell>

 To end the session, use the /exit command.

 jshell> /exit

 | Goodbye

 %

EXAMPLE OF ENTERING SNIPPETS

 Snippets are Java statements, variable definitions, method definitions, class definitions,

 import statements, and expressions. Terminating semicolons are automatically added to the

 end of a completed snippet if they're missing. Page 18/21

 The following example shows two variables and a method being defined, and the method being

 run. Note that a scratch variable is automatically created to hold the result because no

 variable was provided.

 jshell> int a=4

 a ==> 4

 jshell> int b=8

 b ==> 8

 jshell> int square(int i1) {

 ...> return i1 * i1;

 ...> }

 | created method square(int)

 jshell> square(b)

 $5 ==> 64

EXAMPLE OF CHANGING SNIPPETS

 Change the definition of a variable, method, or class by entering it again.

 The following examples shows a method being defined and the method run:

 jshell> String grade(int testScore) {

 ...> if (testScore >= 90) {

 ...> return "Pass";

 ...> }

 ...> return "Fail";

 ...> }

 | created method grade(int)

 jshell> grade(88)

 $3 ==> "Fail"

 To change the method grade to allow more students to pass, enter the method definition

 again and change the pass score to 80. Use the up arrow key to retrieve the previous en?

 tries to avoid having to reenter them and make the change in the if statement. The fol?

 lowing example shows the new definition and reruns the method to show the new result:

 jshell> String grade(int testScore) {

 ...> if (testScore >= 80) {

 ...> return "Pass";

 ...> } Page 19/21

 ...> return "Fail";

 ...> }

 | modified method grade(int)

 jshell> grade(88)

 $5 ==> "Pass"

 For snippets that are more than a few lines long, or to make more than a few changes, use

 the /edit command to open the snippet in an editor. After the changes are complete, close

 the edit window to return control to the JShell session. The following example shows the

 command and the feedback provided when the edit window is closed. The /list command is

 used to show that the pass score was changed to 85.

 jshell> /edit grade

 | modified method grade(int)

 jshell> /list grade

 6 : String grade(int testScore) {

 if (testScore >= 85) {

 return "Pass";

 }

 return "Fail";

 }

EXAMPLE OF CREATING A CUSTOM FEEDBACK MODE

 The feedback mode determines the prompt that's displayed, the feedback messages that are

 provided as snippets are entered, and the maximum length of a displayed value. Predefined

 feedback modes are provided. Commands for creating custom feedback modes are also provid?

 ed.

 Use the /set mode command to create a new feedback mode. In the following example, the

 new mode mymode, is based on the predefined feedback mode, normal, and verifying command

 feedback is displayed:

 jshell> /set mode mymode normal -command

 | Created new feedback mode: mymode

 Because the new mode is based on the normal mode, the prompts are the same. The following

 example shows how to see what prompts are used and then changes the prompts to custom

 strings. The first string represents the standard JShell prompt. The second string rep?

 resents the prompt for additional lines in multiline snippets. Page 20/21

 jshell> /set prompt mymode

 | /set prompt mymode "\njshell> " " ...> "

 jshell> /set prompt mymode "\nprompt$ " " continue$ "

 The maximum length of a displayed value is controlled by the truncation setting. Differ?

 ent types of values can have different lengths. The following example sets an overall

 truncation value of 72, and a truncation value of 500 for variable value expressions:

 jshell> /set truncation mymode 72

 jshell> /set truncation mymode 500 varvalue

 The feedback displayed after snippets are entered is controlled by the format setting and

 is based on the type of snippet entered and the action taken for that snippet. In the

 predefined mode normal, the string created is displayed when a method is created. The

 following example shows how to change that string to defined:

 jshell> /set format mymode action "defined" added-primary

 Use the /set feedback command to start using the feedback mode that was just created. The

 following example shows the custom mode in use:

 jshell> /set feedback mymode

 | Feedback mode: mymode

 prompt$ int square (int num1){

 continue$ return num1*num1;

 continue$ }

 | defined method square(int)

 prompt$

JDK 21 2023 JSHELL(1)

Page 21/21

