
Rocky Enterprise Linux 9.2 Manual Pages on command 'ipv6.7'

$ man ipv6.7

IPV6(7) Linux Programmer's Manual IPV6(7)

NAME

 ipv6 - Linux IPv6 protocol implementation

SYNOPSIS

 #include <sys/socket.h>

 #include <netinet/in.h>

 tcp6_socket = socket(AF_INET6, SOCK_STREAM, 0);

 raw6_socket = socket(AF_INET6, SOCK_RAW, protocol);

 udp6_socket = socket(AF_INET6, SOCK_DGRAM, protocol);

DESCRIPTION

 Linux 2.2 optionally implements the Internet Protocol, version 6. This man page contains

 a description of the IPv6 basic API as implemented by the Linux kernel and glibc 2.1. The

 interface is based on the BSD sockets interface; see socket(7).

 The IPv6 API aims to be mostly compatible with the IPv4 API (see ip(7)). Only differences

 are described in this man page.

 To bind an AF_INET6 socket to any process, the local address should be copied from the

 in6addr_any variable which has in6_addr type. In static initializations, IN6ADDR_ANY_INIT

 may also be used, which expands to a constant expression. Both of them are in network

 byte order.

 The IPv6 loopback address (::1) is available in the global in6addr_loopback variable. For

 initializations, IN6ADDR_LOOPBACK_INIT should be used.

 IPv4 connections can be handled with the v6 API by using the v4-mapped-on-v6 address type;

 thus a program needs to support only this API type to support both protocols. This is Page 1/5

 handled transparently by the address handling functions in the C library.

 IPv4 and IPv6 share the local port space. When you get an IPv4 connection or packet to an

 IPv6 socket, its source address will be mapped to v6 and it will be mapped to v6.

 Address format

 struct sockaddr_in6 {

 sa_family_t sin6_family; /* AF_INET6 */

 in_port_t sin6_port; /* port number */

 uint32_t sin6_flowinfo; /* IPv6 flow information */

 struct in6_addr sin6_addr; /* IPv6 address */

 uint32_t sin6_scope_id; /* Scope ID (new in 2.4) */

 };

 struct in6_addr {

 unsigned char s6_addr[16]; /* IPv6 address */

 };

 sin6_family is always set to AF_INET6; sin6_port is the protocol port (see sin_port in

 ip(7)); sin6_flowinfo is the IPv6 flow identifier; sin6_addr is the 128-bit IPv6 address.

 sin6_scope_id is an ID depending on the scope of the address. It is new in Linux 2.4.

 Linux supports it only for link-local addresses, in that case sin6_scope_id contains the

 interface index (see netdevice(7))

 IPv6 supports several address types: unicast to address a single host, multicast to ad?

 dress a group of hosts, anycast to address the nearest member of a group of hosts (not im?

 plemented in Linux), IPv4-on-IPv6 to address an IPv4 host, and other reserved address

 types.

 The address notation for IPv6 is a group of 8 4-digit hexadecimal numbers, separated with

 a ':'. "::" stands for a string of 0 bits. Special addresses are ::1 for loopback and

 ::FFFF:<IPv4 address> for IPv4-mapped-on-IPv6.

 The port space of IPv6 is shared with IPv4.

 Socket options

 IPv6 supports some protocol-specific socket options that can be set with setsockopt(2) and

 read with getsockopt(2). The socket option level for IPv6 is IPPROTO_IPV6. A boolean in?

 teger flag is zero when it is false, otherwise true.

 IPV6_ADDRFORM

 Turn an AF_INET6 socket into a socket of a different address family. Only AF_INET Page 2/5

 is currently supported for that. It is allowed only for IPv6 sockets that are con?

 nected and bound to a v4-mapped-on-v6 address. The argument is a pointer to an in?

 teger containing AF_INET. This is useful to pass v4-mapped sockets as file de?

 scriptors to programs that don't know how to deal with the IPv6 API.

 IPV6_ADD_MEMBERSHIP, IPV6_DROP_MEMBERSHIP

 Control membership in multicast groups. Argument is a pointer to a struct

 ipv6_mreq.

 IPV6_MTU

 getsockopt(): Retrieve the current known path MTU of the current socket. Valid

 only when the socket has been connected. Returns an integer.

 setsockopt(): Set the MTU to be used for the socket. The MTU is limited by the de?

 vice MTU or the path MTU when path MTU discovery is enabled. Argument is a pointer

 to integer.

 IPV6_MTU_DISCOVER

 Control path-MTU discovery on the socket. See IP_MTU_DISCOVER in ip(7) for de?

 tails.

 IPV6_MULTICAST_HOPS

 Set the multicast hop limit for the socket. Argument is a pointer to an integer.

 -1 in the value means use the route default, otherwise it should be between 0 and

 255.

 IPV6_MULTICAST_IF

 Set the device for outgoing multicast packets on the socket. This is allowed only

 for SOCK_DGRAM and SOCK_RAW socket. The argument is a pointer to an interface in?

 dex (see netdevice(7)) in an integer.

 IPV6_MULTICAST_LOOP

 Control whether the socket sees multicast packets that it has send itself. Argu?

 ment is a pointer to boolean.

 IPV6_RECVPKTINFO (since Linux 2.6.14)

 Set delivery of the IPV6_PKTINFO control message on incoming datagrams. Such con?

 trol messages contain a struct in6_pktinfo, as per RFC 3542. Allowed only for

 SOCK_DGRAM or SOCK_RAW sockets. Argument is a pointer to a boolean value in an in?

 teger.

 IPV6_RTHDR, IPV6_AUTHHDR, IPV6_DSTOPTS, IPV6_HOPOPTS, IPV6_FLOWINFO, IPV6_HOPLIMIT Page 3/5

 Set delivery of control messages for incoming datagrams containing extension head?

 ers from the received packet. IPV6_RTHDR delivers the routing header, IPV6_AUTHHDR

 delivers the authentication header, IPV6_DSTOPTS delivers the destination options,

 IPV6_HOPOPTS delivers the hop options, IPV6_FLOWINFO delivers an integer containing

 the flow ID, IPV6_HOPLIMIT delivers an integer containing the hop count of the

 packet. The control messages have the same type as the socket option. All these

 header options can also be set for outgoing packets by putting the appropriate con?

 trol message into the control buffer of sendmsg(2). Allowed only for SOCK_DGRAM or

 SOCK_RAW sockets. Argument is a pointer to a boolean value.

 IPV6_RECVERR

 Control receiving of asynchronous error options. See IP_RECVERR in ip(7) for de?

 tails. Argument is a pointer to boolean.

 IPV6_ROUTER_ALERT

 Pass forwarded packets containing a router alert hop-by-hop option to this socket.

 Allowed only for SOCK_RAW sockets. The tapped packets are not forwarded by the

 kernel, it is the user's responsibility to send them out again. Argument is a

 pointer to an integer. A positive integer indicates a router alert option value to

 intercept. Packets carrying a router alert option with a value field containing

 this integer will be delivered to the socket. A negative integer disables delivery

 of packets with router alert options to this socket.

 IPV6_UNICAST_HOPS

 Set the unicast hop limit for the socket. Argument is a pointer to an integer. -1

 in the value means use the route default, otherwise it should be between 0 and 255.

 IPV6_V6ONLY (since Linux 2.4.21 and 2.6)

 If this flag is set to true (nonzero), then the socket is restricted to sending and

 receiving IPv6 packets only. In this case, an IPv4 and an IPv6 application can

 bind to a single port at the same time.

 If this flag is set to false (zero), then the socket can be used to send and re?

 ceive packets to and from an IPv6 address or an IPv4-mapped IPv6 address.

 The argument is a pointer to a boolean value in an integer.

 The default value for this flag is defined by the contents of the file

 /proc/sys/net/ipv6/bindv6only. The default value for that file is 0 (false).

ERRORS Page 4/5

 ENODEV The user tried to bind(2) to a link-local IPv6 address, but the sin6_scope_id in

 the supplied sockaddr_in6 structure is not a valid interface index.

VERSIONS

 Linux 2.4 will break binary compatibility for the sockaddr_in6 for 64-bit hosts by chang?

 ing the alignment of in6_addr and adding an additional sin6_scope_id field. The kernel

 interfaces stay compatible, but a program including sockaddr_in6 or in6_addr into other

 structures may not be. This is not a problem for 32-bit hosts like i386.

 The sin6_flowinfo field is new in Linux 2.4. It is transparently passed/read by the ker?

 nel when the passed address length contains it. Some programs that pass a longer address

 buffer and then check the outgoing address length may break.

NOTES

 The sockaddr_in6 structure is bigger than the generic sockaddr. Programs that assume that

 all address types can be stored safely in a struct sockaddr need to be changed to use

 struct sockaddr_storage for that instead.

 SOL_IP, SOL_IPV6, SOL_ICMPV6, and other SOL_* socket options are nonportable variants of

 IPPROTO_*. See also ip(7).

BUGS

 The IPv6 extended API as in RFC 2292 is currently only partly implemented; although the

 2.2 kernel has near complete support for receiving options, the macros for generating IPv6

 options are missing in glibc 2.1.

 IPSec support for EH and AH headers is missing.

 Flow label management is not complete and not documented here.

 This man page is not complete.

SEE ALSO

 cmsg(3), ip(7)

 RFC 2553: IPv6 BASIC API; Linux tries to be compliant to this. RFC 2460: IPv6 specifica?

 tion.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 IPV6(7)

Page 5/5

