
Rocky Enterprise Linux 9.2 Manual Pages on command 'jdeprscan.1'

$ man jdeprscan.1

JDEPRSCAN(1) JDK Commands JDEPRSCAN(1)

NAME

 jdeprscan - static analysis tool that scans a jar file (or some other aggregation of class

 files) for uses of deprecated API elements

SYNOPSIS

 jdeprscan [options] {dir|jar|class}

 options

 See Options for the jdeprscan Command

 dir|jar|class

 jdeprscan command scans each argument for usages of deprecated APIs. The arguments

 can be a:

 ? dir: Directory

 ? jar: JAR file

 ? class: Class name or class file

 The class name should use a dot (.) as a separator. For example:

 java.lang.Thread

 For nested classes, the dollar sign $ separator character should be used. For ex?

 ample:

 java.lang.Thread$State

 A class file can also be named. For example:

 build/classes/java/lang/Thread$State.class

DESCRIPTION

 The jdeprscan tool is a static analysis tool provided by the JDK that scans a JAR file or Page 1/4

 some other aggregation of class files for uses of deprecated API elements. The deprecated

 APIs identified by the jdeprscan tool are only those that are defined by Java SE. Depre?

 cated APIs defined by third-party libraries aren't reported.

 To scan a JAR file or a set of class files, you must first ensure that all of the classes

 that the scanned classes depend upon are present in the class path. Set the class path

 using the --class-path option described in Options for the jdeprscan Command. Typically,

 you would use the same class path as the one that you use when invoking your application.

 If the jdeprscan can't find all the dependent classes, it will generate an error message

 for each class that's missing. These error messages are typically of the form:

 error: cannot find class ...

 If these errors occur, then you must adjust the class path so that it includes all depen?

 dent classes.

OPTIONS FOR THE JDEPRSCAN COMMAND

 The following options are available:

 --class-path path

 Provides a search path for resolution of dependent classes.

 path can be a search path that consists of one or more directories separated by the

 system-specific path separator. For example:

 ? Linux and macOS:

 --class-path /some/directory:/another/different/dir

 Note:

 On Windows, use a semicolon (;) as the separator instead of a colon (:).

 ? Windows:

 --class-path \some\directory;\another\different\dir

 --for-removal

 Limits scanning or listing to APIs that are deprecated for removal. Can't be used

 with a release value of 6, 7, or 8.

 --full-version

 Prints out the full version string of the tool.

 --help or -h

 Prints out a full help message.

 --list or -l

 Prints the set of deprecated APIs. No scanning is done, so no directory, jar, or Page 2/4

 class arguments should be provided.

 --release 6|7|8|9

 Specifies the Java SE release that provides the set of deprecated APIs for scan?

 ning.

 --verbose or -v

 Enables additional message output during processing.

 --version

 Prints out the abbreviated version string of the tool.

EXAMPLE OF JDEPRSCAN OUTPUT

 The JAR file for this library will be named something similar to commons-math3-3.6.1.jar.

 To scan this JAR file for the use of deprecated APIs, run the following command:

 jdeprscan commons-math3-3.6.1.jar

 This command produces several lines of output. For example, one line of output might be:

 class org/apache/commons/math3/util/MathUtils uses deprecated method java/lang/Double::<init>(D)V

 Note:

 The class name is specified using the slash-separated binary name as described in JVMS

 4.2.1. This is the form used internally in class files.

 The deprecated API it uses is a method on the java.lang.Double class.

 The name of the deprecated method is <init>, which is a special name that means that the

 method is actually a constructor. Another special name is <clinit>, which indicates a

 class static initializer.

 Other methods are listed just by their method name. Following the method name is the ar?

 gument list and return type:

 (D)V

 This indicates that it takes just one double value (a primitive) and returns void. The

 argument and return types can become cryptic. For example, another line of output might

 be:

 class org/apache/commons/math3/util/Precision uses deprecated method

java/math/BigDecimal::setScale(II)Ljava/math/BigDecimal;

 In this line of output, the deprecated method is on class java.math.BigDecimal, and the

 method is setScale(). In this case, the (II) means that it takes two int arguments. The

 Ljava/math/BigDecimal; after the parentheses means that it returns a reference to ja?

 va.math.BigDecimal. Page 3/4

JDEPRSCAN ANALYSIS CAN BE VERSION-SPECIFIC

 You can use jdeprscan relative to the previous three JDK releases. For example, if you

 are running JDK 9, then you can check against JDK 8, 7, and 6.

 As an example, look at this code snippet:

 public class Deprecations {

 SecurityManager sm = new RMISecurityManager(); // deprecated in 8

 Boolean b2 = new Boolean(true); // deprecated in 9

 }

 The complete class compiles without warnings in JDK 7.

 If you run jdeprscan on a system with JDK 9, then you see:

 $ jdeprscan --class-path classes --release 7 example.Deprecations

 (no output)

 Run jdeprscan with a release value of 8:

 $ jdeprscan --class-path classes --release 8 example.Deprecations

 class example/Deprecations uses type java/rmi/RMISecurityManager deprecated

 class example/Deprecations uses method in type java/rmi/RMISecurityManager deprecated

 Run jdeprscan on JDK 9:

 $ jdeprscan --class-path classes example.Deprecations

 class example/Deprecations uses type java/rmi/RMISecurityManager deprecated

 class example/Deprecations uses method in type java/rmi/RMISecurityManager deprecated

 class example/Deprecations uses method java/lang/Boolean <init> (Z)V deprecated

JDK 21 2023 JDEPRSCAN(1)

Page 4/4

