
Rocky Enterprise Linux 9.2 Manual Pages on command 'javac.1'

$ man javac.1

JAVAC(1) JDK Commands JAVAC(1)

NAME

 javac - read Java declarations and compile them into class files

SYNOPSIS

 javac [options] [sourcefiles-or-classnames]

 options

 Command-line options.

 sourcefiles-or-classnames

 Source files to be compiled (for example, Shape.java) or the names of previously

 compiled classes to be processed for annotations (for example, geometry.MyShape).

DESCRIPTION

 The javac command reads source files that contain module, package and type declarations

 written in the Java programming language, and compiles them into class files that run on

 the Java Virtual Machine.

 The javac command can also process annotations in Java source files and classes.

 Source files must have a file name extension of .java. Class files have a file name ex?

 tension of .class. Both source and class files normally have file names that identify the

 contents. For example, a class called Shape would be declared in a source file called

 Shape.java, and compiled into a class file called Shape.class.

 There are two ways to specify source files to javac:

 ? For a small number of source files, you can list their file names on the command line.

 ? For a large number of source files, you can use the @filename option on the command line

 to specify an argument file that lists their file names. See Standard Options for a de? Page 1/37

 scription of the option and Command-Line Argument Files for a description of javac argu?

 ment files.

 The order of source files specified on the command line or in an argument file is not im?

 portant. javac will compile the files together, as a group, and will automatically re?

 solve any dependencies between the declarations in the various source files.

 javac expects that source files are arranged in one or more directory hierarchies on the

 file system, described in Arrangement of Source Code.

 To compile a source file, javac needs to find the declaration of every class or interface

 that is used, extended, or implemented by the code in the source file. This lets javac

 check that the code has the right to access those classes and interfaces. Rather than

 specifying the source files of those classes and interfaces explicitly, you can use com?

 mand-line options to tell javac where to search for their source files. If you have com?

 piled those source files previously, you can use options to tell javac where to search for

 the corresponding class files. The options, which all have names ending in "path", are

 described in Standard Options, and further described in Configuring a Compilation and

 Searching for Module, Package and Type Declarations.

 By default, javac compiles each source file to a class file in the same directory as the

 source file. However, it is recommended to specify a separate destination directory with

 the -d option.

 Command-line options and environment variables also control how javac performs various

 tasks:

 ? Compiling code to run on earlier releases of the JDK.

 ? Compiling code to run under a debugger.

 ? Checking for stylistic issues in Java source code.

 ? Checking for problems in javadoc comments (/** ... */).

 ? Processing annotations in source files and class files.

 ? Upgrading and patching modules in the compile-time environment.

 javac supports Compiling for Earlier Releases Of The Platform and can also be invoked from

 Java code using one of a number of APIs

OPTIONS

 javac provides standard options, and extra options that are either non-standard or are for

 advanced use.

 Some options take one or more arguments. If an argument contains spaces or other white? Page 2/37

 space characters, the value should be quoted according to the conventions of the environ?

 ment being used to invoke javac. If the option begins with a single dash (-) the argument

 should either directly follow the option name, or should be separated with a colon (:) or

 whitespace, depending on the option. If the option begins with a double dash (--), the

 argument may be separated either by whitespace or by an equals (=) character with no addi?

 tional whitespace. For example,

 -Aname="J. Duke"

 -proc:only

 -d myDirectory

 --module-version 3

 --module-version=3

 In the following lists of options, an argument of path represents a search path, composed

 of a list of file system locations separated by the platform path separator character,

 (semicolon ; on Windows, or colon : on other systems.) Depending on the option, the file

 system locations may be directories, JAR files or JMOD files.

 Standard Options

 @filename

 Reads options and file names from a file. To shorten or simplify the javac com?

 mand, you can specify one or more files that contain arguments to the javac command

 (except -J options). This lets you to create javac commands of any length on any

 operating system. See Command-Line Argument Files.

 -Akey[=value]

 Specifies options to pass to annotation processors. These options are not inter?

 preted by javac directly, but are made available for use by individual processors.

 The key value should be one or more identifiers separated by a dot (.).

 --add-modules module,module

 Specifies root modules to resolve in addition to the initial modules, or all mod?

 ules on the module path if module is ALL-MODULE-PATH.

 --boot-class-path path or -bootclasspath path

 Overrides the location of the bootstrap class files.

 Note: This can only be used when compiling for releases prior to JDK 9. As appli?

 cable, see the descriptions in --release, -source, or -target for details. For JDK

 9 or later, see --system. Page 3/37

 --class-path path, -classpath path, or -cp path

 Specifies where to find user class files and annotation processors. This class

 path overrides the user class path in the CLASSPATH environment variable.

 ? If --class-path, -classpath, or -cp are not specified, then the user class path

 is the value of the CLASSPATH environment variable, if that is set, or else the

 current directory.

 ? If not compiling code for modules, if the --source-path or -sourcepath` option is

 not specified, then the user class path is also searched for source files.

 ? If the -processorpath option is not specified, then the class path is also

 searched for annotation processors.

 -d directory

 Sets the destination directory (or class output directory) for class files. If a

 class is part of a package, then javac puts the class file in a subdirectory that

 reflects the module name (if appropriate) and package name. The directory, and any

 necessary subdirectories, will be created if they do not already exist.

 If the -d option is not specified, then javac puts each class file in the same di?

 rectory as the source file from which it was generated.

 Except when compiling code for multiple modules, the contents of the class output

 directory will be organized in a package hierarchy. When compiling code for multi?

 ple modules, the contents of the output directory will be organized in a module hi?

 erarchy, with the contents of each module in a separate subdirectory, each orga?

 nized as a package hierarchy.

 Note: When compiling code for one or more modules, the class output directory will

 automatically be checked when searching for previously compiled classes. When not

 compiling for modules, for backwards compatibility, the directory is not automati?

 cally checked for previously compiled classes, and so it is recommended to specify

 the class output directory as one of the locations on the user class path, using

 the --class-path option or one of its alternate forms.

 -deprecation

 Shows a description of each use or override of a deprecated member or class. With?

 out the -deprecation option, javac shows a summary of the source files that use or

 override deprecated members or classes. The -deprecation option is shorthand for

 -Xlint:deprecation. Page 4/37

 --enable-preview

 Enables preview language features. Used in conjunction with either -source or

 --release.

 -encoding encoding

 Specifies character encoding used by source files, such as EUC-JP and UTF-8. If

 the -encoding option is not specified, then the platform default converter is used.

 -endorseddirs directories

 Overrides the location of the endorsed standards path.

 Note: This can only be used when compiling for releases prior to JDK 9. As appli?

 cable, see the descriptions in --release, -source, or -target for details.

 -extdirs directories

 Overrides the location of the installed extensions. directories is a list of di?

 rectories, separated by the platform path separator (; on Windows, and : other?

 wise). Each JAR file in the specified directories is searched for class files.

 All JAR files found become part of the class path.

 If you are compiling for a release of the platform that supports the Extension

 Mechanism, then this option specifies the directories that contain the extension

 classes. See [Compiling for Other Releases of the Platform].

 Note: This can only be used when compiling for releases prior to JDK 9. As appli?

 cable, see the descriptions in --release, -source, or -target for details.

 -g Generates all debugging information, including local variables. By default, only

 line number and source file information is generated.

 -g:[lines, vars, source]

 Generates only the kinds of debugging information specified by the comma-separated

 list of keywords. Valid keywords are:

 lines Line number debugging information.

 vars Local variable debugging information.

 source Source file debugging information.

 -g:none

 Does not generate debugging information.

 -h directory

 Specifies where to place generated native header files.

 When you specify this option, a native header file is generated for each class that Page 5/37

 contains native methods or that has one or more constants annotated with the ja?

 va.lang.annotation.Native annotation. If the class is part of a package, then the

 compiler puts the native header file in a subdirectory that reflects the module

 name (if appropriate) and package name. The directory, and any necessary subdirec?

 tories, will be created if they do not already exist.

 --help, -help or -?

 Prints a synopsis of the standard options.

 --help-extra or -X

 Prints a synopsis of the set of extra options.

 --help-lint

 Prints the supported keys for the -Xlint option.

 -implicit:[none, class]

 Specifies whether or not to generate class files for implicitly referenced files:

 ? -implicit:class --- Automatically generates class files.

 ? -implicit:none --- Suppresses class file generation.

 If this option is not specified, then the default automatically generates class

 files. In this case, the compiler issues a warning if any class files are generat?

 ed when also doing annotation processing. The warning is not issued when the -im?

 plicit option is explicitly set. See Searching for Module, Package and Type Decla?

 rations.

 -Joption

 Passes option to the runtime system, where option is one of the Java options de?

 scribed on java command. For example, -J-Xms48m sets the startup memory to 48 MB.

 Note: The CLASSPATH environment variable, -classpath option, -bootclasspath option,

 and -extdirs option do not specify the classes used to run javac. Trying to cus?

 tomize the compiler implementation with these options and variables is risky and

 often does not accomplish what you want. If you must customize the compiler imple?

 mentation, then use the -J option to pass options through to the underlying Java

 launcher.

 --limit-modules module,module*

 Limits the universe of observable modules.

 --module module-name (,module-name)* or -m module-name (,module-name)*

 Compiles those source files in the named modules that are newer than the corre? Page 6/37

 sponding files in the output directory.

 --module-path path or -p path

 Specifies where to find application modules.

 --module-source-path module-source-path

 Specifies where to find source files when compiling code in multiple modules. See

 [Compilation Modes] and The Module Source Path Option.

 --module-version version

 Specifies the version of modules that are being compiled.

 -nowarn

 Disables warning messages. This option operates the same as the -Xlint:none op?

 tion.

 -parameters

 Generates metadata for reflection on method parameters. Stores formal parameter

 names of constructors and methods in the generated class file so that the method

 java.lang.reflect.Executable.getParameters from the Reflection API can retrieve

 them.

 -proc:[none, only, full]

 Controls whether annotation processing and compilation are done. -proc:none means

 that compilation takes place without annotation processing. -proc:only means that

 only annotation processing is done, without any subsequent compilation. If this

 option is not used, or -proc:full is specified, annotation processing and compila?

 tion are done.

 -processor class1[,class2,class3...]

 Names of the annotation processors to run. This bypasses the default discovery

 process.

 --processor-module-path path

 Specifies the module path used for finding annotation processors.

 --processor-path path or -processorpath path

 Specifies where to find annotation processors. If this option is not used, then

 the class path is searched for processors.

 -profile profile

 Checks that the API used is available in the specified profile. This option is

 deprecated and may be removed in a future release. Page 7/37

 Note: This can only be used when compiling for releases prior to JDK 9. As appli?

 cable, see the descriptions in --release, -source, or -target for details.

 --release release

 Compiles source code according to the rules of the Java programming language for

 the specified Java SE release, generating class files which target that release.

 Source code is compiled against the combined Java SE and JDK API for the specified

 release.

 The supported values of release are the current Java SE release and a limited num?

 ber of previous releases, detailed in the command-line help.

 For the current release, the Java SE API consists of the java.*, javax.*, and org.*

 packages that are exported by the Java SE modules in the release; the JDK API con?

 sists of the com.* and jdk.* packages that are exported by the JDK modules in the

 release, plus the javax.* packages that are exported by standard, but non-Java SE,

 modules in the release.

 For previous releases, the Java SE API and the JDK API are as defined in that re?

 lease.

 Note: When using --release, you cannot also use the --source/-source or --tar?

 get/-target options.

 Note: When using --release to specify a release that supports the Java Platform

 Module System, the --add-exports option cannot be used to enlarge the set of pack?

 ages exported by the Java SE, JDK, and standard modules in the specified release.

 -s directory

 Specifies the directory used to place the generated source files. If a class is

 part of a package, then the compiler puts the source file in a subdirectory that

 reflects the module name (if appropriate) and package name. The directory, and any

 necessary subdirectories, will be created if they do not already exist.

 Except when compiling code for multiple modules, the contents of the source output

 directory will be organized in a package hierarchy. When compiling code for multi?

 ple modules, the contents of the source output directory will be organized in a

 module hierarchy, with the contents of each module in a separate subdirectory, each

 organized as a package hierarchy.

 --source release or -source release

 Compiles source code according to the rules of the Java programming language for Page 8/37

 the specified Java SE release. The supported values of release are the current Ja?

 va SE release and a limited number of previous releases, detailed in the command-

 line help.

 If the option is not specified, the default is to compile source code according to

 the rules of the Java programming language for the current Java SE release.

 --source-path path or -sourcepath path

 Specifies where to find source files. Except when compiling multiple modules to?

 gether, this is the source code path used to search for class or interface defini?

 tions.

 Note: Classes found through the class path might be recompiled when their source

 files are also found. See Searching for Module, Package and Type Declarations.

 --system jdk | none

 Overrides the location of system modules.

 --target release or -target release

 Generates class files suitable for the specified Java SE release. The supported

 values of release are the current Java SE release and a limited number of previous

 releases, detailed in the command-line help.

 Note: The target release must be equal to or higher than the source release. (See

 --source.)

 --upgrade-module-path path

 Overrides the location of upgradeable modules.

 -verbose

 Outputs messages about what the compiler is doing. Messages include information

 about each class loaded and each source file compiled.

 --version or -version

 Prints version information.

 -Werror

 Terminates compilation when warnings occur.

 Extra Options

 --add-exports module/package=other-module(,other-module)*

 Specifies a package to be considered as exported from its defining module to addi?

 tional modules or to all unnamed modules when the value of other-module is ALL-UN?

 NAMED. Page 9/37

 --add-reads module=other-module(,other-module)*

 Specifies additional modules to be considered as required by a given module.

 --default-module-for-created-files module-name

 Specifies the fallback target module for files created by annotation processors, if

 none is specified or inferred.

 -Djava.endorsed.dirs=dirs

 Overrides the location of the endorsed standards path.

 Note: This can only be used when compiling for releases prior to JDK 9. As appli?

 cable, see the descriptions in --release, -source, or -target for details.

 -Djava.ext.dirs=dirs

 Overrides the location of installed extensions.

 Note: This can only be used when compiling for releases prior to JDK 9. As appli?

 cable, see the descriptions in --release, -source, or -target for details.

 --patch-module module=path

 Overrides or augments a module with classes and resources in JAR files or directo?

 ries.

 -Xbootclasspath:path

 Overrides the location of the bootstrap class files.

 Note: This can only be used when compiling for releases prior to JDK 9. As appli?

 cable, see the descriptions in --release, -source, or -target for details.

 -Xbootclasspath/a:path

 Adds a suffix to the bootstrap class path.

 Note: This can only be used when compiling for releases prior to JDK 9. As appli?

 cable, see the descriptions in --release, -source, or -target for details.

 -Xbootclasspath/p:path

 Adds a prefix to the bootstrap class path.

 Note: This can only be used when compiling for releases prior to JDK 9. As appli?

 cable, see the descriptions in --release, -source, or -target for details.

 -Xdiags:[compact, verbose]

 Selects a diagnostic mode.

 -Xdoclint

 Enables recommended checks for problems in documentation comments.

 -Xdoclint:(all|none|[-]group)[/access] Page 10/37

 Enables or disables specific groups of checks in documentation comments.

 group can have one of the following values: accessibility, html, missing, refer?

 ence, syntax.

 The variable access specifies the minimum visibility level of classes and members

 that the -Xdoclint option checks. It can have one of the following values (in or?

 der of most to least visible): public, protected, package, private.

 The default access level is private.

 When prefixed by doclint:, the group names and all can be used with @SuppressWarn?

 ings to suppress warnings about documentation comments in parts of the code being

 compiled.

 For more information about these groups of checks, see the DocLint section of the

 javadoc command documentation. The -Xdoclint option is disabled by default in the

 javac command.

 For example, the following option checks classes and members (with all groups of

 checks) that have the access level of protected and higher (which includes protect?

 ed and public):

 -Xdoclint:all/protected

 The following option enables all groups of checks for all access levels, except it

 will not check for HTML errors for classes and members that have the access level

 of package and higher (which includes package, protected and public):

 -Xdoclint:all,-html/package

 -Xdoclint/package:[-]packages(,[-]package)*

 Enables or disables checks in specific packages. Each package is either the quali?

 fied name of a package or a package name prefix followed by .*, which expands to

 all sub-packages of the given package. Each package can be prefixed with a hyphen

 (-) to disable checks for a specified package or packages.

 For more information, see the DocLint section of the javadoc command documentation.

 -Xlint Enables all recommended warnings. In this release, enabling all available warnings

 is recommended.

 -Xlint:[-]key(,[-]key)*

 Supplies warnings to enable or disable, separated by comma. Precede a key by a hy?

 phen (-) to disable the specified warning.

 Supported values for key are: Page 11/37

 ? all: Enables all warnings.

 ? auxiliaryclass: Warns about an auxiliary class that is hidden in a source file,

 and is used from other files.

 ? cast: Warns about the use of unnecessary casts.

 ? classfile: Warns about the issues related to classfile contents.

 ? deprecation: Warns about the use of deprecated items.

 ? dep-ann: Warns about the items marked as deprecated in javadoc but without the

 @Deprecated annotation.

 ? divzero: Warns about the division by the constant integer 0.

 ? empty: Warns about an empty statement after if.

 ? exports: Warns about the issues regarding module exports.

 ? fallthrough: Warns about the falling through from one case of a switch statement

 to the next.

 ? finally: Warns about finally clauses that do not terminate normally.

 ? lossy-conversions: Warns about possible lossy conversions in compound assignment.

 ? missing-explicit-ctor: Warns about missing explicit constructors in public and

 protected classes in exported packages.

 ? module: Warns about the module system-related issues.

 ? opens: Warns about the issues related to module opens.

 ? options: Warns about the issues relating to use of command line options.

 ? output-file-clash: Warns if any output file is overwritten during compilation.

 This can occur, for example, on case-insensitive filesystems.

 ? overloads: Warns about the issues related to method overloads.

 ? overrides: Warns about the issues related to method overrides.

 ? path: Warns about the invalid path elements on the command line.

 ? preview: Warns about the use of preview language features.

 ? processing: Warns about the issues related to annotation processing.

 ? rawtypes: Warns about the use of raw types.

 ? removal: Warns about the use of an API that has been marked for removal.

 ? requires-automatic: Warns developers about the use of automatic modules in re?

 quires clauses.

 ? requires-transitive-automatic: Warns about automatic modules in requires transi?

 tive. Page 12/37

 ? serial: Warns about the serializable classes that do not provide a serial version

 ID. Also warns about access to non-public members from a serializable element.

 ? static: Warns about the accessing a static member using an instance.

 ? strictfp: Warns about unnecessary use of the strictfp modifier.

 ? synchronization: Warns about synchronization attempts on instances of value-based

 classes.

 ? text-blocks: Warns about inconsistent white space characters in text block inden?

 tation.

 ? this-escape: Warns about constructors leaking this prior to subclass initializa?

 tion.

 ? try: Warns about the issues relating to the use of try blocks (that is, try-with-

 resources).

 ? unchecked: Warns about the unchecked operations.

 ? varargs: Warns about the potentially unsafe vararg methods.

 ? none: Disables all warnings.

 With the exception of all and none, the keys can be used with the @SuppressWarnings

 annotation to suppress warnings in a part of the source code being compiled.

 See Examples of Using -Xlint keys.

 -Xmaxerrs number

 Sets the maximum number of errors to print.

 -Xmaxwarns number

 Sets the maximum number of warnings to print.

 -Xpkginfo:[always, legacy, nonempty]

 Specifies when and how the javac command generates package-info.class files from

 package-info.java files using one of the following options:

 always Generates a package-info.class file for every package-info.java file. This

 option may be useful if you use a build system such as Ant, which checks

 that each .java file has a corresponding .class file.

 legacy Generates a package-info.class file only if package-info.java contains anno?

 tations. This option does not generate a package-info.class file if pack?

 age-info.java contains only comments.

 Note: A package-info.class file might be generated but be empty if all the

 annotations in the package-info.java file have RetentionPolicy.SOURCE. Page 13/37

 nonempty

 Generates a package-info.class file only if package-info.java contains anno?

 tations with RetentionPolicy.CLASS or RetentionPolicy.RUNTIME.

 -Xplugin:name args

 Specifies the name and optional arguments for a plug-in to be run. If args are

 provided, name and args should be quoted or otherwise escape the whitespace charac?

 ters between the name and all the arguments. For details on the API for a plugin,

 see the API documentation for jdk.compiler/com.sun.source.util.Plugin.

 -Xprefer:[source, newer]

 Specifies which file to read when both a source file and class file are found for

 an implicitly compiled class using one of the following options. See Searching for

 Module, Package and Type Declarations.

 ? -Xprefer:newer: Reads the newer of the source or class files for a type (de?

 fault).

 ? -Xprefer:source : Reads the source file. Use -Xprefer:source when you want to be

 sure that any annotation processors can access annotations declared with a reten?

 tion policy of SOURCE.

 -Xprint

 Prints a textual representation of specified types for debugging purposes. This

 does not perform annotation processing or compilation. The format of the output

 could change.

 -XprintProcessorInfo

 Prints information about which annotations a processor is asked to process.

 -XprintRounds

 Prints information about initial and subsequent annotation processing rounds.

 -Xstdout filename

 Sends compiler messages to the named file. By default, compiler messages go to

 System.err.

ENVIRONMENT VARIABLES

 CLASSPATH

 If the --class-path option or any of its alternate forms are not specified, the class path

 will default to the value of the CLASSPATH environment variable if it is set. However, it

 is recommended that this environment variable should not be set, and that the --class-path Page 14/37

 option should be used to provide an explicit value for the class path when one is re?

 quired.

 JDK_JAVAC_OPTIONS

 The content of the JDK_JAVAC_OPTIONS environment variable, separated by white-spaces ()

 or white-space characters (\n, \t, \r, or \f) is prepended to the command line arguments

 passed to javac as a list of arguments.

 The encoding requirement for the environment variable is the same as the javac command

 line on the system. JDK_JAVAC_OPTIONS environment variable content is treated in the same

 manner as that specified in the command line.

 Single quotes (') or double quotes (") can be used to enclose arguments that contain

 whitespace characters. All content between the open quote and the first matching close

 quote are preserved by simply removing the pair of quotes. In case a matching quote is

 not found, the launcher will abort with an error message. @files are supported as they

 are specified in the command line. However, as in @files, use of a wildcard is not sup?

 ported.

 Examples of quoting arguments containing white spaces:

 export JDK_JAVAC_OPTIONS='@"C:\white spaces\argfile"'

 export JDK_JAVAC_OPTIONS='"@C:\white spaces\argfile"'

 export JDK_JAVAC_OPTIONS='@C:\"white spaces"\argfile'

COMMAND-LINE ARGUMENT FILES

 An argument file can include command-line options and source file names in any combina?

 tion. The arguments within a file can be separated by spaces or new line characters. If

 a file name contains embedded spaces, then put the whole file name in double quotation

 marks.

 File names within an argument file are relative to the current directory, not to the loca?

 tion of the argument file. Wildcards (*) are not allowed in these lists (such as for

 specifying *.java). Use of the at sign (@) to recursively interpret files is not support?

 ed. The -J options are not supported because they're passed to the launcher, which does

 not support argument files.

 When executing the javac command, pass in the path and name of each argument file with the

 at sign (@) leading character. When the javac command encounters an argument beginning

 with the at sign (@), it expands the contents of that file into the argument list.

 Examples of Using javac @filename Page 15/37

 Single Argument File

 You could use a single argument file named argfile to hold all javac arguments:

 javac @argfile

 This argument file could contain the contents of both files shown in the following

 Two Argument Files example.

 Two Argument Files

 You can create two argument files: one for the javac options and the other for the

 source file names. Note that the following lists have no line-continuation charac?

 ters.

 Create a file named options that contains the following:

 Linux and macOS:

 -d classes

 -g

 -sourcepath /java/pubs/ws/1.3/src/share/classes

 Windows:

 -d classes

 -g

 -sourcepath C:\java\pubs\ws\1.3\src\share\classes

 Create a file named sources that contains the following:

 MyClass1.java

 MyClass2.java

 MyClass3.java

 Then, run the javac command as follows:

 javac @options @sources

 Argument Files with Paths

 The argument files can have paths, but any file names inside the files are relative

 to the current working directory (not path1 or path2):

 javac @path1/options @path2/sources

ARRANGEMENT OF SOURCE CODE

 In the Java language, classes and interfaces can be organized into packages, and packages

 can be organized into modules. javac expects that the physical arrangement of source

 files in directories of the file system will mirror the organization of classes into pack?

 ages, and packages into modules. Page 16/37

 It is a widely adopted convention that module names and package names begin with a lower-

 case letter, and that class names begin with an upper-case letter.

 Arrangement of Source Code for a Package

 When classes and interfaces are organized into a package, the package is represented as a

 directory, and any subpackages are represented as subdirectories.

 For example:

 ? The package p is represented as a directory called p.

 ? The package p.q -- that is, the subpackage q of package p -- is represented as the sub?

 directory q of directory p. The directory tree representing package p.q is therefore

 p\q on Windows, and p/q on other systems.

 ? The package p.q.r is represented as the directory tree p\q\r (on Windows) or p/q/r (on

 other systems).

 Within a directory or subdirectory, .java files represent classes and interfaces in the

 corresponding package or subpackage.

 For example:

 ? The class X declared in package p is represented by the file X.java in the p directory.

 ? The class Y declared in package p.q is represented by the file Y.java in the q subdirec?

 tory of directory p.

 ? The class Z declared in package p.q.r is represented by the file Z.java in the r subdi?

 rectory of p\q (on Windows) or p/q (on other systems).

 In some situations, it is convenient to split the code into separate directories, each

 structured as described above, and the aggregate list of directories specified to javac.

 Arrangement of Source Code for a Module

 In the Java language, a module is a set of packages designed for reuse. In addition to

 .java files for classes and interfaces, each module has a source file called module-in?

 fo.java which:

 1. declares the module's name;

 2. lists the packages exported by the module (to allow reuse by other modules);

 3. lists other modules required by the module (to reuse their exported packages).

 When packages are organized into a module, the module is represented by one or more direc?

 tories representing the packages in the module, one of which contains the module-info.java

 file. It may be convenient, but it is not required, to use a single directory, named af?

 ter the module, to contain the module-info.java file alongside the directory tree which Page 17/37

 represents the packages in the module (i.e., the package hierarchy described above). The

 exact arrangement of source code for a module is typically dictated by the conventions

 adopted by a development environment (IDE) or build system.

 For example:

 ? The module a.b.c may be represented by the directory a.b.c, on all systems.

 ? The module's declaration is represented by the file module-info.java in the a.b.c direc?

 tory.

 ? If the module contains package p.q.r, then the a.b.c directory contains the directory

 tree p\q\r (on Windows) or p/q/r (on other systems).

 The development environment may prescribe some directory hierarchy between the directory

 named for the module and the source files to be read by javac.

 For example:

 ? The module a.b.c may be represented by the directory a.b.c

 ? The module's declaration and the module's packages may be in some subdirectory of a.b.c,

 such as src\main\java (on Windows) or src/main/java (on other systems).

CONFIGURING A COMPILATION

 This section describes how to configure javac to perform a basic compilation.

 See Configuring the Module System for additional details for use when compiling for a re?

 lease of the platform that supports modules.

 Source Files

 ? Specify the source files to be compiled on the command line.

 If there are no compilation errors, the corresponding class files will be placed in the

 output directory.

 Some systems may limit the amount you can put on a command line; to work around those lim?

 its, you can use argument files.

 When compiling code for modules, you can also specify source files indirectly, by using

 the --module or -m option.

 Output Directory

 ? Use the -d option to specify an output directory in which to put the compiled class

 files.

 This will normally be organized in a package hierarchy, unless you are compiling source

 code from multiple modules, in which case it will be organized as a module hierarchy.

 When the compilation has been completed, if you are compiling one or more modules, you can Page 18/37

 place the output directory on the module path for the Java launcher; otherwise, you can

 place the place the output directory on the class path for the Java launcher.

 Precompiled Code

 The code to be compiled may refer to libraries beyond what is provided by the platform.

 If so, you must place these libraries on the class path or module path. If the library

 code is not in a module, place it on the class path; if it is in a module, place it on the

 module path.

 ? Use the --class-path option to specify libraries to be placed on the class path. Loca?

 tions on the class path should be organized in a package hierarchy. You can also use

 alternate forms of the option: -classpath or -cp.

 ? Use the --module-path option to specify libraries to be placed on the module path. Lo?

 cations on the module path should either be modules or directories of modules. You can

 also use an alternate form of the option: -p.

 See Configuring the Module System for details on how to modify the default configuration

 of library modules.

 Note: the options for the class path and module path are not mutually exclusive, although

 it is not common to specify the class path when compiling code for one or more modules.

 Additional Source Files

 The code to be compiled may refer to types in additional source files that are not speci?

 fied on the command line. If so, you must put those source files on either the source

 path or module path. You can only specify one of these options: if you are not compiling

 code for a module, or if you are only compiling code for a single module, use the source

 path; if you are compiling code for multiple modules, use the module source path.

 ? Use the --source-path option to specify the locations of additional source files that

 may be read by javac. Locations on the source path should be organized in a package hi?

 erarchy. You can also use an alternate form of the option: -sourcepath.

 ? Use the --module-source-path option one or more times to specify the location of addi?

 tional source files in different modules that may be read by javac, or when compiling

 source files in multiple modules. You can either specify the locations for each module

 individually, or you can organize the source files so that you can specify the locations

 all together. For more details, see The Module Source Path Option.

 If you want to be able to refer to types in additional source files but do not want them

 to be compiled, use the -implicit option. Page 19/37

 Note: if you are compiling code for multiple modules, you must always specify a module

 source path, and all source files specified on the command line must be in one of the di?

 rectories on the module source path, or in a subdirectory thereof.

 Example of Compiling Multiple Source Files

 This example compiles the Aloha.java, GutenTag.java, Hello.java, and Hi.java source files

 in the greetings package.

 Linux and macOS:

 % javac greetings/*.java

 % ls greetings

 Aloha.class GutenTag.class Hello.class Hi.class

 Aloha.java GutenTag.java Hello.java Hi.java

 Windows:

 C:\>javac greetings*.java

 C:\>dir greetings

 Aloha.class GutenTag.class Hello.class Hi.class

 Aloha.java GutenTag.java Hello.java Hi.java

 Example of Specifying a User Class Path

 After changing one of the source files in the previous example, recompile it:

 Linux and macOS:

 pwd

 /examples

 javac greetings/Hi.java

 Windows:

 C:\>cd

 \examples

 C:\>javac greetings\Hi.java

 Because greetings.Hi refers to other classes in the greetings package, the compiler needs

 to find these other classes. The previous example works because the default user class

 path is the directory that contains the package directory. If you want to recompile this

 file without concern for which directory you are in, then add the examples directory to

 the user class path by setting CLASSPATH. This example uses the -classpath option.

 Linux and macOS:

 javac -classpath /examples /examples/greetings/Hi.java Page 20/37

 Windows:

 C:\>javac -classpath \examples \examples\greetings\Hi.java

 If you change greetings.Hi to use a banner utility, then that utility also needs to be ac?

 cessible through the user class path.

 Linux and macOS:

 javac -classpath /examples:/lib/Banners.jar \

 /examples/greetings/Hi.java

 Windows:

 C:\>javac -classpath \examples;\lib\Banners.jar ^

 \examples\greetings\Hi.java

 To execute a class in the greetings package, the program needs access to the greetings

 package, and to the classes that the greetings classes use.

 Linux and macOS:

 java -classpath /examples:/lib/Banners.jar greetings.Hi

 Windows:

 C:\>java -classpath \examples;\lib\Banners.jar greetings.Hi

CONFIGURING THE MODULE SYSTEM

 If you want to include additional modules in your compilation, use the --add-modules op?

 tion. This may be necessary when you are compiling code that is not in a module, or which

 is in an automatic module, and the code refers to API in the additional modules.

 If you want to restrict the set of modules in your compilation, use the --limit-modules

 option. This may be useful if you want to ensure that the code you are compiling is capa?

 ble of running on a system with a limited set of modules installed.

 If you want to break encapsulation and specify that additional packages should be consid?

 ered as exported from a module, use the --add-exports option. This may be useful when

 performing white-box testing; relying on access to internal API in production code is

 strongly discouraged.

 If you want to specify that additional packages should be considered as required by a mod?

 ule, use the --add-reads option. This may be useful when performing white-box testing;

 relying on access to internal API in production code is strongly discouraged.

 You can patch additional content into any module using the --patch-module option. See

 [Patching a Module] for more details.

SEARCHING FOR MODULE, PACKAGE AND TYPE DECLARATIONS Page 21/37

 To compile a source file, the compiler often needs information about a module or type, but

 the declaration is not in the source files specified on the command line.

 javac needs type information for every class or interface used, extended, or implemented

 in the source file. This includes classes and interfaces not explicitly mentioned in the

 source file, but that provide information through inheritance.

 For example, when you create a subclass of java.awt.Window, you are also using the ances?

 tor classes of Window: java.awt.Container, java.awt.Component, and java.lang.Object.

 When compiling code for a module, the compiler also needs to have available the declara?

 tion of that module.

 A successful search may produce a class file, a source file, or both. If both are found,

 then you can use the -Xprefer option to instruct the compiler which to use.

 If a search finds and uses a source file, then by default javac compiles that source file.

 This behavior can be altered with -implicit.

 The compiler might not discover the need for some type information until after annotation

 processing completes. When the type information is found in a source file and no -implic?

 it option is specified, the compiler gives a warning that the file is being compiled with?

 out being subject to annotation processing. To disable the warning, either specify the

 file on the command line (so that it will be subject to annotation processing) or use the

 -implicit option to specify whether or not class files should be generated for such source

 files.

 The way that javac locates the declarations of those types depends on whether the refer?

 ence exists within code for a module or not.

 Searching Package Oriented Paths

 When searching for a source or class file on a path composed of package oriented loca?

 tions, javac will check each location on the path in turn for the possible presence of the

 file. The first occurrence of a particular file shadows (hides) any subsequent occur?

 rences of like-named files. This shadowing does not affect any search for any files with

 a different name. This can be convenient when searching for source files, which may be

 grouped in different locations, such as shared code, platform-specific code and generated

 code. It can also be useful when injecting alternate versions of a class file into a

 package, to debugging or other instrumentation reasons. But, it can also be dangerous,

 such as when putting incompatible different versions of a library on the class path.

 Searching Module Oriented Paths Page 22/37

 Prior to scanning any module paths for any package or type declarations, javac will lazily

 scan the following paths and locations to determine the modules that will be used in the

 compilation.

 ? The module source path (see the --module-source-path option)

 ? The path for upgradeable modules (see the --upgrade-module-path option)

 ? The system modules (see the --system option)

 ? The user module path (see the --module-path option)

 For any module, the first occurrence of the module during the scan completely shadows

 (hides) any subsequent appearance of a like-named module. While locating the modules,

 javac is able to determine the packages exported by the module and to associate with each

 module a package oriented path for the contents of the module. For any previously com?

 piled module, this path will typically be a single entry for either a directory or a file

 that provides an internal directory-like hierarchy, such as a JAR file. Thus, when

 searching for a type that is in a package that is known to be exported by a module, javac

 can locate the declaration directly and efficiently.

 Searching for the Declaration of a Module

 If the module has been previously compiled, the module declaration is located in a file

 named module-info.class in the root of the package hierarchy for the content of the mod?

 ule.

 If the module is one of those currently being compiled, the module declaration will be ei?

 ther the file named module-info.class in the root of the package hierarchy for the module

 in the class output directory, or the file named module-info.java in one of the locations

 on the source path or one the module source path for the module.

 Searching for the Declaration of a Type When the Reference is not in a Module

 When searching for a type that is referenced in code that is not in a module, javac will

 look in the following places:

 ? The platform classes (or the types in exported packages of the platform modules) (This

 is for compiled class files only.)

 ? Types in exported packages of any modules on the module path, if applicable. (This is

 for compiled class files only.)

 ? Types in packages on the class path and/or source path:

 ? If both are specified, javac looks for compiled class files on the class path and for

 source files on the source path. Page 23/37

 ? If the class path is specified, but not source path, javac looks for both compiled

 class files and source files on the class path.

 ? If the class path is not specified, it defaults to the current directory.

 When looking for a type on the class path and/or source path, if both a compiled class

 file and a source file are found, the most recently modified file will be used by default.

 If the source file is newer, it will be compiled and will may override any previously com?

 piled version of the file. You can use the -Xprefer option to override the default behav?

 ior.

 Searching for the Declaration of a Type When the Reference is in a Module

 When searching for a type that is referenced in code in a module, javac will examine the

 declaration of the enclosing module to determine if the type is in a package that is ex?

 ported from another module that is readable by the enclosing module. If so, javac will

 simply and directly go to the definition of that module to find the definition of the re?

 quired type. Unless the module is another of the modules being compiled, javac will only

 look for compiled class files files. In other words, javac will not look for source files

 in platform modules or modules on the module path.

 If the type being referenced is not in some other readable module, javac will examine the

 module being compiled to try and find the declaration of the type. javac will look for

 the declaration of the type as follows:

 ? Source files specified on the command line or on the source path or module source path.

 ? Previously compiled files in the output directory.

DIRECTORY HIERARCHIES

 javac generally assumes that source files and compiled class files will be organized in a

 file system directory hierarchy or in a type of file that supports in an internal directo?

 ry hierarchy, such as a JAR file. Three different kinds of hierarchy are supported: a

 package hierarchy, a module hierarchy, and a module source hierarchy.

 While javac is fairly relaxed about the organization of source code, beyond the expecta?

 tion that source will be organized in one or package hierarchies, and can generally accom?

 modate organizations prescribed by development environments and build tools, Java tools in

 general, and javac and the Java launcher in particular, are more stringent regarding the

 organization of compiled class files, and will be organized in package hierarchies or mod?

 ule hierarchies, as appropriate.

 The location of these hierarchies are specified to javac with command-line options, whose Page 24/37

 names typically end in "path", like --source-path or --class-path. Also as a general

 rule, path options whose name includes the word module, like --module-path, are used to

 specify module hierarchies, although some module-related path options allow a package hi?

 erarchy to be specified on a per-module basis. All other path options are used to specify

 package hierarchies.

 Package Hierarchy

 In a package hierarchy, directories and subdirectories are used to represent the component

 parts of the package name, with the source file or compiled class file for a type being

 stored as a file with an extension of .java or .class in the most nested directory.

 For example, in a package hierarchy, the source file for a class com.example.MyClass will

 be stored in the file com/example/MyClass.java

 Module Hierarchy

 In a module hierarchy, the first level of directories are named for the modules in the hi?

 erarchy; within each of those directories the contents of the module are organized in

 package hierarchies.

 For example, in a module hierarchy, the compiled class file for a type called com.exam?

 ple.MyClass in a module called my.library will be stored in my.library/com/example/My?

 Class.class.

 The various output directories used by javac (the class output directory, the source out?

 put directory, and native header output directory) will all be organized in a module hier?

 archy when multiple modules are being compiled.

 Module Source Hierarchy

 Although the source for each individual module should always be organized in a package hi?

 erarchy, it may be convenient to group those hierarchies into a module source hierarchy.

 This is similar to a module hierarchy, except that there may be intervening directories

 between the directory for the module and the directory that is the root of the package hi?

 erarchy for the source code of the module.

 For example, in a module source hierarchy, the source file for a type called com.exam?

 ple.MyClass in a module called my.library may be stored in a file such as my.li?

 brary/src/main/java/com/example/MyClass.java.

THE MODULE SOURCE PATH OPTION

 The --module-source-path option has two forms: a module-specific form, in which a package

 path is given for each module containing code to be compiled, and a module-pattern form, Page 25/37

 in which the source path for each module is specified by a pattern. The module-specific

 form is generally simpler to use when only a small number of modules are involved; the

 module-pattern form may be more convenient when the number of modules is large and the

 modules are organized in a regular manner that can be described by a pattern.

 Multiple instances of the --module-source-path option may be given, each one using either

 the module-pattern form or the module-specific form, subject to the following limitations:

 ? the module-pattern form may be used at most once

 ? the module-specific form may be used at most once for any given module

 If the module-specific form is used for any module, the associated search path overrides

 any path that might otherwise have been inferred from the module-pattern form.

 Module-specific form

 The module-specific form allows an explicit search path to be given for any specific mod?

 ule. This form is:

 ? --module-source-path module-name=file-path (path-separator file-path)*

 The path separator character is ; on Windows, and : otherwise.

 Note: this is similar to the form used for the --patch-module option.

 Module-pattern form

 The module-pattern form allows a concise specification of the module source path for any

 number of modules organized in regular manner.

 ? --module-source-path pattern

 The pattern is defined by the following rules, which are applied in order:

 ? The argument is considered to be a series of segments separated by the path separator

 character (; on Windows, and : otherwise).

 ? Each segment containing curly braces of the form

 string1{alt1 (,alt2)* } string2

 is considered to be replaced by a series of segments formed by "expanding" the braces:

 string1 alt1 string2

 string1 alt2 string2

 and so on...

 The braces may be nested.

 This rule is applied for all such usages of braces.

 ? Each segment must have at most one asterisk (*). If a segment does not contain an as?

 terisk, it is considered to be as though the file separator character and an asterisk Page 26/37

 are appended.

 For any module M, the source path for that module is formed from the series of segments

 obtained by substituting the module name M for the asterisk in each segment.

 Note: in this context, the asterisk is just used as a special marker, to denote the po?

 sition in the path of the module name. It should not be confused with the use of * as a

 file name wildcard character, as found on most operating systems.

PATCHING MODULES

 javac allows any content, whether in source or compiled form, to be patched into any mod?

 ule using the --patch-module option. You may want to do this to compile alternative im?

 plementations of a class to be patched at runtime into a JVM, or to inject additional

 classes into the module, such as when testing.

 The form of the option is:

 ? --patch-module module-name=file-path (path-separator file-path)*

 The path separator character is ; on Windows, and : otherwise. The paths given for the

 module must specify the root of a package hierarchy for the contents of the module

 The option may be given at most once for any given module. Any content on the path will

 hide any like-named content later in the path and in the patched module.

 When patching source code into more than one module, the --module-source-path must also be

 used, so that the output directory is organized in a module hierarchy, and capable of

 holding the compiled class files for the modules being compiled.

ANNOTATION PROCESSING

 The javac command provides direct support for annotation processing.

 The API for annotation processors is defined in the javax.annotation.processing and

 javax.lang.model packages and subpackages.

 How Annotation Processing Works

 Unless annotation processing is disabled with the -proc:none option, the compiler searches

 for any annotation processors that are available. The search path can be specified with

 the -processorpath option. If no path is specified, then the user class path is used.

 Processors are located by means of service provider-configuration files named META-

 INF/services/javax.annotation.processing.Processor on the search path. Such files should

 contain the names of any annotation processors to be used, listed one per line. Alterna?

 tively, processors can be specified explicitly, using the -processor option.

 After scanning the source files and classes on the command line to determine what annota? Page 27/37

 tions are present, the compiler queries the processors to determine what annotations they

 process. When a match is found, the processor is called. A processor can claim the anno?

 tations it processes, in which case no further attempt is made to find any processors for

 those annotations. After all of the annotations are claimed, the compiler does not search

 for additional processors.

 If any processors generate new source files, then another round of annotation processing

 occurs: Any newly generated source files are scanned, and the annotations processed as be?

 fore. Any processors called on previous rounds are also called on all subsequent rounds.

 This continues until no new source files are generated.

 After a round occurs where no new source files are generated, the annotation processors

 are called one last time, to give them a chance to complete any remaining work. Finally,

 unless the -proc:only option is used, the compiler compiles the original and all generated

 source files.

 If you use an annotation processor that generates additional source files to be included

 in the compilation, you can specify a default module to be used for the newly generated

 files, for use when a module declaration is not also generated. In this case, use the

 --default-module-for-created-files option.

 Compilation Environment and Runtime Environment.

 The declarations in source files and previously compiled class files are analyzed by javac

 in a compilation environment that is distinct from the runtime environment used to execute

 javac itself. Although there is a deliberate similarity between many javac options and

 like-named options for the Java launcher, such as --class-path, --module-path and so on,

 it is important to understand that in general the javac options just affect the environ?

 ment in which the source files are compiled, and do not affect the operation of javac it?

 self.

 The distinction between the compilation environment and runtime environment is significant

 when it comes to using annotation processors. Although annotations processors process el?

 ements (declarations) that exist in the compilation environment, the annotation processor

 itself is executed in the runtime environment. If an annotation processor has dependen?

 cies on libraries that are not in modules, the libraries can be placed, along with the an?

 notation processor itself, on the processor path. (See the --processor-path option.) If

 the annotation processor and its dependencies are in modules, you should use the processor

 module path instead. (See the --processor-module-path option.) When those are insuffi? Page 28/37

 cient, it may be necessary to provide further configuration of the runtime environment.

 This can be done in two ways:

 1. If javac is invoked from the command line, options can be passed to the underlying run?

 time by prefixing the option with -J.

 2. You can start an instance of a Java Virtual Machine directly and use command line op?

 tions and API to configure an environment in which javac can be invoked via one of its

 APIs.

COMPILING FOR EARLIER RELEASES OF THE PLATFORM

 javac can compile code that is to be used on other releases of the platform, using either

 the --release option, or the --source/-source and --target/-target options, together with

 additional options to specify the platform classes.

 Depending on the desired platform release, there are some restrictions on some of the op?

 tions that can be used.

 ? When compiling for JDK 8 and earlier releases, you cannot use any option that is intend?

 ed for use with the module system. This includes all of the following options:

 ? --module-source-path, --upgrade-module-path, --system, --module-path, --add-modules,

 --add-exports, --add-opens, --add-reads, --limit-modules, --patch-module

 If you use the --source/-source or --target/-target options, you should also set the ap?

 propriate platform classes using the boot class path family of options.

 ? When compiling for JDK 9 and later releases, you cannot use any option that is intended

 to configure the boot class path. This includes all of the following options:

 ? -Xbootclasspath/p:, -Xbootclasspath, -Xbootclasspath/a:, -endorseddirs, -Djava.en?

 dorsed.dirs, -extdirs, -Djava.ext.dirs, -profile

 If you use the --source/-source or --target/-target options, you should also set the ap?

 propriate platform classes using the --system option to give the location of an appro?

 priate installed release of JDK.

 When using the --release option, only the supported documented API for that release may be

 used; you cannot use any options to break encapsulation to access any internal classes.

APIS

 The javac compiler can be invoked using an API in three different ways:

 The Java Compiler API

 This provides the most flexible way to invoke the compiler, including the ability

 to compile source files provided in memory buffers or other non-standard file sys? Page 29/37

 tems.

 The ToolProvider API

 A ToolProvider for javac can be obtained by calling ToolProvider.find?

 First("javac"). This returns an object with the equivalent functionality of the

 command-line tool.

 Note: This API should not be confused with the like-named API in the javax.tools

 package.

 The javac Legacy API

 This API is retained for backward compatibility only. All new code should use ei?

 ther the Java Compiler API or the ToolProvider API.

 Note: All other classes and methods found in a package with names that start with

 com.sun.tools.javac (subpackages of com.sun.tools.javac) are strictly internal and subject

 to change at any time.

EXAMPLES OF USING -XLINT KEYS

 cast Warns about unnecessary and redundant casts, for example:

 String s = (String) "Hello!"

 classfile

 Warns about issues related to class file contents.

 deprecation

 Warns about the use of deprecated items. For example:

 java.util.Date myDate = new java.util.Date();

 int currentDay = myDate.getDay();

 The method java.util.Date.getDay has been deprecated since JDK 1.1.

 dep-ann

 Warns about items that are documented with the @deprecated Javadoc comment, but do

 not have the @Deprecated annotation, for example:

 /**

 * @deprecated As of Java SE 7, replaced by {@link #newMethod()}

 */

 public static void deprecatedMethod() { }

 public static void newMethod() { }

 divzero

 Warns about division by the constant integer 0, for example: Page 30/37

 int divideByZero = 42 / 0;

 empty Warns about empty statements after ifstatements, for example:

 class E {

 void m() {

 if (true) ;

 }

 }

 fallthrough

 Checks the switch blocks for fall-through cases and provides a warning message for

 any that are found. Fall-through cases are cases in a switch block, other than the

 last case in the block, whose code does not include a break statement, allowing

 code execution to fall through from that case to the next case. For example, the

 code following the case 1 label in this switch block does not end with a break

 statement:

 switch (x) {

 case 1:

 System.out.println("1");

 // No break statement here.

 case 2:

 System.out.println("2");

 }

 If the -Xlint:fallthrough option was used when compiling this code, then the com?

 piler emits a warning about possible fall-through into case, with the line number

 of the case in question.

 finally

 Warns about finally clauses that cannot be completed normally, for example:

 public static int m() {

 try {

 throw new NullPointerException();

 } catch (NullPointerException(); {

 System.err.println("Caught NullPointerException.");

 return 1;

 } finally { Page 31/37

 return 0;

 }

 }

 The compiler generates a warning for the finally block in this example. When the

 int method is called, it returns a value of 0. A finally block executes when the

 try block exits. In this example, when control is transferred to the catch block,

 the int method exits. However, the finally block must execute, so it's executed,

 even though control was transferred outside the method.

 options

 Warns about issues that related to the use of command-line options. See Compiling

 for Earlier Releases of the Platform.

 overrides

 Warns about issues related to method overrides. For example, consider the follow?

 ing two classes:

 public class ClassWithVarargsMethod {

 void varargsMethod(String... s) { }

 }

 public class ClassWithOverridingMethod extends ClassWithVarargsMethod {

 @Override

 void varargsMethod(String[] s) { }

 }

 The compiler generates a warning similar to the following:.

 warning: [override] varargsMethod(String[]) in ClassWithOverridingMethod

 overrides varargsMethod(String...) in ClassWithVarargsMethod; overriding

 method is missing '...'

 When the compiler encounters a varargs method, it translates the varargs formal pa?

 rameter into an array. In the method ClassWithVarargsMethod.varargsMethod, the

 compiler translates the varargs formal parameter String... s to the formal parame?

 ter String[] s, an array that matches the formal parameter of the method ClassWith?

 OverridingMethod.varargsMethod. Consequently, this example compiles.

 path Warns about invalid path elements and nonexistent path directories on the command

 line (with regard to the class path, the source path, and other paths). Such warn?

 ings cannot be suppressed with the @SuppressWarnings annotation. For example: Page 32/37

 ? Linux and macOS: javac -Xlint:path -classpath /nonexistentpath Example.java

 ? Windows: javac -Xlint:path -classpath C:\nonexistentpath Example.java

 processing

 Warns about issues related to annotation processing. The compiler generates this

 warning when you have a class that has an annotation, and you use an annotation

 processor that cannot handle that type of annotation. For example, the following

 is a simple annotation processor:

 Source file AnnoProc.java:

 import java.util.*;

 import javax.annotation.processing.*;

 import javax.lang.model.*;

 import javax.lang.model.element.*;

 @SupportedAnnotationTypes("NotAnno")

 public class AnnoProc extends AbstractProcessor {

 public boolean process(Set<? extends TypeElement> elems, RoundEnvironment renv){

 return true;

 }

 public SourceVersion getSupportedSourceVersion() {

 return SourceVersion.latest();

 }

 }

 Source file AnnosWithoutProcessors.java:

 @interface Anno { }

 @Anno

 class AnnosWithoutProcessors { }

 The following commands compile the annotation processor AnnoProc, then run this an?

 notation processor against the source file AnnosWithoutProcessors.java:

 javac AnnoProc.java

 javac -cp . -Xlint:processing -processor AnnoProc -proc:only AnnosWithoutProcessors.java

 When the compiler runs the annotation processor against the source file AnnosWith?

 outProcessors.java, it generates the following warning:

 warning: [processing] No processor claimed any of these annotations: Anno

 To resolve this issue, you can rename the annotation defined and used in the class Page 33/37

 AnnosWithoutProcessors from Anno to NotAnno.

 rawtypes

 Warns about unchecked operations on raw types. The following statement generates a

 rawtypes warning:

 void countElements(List l) { ... }

 The following example does not generate a rawtypes warning:

 void countElements(List<?> l) { ... }

 List is a raw type. However, List<?> is an unbounded wildcard parameterized type.

 Because List is a parameterized interface, always specify its type argument. In

 this example, the List formal argument is specified with an unbounded wildcard (?)

 as its formal type parameter, which means that the countElements method can accept

 any instantiation of the List interface.

 serial Warns about missing serialVersionUID definitions on serializable classes. For ex?

 ample:

 public class PersistentTime implements Serializable

 {

 private Date time;

 public PersistentTime() {

 time = Calendar.getInstance().getTime();

 }

 public Date getTime() {

 return time;

 }

 }

 The compiler generates the following warning:

 warning: [serial] serializable class PersistentTime has no definition of

 serialVersionUID

 If a serializable class does not explicitly declare a field named serialVersionUID,

 then the serialization runtime environment calculates a default serialVersionUID

 value for that class based on various aspects of the class, as described in the Ja?

 va Object Serialization Specification. However, it's strongly recommended that all

 serializable classes explicitly declare serialVersionUID values because the default

 process of computing serialVersionUID values is highly sensitive to class details Page 34/37

 that can vary depending on compiler implementations. As a result, this might cause

 an unexpected InvalidClassExceptions during deserialization. To guarantee a con?

 sistent serialVersionUID value across different Java compiler implementations, a

 serializable class must declare an explicit serialVersionUID value.

 static Warns about issues relating to the use of static variables, for example:

 class XLintStatic {

 static void m1() { }

 void m2() { this.m1(); }

 }

 The compiler generates the following warning:

 warning: [static] static method should be qualified by type name,

 XLintStatic, instead of by an expression

 To resolve this issue, you can call the static method m1 as follows:

 XLintStatic.m1();

 Alternately, you can remove the static keyword from the declaration of the method

 m1.

 this-escape

 Warns about constructors leaking this prior to subclass initialization. For exam?

 ple, this class:

 public class MyClass {

 public MyClass() {

 System.out.println(this.hashCode());

 }

 }

 generates the following warning:

 MyClass.java:3: warning: [this-escape] possible 'this' escape

 before subclass is fully initialized

 System.out.println(this.hashCode());

 ^

 A 'this' escape warning is generated when a constructor does something that might

 result in a subclass method being invoked before the constructor returns. In such

 cases the subclass method would be operating on an incompletely initialized in?

 stance. In the above example, a subclass of MyClass that overrides hashCode() to Page 35/37

 incorporate its own fields would likely produce an incorrect result when invoked as

 shown.

 Warnings are only generated if a subclass could exist that is outside of the cur?

 rent module (or package, if no module) being compiled. So, for example, construc?

 tors in final and non-public classes do not generate warnings.

 try Warns about issues relating to the use of try blocks, including try-with-resources

 statements. For example, a warning is generated for the following statement be?

 cause the resource ac declared in the try block is not used:

 try (AutoCloseable ac = getResource()) { // do nothing}

 unchecked

 Gives more detail for unchecked conversion warnings that are mandated by the Java

 Language Specification, for example:

 List l = new ArrayList<Number>();

 List<String> ls = l; // unchecked warning

 During type erasure, the types ArrayList<Number> and List<String> become ArrayList

 and List, respectively.

 The ls command has the parameterized type List<String>. When the List referenced

 by l is assigned to ls, the compiler generates an unchecked warning. At compile

 time, the compiler and JVM cannot determine whether l refers to a List<String>

 type. In this case, l does not refer to a List<String> type. As a result, heap

 pollution occurs.

 A heap pollution situation occurs when the List object l, whose static type is

 List<Number>, is assigned to another List object, ls, that has a different static

 type, List<String>. However, the compiler still allows this assignment. It must

 allow this assignment to preserve backward compatibility with releases of Java SE

 that do not support generics. Because of type erasure, List<Number> and

 List<String> both become List. Consequently, the compiler allows the assignment of

 the object l, which has a raw type of List, to the object ls.

 varargs

 Warns about unsafe use of variable arguments (varargs) methods, in particular,

 those that contain non-reifiable arguments, for example:

 public class ArrayBuilder {

 public static <T> void addToList (List<T> listArg, T... elements) { Page 36/37

 for (T x : elements) {

 listArg.add(x);

 }

 }

 }

 A non-reifiable type is a type whose type information is not fully available at

 runtime.

 The compiler generates the following warning for the definition of the method Ar?

 rayBuilder.addToList:

 warning: [varargs] Possible heap pollution from parameterized vararg type T

 When the compiler encounters a varargs method, it translates the varargs formal pa?

 rameter into an array. However, the Java programming language does not permit the

 creation of arrays of parameterized types. In the method ArrayBuilder.addToList,

 the compiler translates the varargs formal parameter T... elements to the formal

 parameter T[] elements, an array. However, because of type erasure, the compiler

 converts the varargs formal parameter to Object[] elements. Consequently, there's

 a possibility of heap pollution.

JDK 21 2023 JAVAC(1)

Page 37/37

