
Rocky Enterprise Linux 9.2 Manual Pages on command 'jdb.1'

$ man jdb.1

JDB(1) JDK Commands JDB(1)

NAME

 jdb - find and fix bugs in Java platform programs

SYNOPSIS

 jdb [options] [classname] [arguments]

 options

 This represents the jdb command-line options. See Options for the jdb command.

 classname

 This represents the name of the main class to debug.

 arguments

 This represents the arguments that are passed to the main() method of the class.

DESCRIPTION

 The Java Debugger (JDB) is a simple command-line debugger for Java classes. The jdb com?

 mand and its options call the JDB. The jdb command demonstrates the Java Platform Debug?

 ger Architecture and provides inspection and debugging of a local or remote JVM.

START A JDB SESSION

 There are many ways to start a JDB session. The most frequently used way is to have the

 JDB launch a new JVM with the main class of the application to be debugged. Do this by

 substituting the jdb command for the java command in the command line. For example, if

 your application's main class is MyClass, then use the following command to debug it under

 the JDB:

 jdb MyClass

 When started this way, the jdb command calls a second JVM with the specified parameters, Page 1/5

 loads the specified class, and stops the JVM before executing that class's first instruc?

 tion.

 Another way to use the jdb command is by attaching it to a JVM that's already running.

 Syntax for starting a JVM to which the jdb command attaches when the JVM is running is as

 follows. This loads in-process debugging libraries and specifies the kind of connection

 to be made.

 java -agentlib:jdwp=transport=dt_socket,server=y,suspend=n MyClass

 You can then attach the jdb command to the JVM with the following command:

 jdb -attach 8000

 8000 is the address of the running JVM.

 The MyClass argument isn't specified in the jdb command line in this case because the jdb

 command is connecting to an existing JVM instead of launching a new JVM.

 There are many other ways to connect the debugger to a JVM, and all of them are supported

 by the jdb command. The Java Platform Debugger Architecture has additional documentation

 on these connection options.

BREAKPOINTS

 Breakpoints can be set in the JDB at line numbers or at the first instruction of a method,

 for example:

 ? The command stop at MyClass:22 sets a breakpoint at the first instruction for line 22 of

 the source file containing MyClass.

 ? The command stop in java.lang.String.length sets a breakpoint at the beginning of the

 method java.lang.String.length.

 ? The command stop in MyClass.<clinit> uses <clinit> to identify the static initialization

 code for MyClass.

 When a method is overloaded, you must also specify its argument types so that the proper

 method can be selected for a breakpoint. For example, MyClass.myMethod(int,ja?

 va.lang.String) or MyClass.myMethod().

 The clear command removes breakpoints using the following syntax: clear MyClass:45. Using

 the clear or stop command with no argument displays a list of all breakpoints currently

 set. The cont command continues execution.

STEPPING

 The step command advances execution to the next line whether it's in the current stack

 frame or a called method. The next command advances execution to the next line in the Page 2/5

 current stack frame.

EXCEPTIONS

 When an exception occurs for which there isn't a catch statement anywhere in the throwing

 thread's call stack, the JVM typically prints an exception trace and exits. When running

 under the JDB, however, control returns to the JDB at the offending throw. You can then

 use the jdb command to diagnose the cause of the exception.

 Use the catch command to cause the debugged application to stop at other thrown excep?

 tions, for example: catch java.io.FileNotFoundException or catch mypackage.BigTroubleEx?

 ception. Any exception that's an instance of the specified class or subclass stops the

 application at the point where the exception is thrown.

 The ignore command negates the effect of an earlier catch command. The ignore command

 doesn't cause the debugged JVM to ignore specific exceptions, but only to ignore the de?

 bugger.

OPTIONS FOR THE JDB COMMAND

 When you use the jdb command instead of the java command on the command line, the jdb com?

 mand accepts many of the same options as the java command.

 The following options are accepted by the jdb command:

 -help Displays a help message.

 -sourcepath dir1:dir2:...

 Uses the specified path to search for source files in the specified path. If this

 option is not specified, then use the default path of dot (.).

 -attach address

 Attaches the debugger to a running JVM with the default connection mechanism.

 -listen address

 Waits for a running JVM to connect to the specified address with a standard connec?

 tor.

 -listenany

 Waits for a running JVM to connect at any available address using a standard con?

 nector.

 -launch

 Starts the debugged application immediately upon startup of the jdb command. The

 -launch option removes the need for the run command. The debugged application is

 launched and then stopped just before the initial application class is loaded. At Page 3/5

 that point, you can set any necessary breakpoints and use the cont command to con?

 tinue execution.

 -listconnectors

 Lists the connectors available in this JVM.

 -connect connector-name:name1=value1....

 Connects to the target JVM with the named connector and listed argument values.

 -dbgtrace [flags]

 Prints information for debugging the jdb command.

 -tclient

 Runs the application in the Java HotSpot VM client.

 -trackallthreads

 Track all threads as they are created, including virtual threads. See Working With

 Virtual Threads below.

 -tserver

 Runs the application in the Java HotSpot VM server.

 -Joption

 Passes option to the JDB JVM, where option is one of the options described on the

 reference page for the Java application launcher. For example, -J-Xms48m sets the

 startup memory to 48 MB. See Overview of Java Options in java.

 The following options are forwarded to the debuggee process:

 -Roption

 Passes option to the debuggee JVM, where option is one of the options described on

 the reference page for the Java application launcher. For example, -R-Xms48m sets

 the startup memory to 48 MB. See Overview of Java Options in java.

 -v or -verbose[:class|gc|jni]

 Turns on the verbose mode.

 -Dname=value

 Sets a system property.

 -classpath dir

 Lists directories separated by colons in which to look for classes.

 -X option

 A nonstandard target JVM option.

 Other options are supported to provide alternate mechanisms for connecting the debugger to Page 4/5

 the JVM that it's to debug.

WORKING WITH VIRTUAL THREADS

 Often virtual theads are created in such large numbers and frequency that they can over?

 whelm a debugger. For this reason by default JDB does not keep track of virtual threads

 as they are created. It will only keep track of virtual threads that an event has arrived

 on, such as a breakpoint event. The -trackallthreads option can be used to make JDB track

 all virtual threads as they are created.

 When JDB first connects, it requests a list of all known threads from the Debug Agent. By

 default the debug agent does not return any virtual threads in this list, once again be?

 cause the list could be so large that it overwhelms the debugger. The Debug Agent has an

 includevirtualthreads option that can be enabled to change this behavior so all known vir?

 tual threads will be included in the list. The JDB -trackallthreads option will cause JDB

 to automatically enable the Debug Agent's includevirtualthreads option when JDB launches

 an application to debug. However, keep in mind that the Debug Agent may not know about

 any virtual threads that were created before JDB attached to the debugged application.

JDK 21 2023 JDB(1)

Page 5/5

