
Rocky Enterprise Linux 9.2 Manual Pages on command 'ip.7'

$ man ip.7

IP(7) Linux Programmer's Manual IP(7)

NAME

 ip - Linux IPv4 protocol implementation

SYNOPSIS

 #include <sys/socket.h>

 #include <netinet/in.h>

 #include <netinet/ip.h> /* superset of previous */

 tcp_socket = socket(AF_INET, SOCK_STREAM, 0);

 udp_socket = socket(AF_INET, SOCK_DGRAM, 0);

 raw_socket = socket(AF_INET, SOCK_RAW, protocol);

DESCRIPTION

 Linux implements the Internet Protocol, version 4, described in RFC 791 and RFC 1122. ip

 contains a level 2 multicasting implementation conforming to RFC 1112. It also contains

 an IP router including a packet filter.

 The programming interface is BSD-sockets compatible. For more information on sockets, see

 socket(7).

 An IP socket is created using socket(2):

 socket(AF_INET, socket_type, protocol);

 Valid socket types include SOCK_STREAM to open a stream socket, SOCK_DGRAM to open a data?

 gram socket, and SOCK_RAW to open a raw(7) socket to access the IP protocol directly.

 protocol is the IP protocol in the IP header to be received or sent. Valid values for

 protocol include:

 ? 0 and IPPROTO_TCP for tcp(7) stream sockets; Page 1/18

 ? 0 and IPPROTO_UDP for udp(7) datagram sockets;

 ? IPPROTO_SCTP for sctp(7) stream sockets; and

 ? IPPROTO_UDPLITE for udplite(7) datagram sockets.

 For SOCK_RAW you may specify a valid IANA IP protocol defined in RFC 1700 assigned num?

 bers.

 When a process wants to receive new incoming packets or connections, it should bind a

 socket to a local interface address using bind(2). In this case, only one IP socket may

 be bound to any given local (address, port) pair. When INADDR_ANY is specified in the

 bind call, the socket will be bound to all local interfaces. When listen(2) is called on

 an unbound socket, the socket is automatically bound to a random free port with the local

 address set to INADDR_ANY. When connect(2) is called on an unbound socket, the socket is

 automatically bound to a random free port or to a usable shared port with the local ad?

 dress set to INADDR_ANY.

 A TCP local socket address that has been bound is unavailable for some time after closing,

 unless the SO_REUSEADDR flag has been set. Care should be taken when using this flag as

 it makes TCP less reliable.

 Address format

 An IP socket address is defined as a combination of an IP interface address and a 16-bit

 port number. The basic IP protocol does not supply port numbers, they are implemented by

 higher level protocols like udp(7) and tcp(7). On raw sockets sin_port is set to the IP

 protocol.

 struct sockaddr_in {

 sa_family_t sin_family; /* address family: AF_INET */

 in_port_t sin_port; /* port in network byte order */

 struct in_addr sin_addr; /* internet address */

 };

 /* Internet address. */

 struct in_addr {

 uint32_t s_addr; /* address in network byte order */

 };

 sin_family is always set to AF_INET. This is required; in Linux 2.2 most networking func?

 tions return EINVAL when this setting is missing. sin_port contains the port in network

 byte order. The port numbers below 1024 are called privileged ports (or sometimes: re? Page 2/18

 served ports). Only a privileged process (on Linux: a process that has the

 CAP_NET_BIND_SERVICE capability in the user namespace governing its network namespace) may

 bind(2) to these sockets. Note that the raw IPv4 protocol as such has no concept of a

 port, they are implemented only by higher protocols like tcp(7) and udp(7).

 sin_addr is the IP host address. The s_addr member of struct in_addr contains the host

 interface address in network byte order. in_addr should be assigned one of the INADDR_*

 values (e.g., INADDR_LOOPBACK) using htonl(3) or set using the inet_aton(3), inet_addr(3),

 inet_makeaddr(3) library functions or directly with the name resolver (see gethostby?

 name(3)).

 IPv4 addresses are divided into unicast, broadcast, and multicast addresses. Unicast ad?

 dresses specify a single interface of a host, broadcast addresses specify all hosts on a

 network, and multicast addresses address all hosts in a multicast group. Datagrams to

 broadcast addresses can be sent or received only when the SO_BROADCAST socket flag is set.

 In the current implementation, connection-oriented sockets are allowed to use only unicast

 addresses.

 Note that the address and the port are always stored in network byte order. In particu?

 lar, this means that you need to call htons(3) on the number that is assigned to a port.

 All address/port manipulation functions in the standard library work in network byte or?

 der.

 There are several special addresses: INADDR_LOOPBACK (127.0.0.1) always refers to the lo?

 cal host via the loopback device; INADDR_ANY (0.0.0.0) means any address for binding; IN?

 ADDR_BROADCAST (255.255.255.255) means any host and has the same effect on bind as IN?

 ADDR_ANY for historical reasons.

 Socket options

 IP supports some protocol-specific socket options that can be set with setsockopt(2) and

 read with getsockopt(2). The socket option level for IP is IPPROTO_IP. A boolean integer

 flag is zero when it is false, otherwise true.

 When an invalid socket option is specified, getsockopt(2) and setsockopt(2) fail with the

 error ENOPROTOOPT.

 IP_ADD_MEMBERSHIP (since Linux 1.2)

 Join a multicast group. Argument is an ip_mreqn structure.

 struct ip_mreqn {

 struct in_addr imr_multiaddr; /* IP multicast group Page 3/18

 address */

 struct in_addr imr_address; /* IP address of local

 interface */

 int imr_ifindex; /* interface index */

 };

 imr_multiaddr contains the address of the multicast group the application wants to join or

 leave. It must be a valid multicast address (or setsockopt(2) fails with the error EIN?

 VAL). imr_address is the address of the local interface with which the system should join

 the multicast group; if it is equal to INADDR_ANY, an appropriate interface is chosen by

 the system. imr_ifindex is the interface index of the interface that should join/leave

 the imr_multiaddr group, or 0 to indicate any interface.

 The ip_mreqn structure is available only since Linux 2.2. For compatibility, the

 old ip_mreq structure (present since Linux 1.2) is still supported; it differs from

 ip_mreqn only by not including the imr_ifindex field. (The kernel determines which

 structure is being passed based on the size passed in optlen.)

 IP_ADD_MEMBERSHIP is valid only for setsockopt(2).

 IP_ADD_SOURCE_MEMBERSHIP (since Linux 2.4.22 / 2.5.68)

 Join a multicast group and allow receiving data only from a specified source. Ar?

 gument is an ip_mreq_source structure.

 struct ip_mreq_source {

 struct in_addr imr_multiaddr; /* IP multicast group

 address */

 struct in_addr imr_interface; /* IP address of local

 interface */

 struct in_addr imr_sourceaddr; /* IP address of

 multicast source */

 };

 The ip_mreq_source structure is similar to ip_mreqn described under IP_ADD_MEMBERSHIP.

 The imr_multiaddr field contains the address of the multicast group the application wants

 to join or leave. The imr_interface field is the address of the local interface with

 which the system should join the multicast group. Finally, the imr_sourceaddr field con?

 tains the address of the source the application wants to receive data from.

 This option can be used multiple times to allow receiving data from more than one Page 4/18

 source.

 IP_BIND_ADDRESS_NO_PORT (since Linux 4.2)

 Inform the kernel to not reserve an ephemeral port when using bind(2) with a port

 number of 0. The port will later be automatically chosen at connect(2) time, in a

 way that allows sharing a source port as long as the 4-tuple is unique.

 IP_BLOCK_SOURCE (since Linux 2.4.22 / 2.5.68)

 Stop receiving multicast data from a specific source in a given group. This is

 valid only after the application has subscribed to the multicast group using either

 IP_ADD_MEMBERSHIP or IP_ADD_SOURCE_MEMBERSHIP.

 Argument is an ip_mreq_source structure as described under IP_ADD_SOURCE_MEMBER?

 SHIP.

 IP_DROP_MEMBERSHIP (since Linux 1.2)

 Leave a multicast group. Argument is an ip_mreqn or ip_mreq structure similar to

 IP_ADD_MEMBERSHIP.

 IP_DROP_SOURCE_MEMBERSHIP (since Linux 2.4.22 / 2.5.68)

 Leave a source-specific group?that is, stop receiving data from a given multicast

 group that come from a given source. If the application has subscribed to multiple

 sources within the same group, data from the remaining sources will still be deliv?

 ered. To stop receiving data from all sources at once, use IP_DROP_MEMBERSHIP.

 Argument is an ip_mreq_source structure as described under IP_ADD_SOURCE_MEMBER?

 SHIP.

 IP_FREEBIND (since Linux 2.4)

 If enabled, this boolean option allows binding to an IP address that is nonlocal or

 does not (yet) exist. This permits listening on a socket, without requiring the

 underlying network interface or the specified dynamic IP address to be up at the

 time that the application is trying to bind to it. This option is the per-socket

 equivalent of the ip_nonlocal_bind /proc interface described below.

 IP_HDRINCL (since Linux 2.0)

 If enabled, the user supplies an IP header in front of the user data. Valid only

 for SOCK_RAW sockets; see raw(7) for more information. When this flag is enabled,

 the values set by IP_OPTIONS, IP_TTL, and IP_TOS are ignored.

 IP_MSFILTER (since Linux 2.4.22 / 2.5.68)

 This option provides access to the advanced full-state filtering API. Argument is Page 5/18

 an ip_msfilter structure.

 struct ip_msfilter {

 struct in_addr imsf_multiaddr; /* IP multicast group

 address */

 struct in_addr imsf_interface; /* IP address of local

 interface */

 uint32_t imsf_fmode; /* Filter-mode */

 uint32_t imsf_numsrc; /* Number of sources in

 the following array */

 struct in_addr imsf_slist[1]; /* Array of source

 addresses */

 };

 There are two macros, MCAST_INCLUDE and MCAST_EXCLUDE, which can be used to specify the

 filtering mode. Additionally, the IP_MSFILTER_SIZE(n) macro exists to determine how much

 memory is needed to store ip_msfilter structure with n sources in the source list.

 For the full description of multicast source filtering refer to RFC 3376.

 IP_MTU (since Linux 2.2)

 Retrieve the current known path MTU of the current socket. Returns an integer.

 IP_MTU is valid only for getsockopt(2) and can be employed only when the socket has

 been connected.

 IP_MTU_DISCOVER (since Linux 2.2)

 Set or receive the Path MTU Discovery setting for a socket. When enabled, Linux

 will perform Path MTU Discovery as defined in RFC 1191 on SOCK_STREAM sockets. For

 non-SOCK_STREAM sockets, IP_PMTUDISC_DO forces the don't-fragment flag to be set on

 all outgoing packets. It is the user's responsibility to packetize the data in

 MTU-sized chunks and to do the retransmits if necessary. The kernel will reject

 (with EMSGSIZE) datagrams that are bigger than the known path MTU. IP_PMTUD?

 ISC_WANT will fragment a datagram if needed according to the path MTU, or will set

 the don't-fragment flag otherwise.

 The system-wide default can be toggled between IP_PMTUDISC_WANT and IP_PMTUD?

 ISC_DONT by writing (respectively, zero and nonzero values) to the

 /proc/sys/net/ipv4/ip_no_pmtu_disc file.

 Path MTU discovery value Meaning Page 6/18

 IP_PMTUDISC_WANT Use per-route settings.

 IP_PMTUDISC_DONT Never do Path MTU Discovery.

 IP_PMTUDISC_DO Always do Path MTU Discovery.

 IP_PMTUDISC_PROBE Set DF but ignore Path MTU.

 When PMTU discovery is enabled, the kernel automatically keeps track of the path

 MTU per destination host. When it is connected to a specific peer with connect(2),

 the currently known path MTU can be retrieved conveniently using the IP_MTU socket

 option (e.g., after an EMSGSIZE error occurred). The path MTU may change over

 time. For connectionless sockets with many destinations, the new MTU for a given

 destination can also be accessed using the error queue (see IP_RECVERR). A new er?

 ror will be queued for every incoming MTU update.

 While MTU discovery is in progress, initial packets from datagram sockets may be

 dropped. Applications using UDP should be aware of this and not take it into ac?

 count for their packet retransmit strategy.

 To bootstrap the path MTU discovery process on unconnected sockets, it is possible

 to start with a big datagram size (headers up to 64 kilobytes long) and let it

 shrink by updates of the path MTU.

 To get an initial estimate of the path MTU, connect a datagram socket to the desti?

 nation address using connect(2) and retrieve the MTU by calling getsockopt(2) with

 the IP_MTU option.

 It is possible to implement RFC 4821 MTU probing with SOCK_DGRAM or SOCK_RAW sock?

 ets by setting a value of IP_PMTUDISC_PROBE (available since Linux 2.6.22). This

 is also particularly useful for diagnostic tools such as tracepath(8) that wish to

 deliberately send probe packets larger than the observed Path MTU.

 IP_MULTICAST_ALL (since Linux 2.6.31)

 This option can be used to modify the delivery policy of multicast messages to

 sockets bound to the wildcard INADDR_ANY address. The argument is a boolean inte?

 ger (defaults to 1). If set to 1, the socket will receive messages from all the

 groups that have been joined globally on the whole system. Otherwise, it will de?

 liver messages only from the groups that have been explicitly joined (for example

 via the IP_ADD_MEMBERSHIP option) on this particular socket.

 IP_MULTICAST_IF (since Linux 1.2)

 Set the local device for a multicast socket. The argument for setsockopt(2) is an Page 7/18

 ip_mreqn or (since Linux 3.5) ip_mreq structure similar to IP_ADD_MEMBERSHIP, or an

 in_addr structure. (The kernel determines which structure is being passed based on

 the size passed in optlen.) For getsockopt(2), the argument is an in_addr struc?

 ture.

 IP_MULTICAST_LOOP (since Linux 1.2)

 Set or read a boolean integer argument that determines whether sent multicast pack?

 ets should be looped back to the local sockets.

 IP_MULTICAST_TTL (since Linux 1.2)

 Set or read the time-to-live value of outgoing multicast packets for this socket.

 It is very important for multicast packets to set the smallest TTL possible. The

 default is 1 which means that multicast packets don't leave the local network un?

 less the user program explicitly requests it. Argument is an integer.

 IP_NODEFRAG (since Linux 2.6.36)

 If enabled (argument is nonzero), the reassembly of outgoing packets is disabled in

 the netfilter layer. The argument is an integer.

 This option is valid only for SOCK_RAW sockets.

 IP_OPTIONS (since Linux 2.0)

 Set or get the IP options to be sent with every packet from this socket. The argu?

 ments are a pointer to a memory buffer containing the options and the option

 length. The setsockopt(2) call sets the IP options associated with a socket. The

 maximum option size for IPv4 is 40 bytes. See RFC 791 for the allowed options.

 When the initial connection request packet for a SOCK_STREAM socket contains IP op?

 tions, the IP options will be set automatically to the options from the initial

 packet with routing headers reversed. Incoming packets are not allowed to change

 options after the connection is established. The processing of all incoming source

 routing options is disabled by default and can be enabled by using the ac?

 cept_source_route /proc interface. Other options like timestamps are still han?

 dled. For datagram sockets, IP options can be set only by the local user. Calling

 getsockopt(2) with IP_OPTIONS puts the current IP options used for sending into the

 supplied buffer.

 IP_PASSSEC (since Linux 2.6.17)

 If labeled IPSEC or NetLabel is configured on the sending and receiving hosts, this

 option enables receiving of the security context of the peer socket in an ancillary Page 8/18

 message of type SCM_SECURITY retrieved using recvmsg(2). This option is supported

 only for UDP sockets; for TCP or SCTP sockets, see the description of the SO_PEER?

 SEC option below.

 The value given as an argument to setsockopt(2) and returned as the result of get?

 sockopt(2) is an integer boolean flag.

 The security context returned in the SCM_SECURITY ancillary message is of the same

 format as the one described under the SO_PEERSEC option below.

 Note: the reuse of the SCM_SECURITY message type for the IP_PASSSEC socket option

 was likely a mistake, since other IP control messages use their own numbering

 scheme in the IP namespace and often use the socket option value as the message

 type. There is no conflict currently since the IP option with the same value as

 SCM_SECURITY is IP_HDRINCL and this is never used for a control message type.

 IP_PKTINFO (since Linux 2.2)

 Pass an IP_PKTINFO ancillary message that contains a pktinfo structure that sup?

 plies some information about the incoming packet. This works only for datagram

 oriented sockets. The argument is a flag that tells the socket whether the IP_PKT?

 INFO message should be passed or not. The message itself can be sent/retrieved

 only as a control message with a packet using recvmsg(2) or sendmsg(2).

 struct in_pktinfo {

 unsigned int ipi_ifindex; /* Interface index */

 struct in_addr ipi_spec_dst; /* Local address */

 struct in_addr ipi_addr; /* Header Destination

 address */

 };

 ipi_ifindex is the unique index of the interface the packet was received on.

 ipi_spec_dst is the local address of the packet and ipi_addr is the destination ad?

 dress in the packet header. If IP_PKTINFO is passed to sendmsg(2) and ipi_spec_dst

 is not zero, then it is used as the local source address for the routing table

 lookup and for setting up IP source route options. When ipi_ifindex is not zero,

 the primary local address of the interface specified by the index overwrites

 ipi_spec_dst for the routing table lookup.

 IP_RECVERR (since Linux 2.2)

 Enable extended reliable error message passing. When enabled on a datagram socket, Page 9/18

 all generated errors will be queued in a per-socket error queue. When the user re?

 ceives an error from a socket operation, the errors can be received by calling

 recvmsg(2) with the MSG_ERRQUEUE flag set. The sock_extended_err structure de?

 scribing the error will be passed in an ancillary message with the type IP_RECVERR

 and the level IPPROTO_IP. This is useful for reliable error handling on uncon?

 nected sockets. The received data portion of the error queue contains the error

 packet.

 The IP_RECVERR control message contains a sock_extended_err structure:

 #define SO_EE_ORIGIN_NONE 0

 #define SO_EE_ORIGIN_LOCAL 1

 #define SO_EE_ORIGIN_ICMP 2

 #define SO_EE_ORIGIN_ICMP6 3

 struct sock_extended_err {

 uint32_t ee_errno; /* error number */

 uint8_t ee_origin; /* where the error originated */

 uint8_t ee_type; /* type */

 uint8_t ee_code; /* code */

 uint8_t ee_pad;

 uint32_t ee_info; /* additional information */

 uint32_t ee_data; /* other data */

 /* More data may follow */

 };

 struct sockaddr *SO_EE_OFFENDER(struct sock_extended_err *);

 ee_errno contains the errno number of the queued error. ee_origin is the origin

 code of where the error originated. The other fields are protocol-specific. The

 macro SO_EE_OFFENDER returns a pointer to the address of the network object where

 the error originated from given a pointer to the ancillary message. If this ad?

 dress is not known, the sa_family member of the sockaddr contains AF_UNSPEC and the

 other fields of the sockaddr are undefined.

 IP uses the sock_extended_err structure as follows: ee_origin is set to SO_EE_ORI?

 GIN_ICMP for errors received as an ICMP packet, or SO_EE_ORIGIN_LOCAL for locally

 generated errors. Unknown values should be ignored. ee_type and ee_code are set

 from the type and code fields of the ICMP header. ee_info contains the discovered Page 10/18

 MTU for EMSGSIZE errors. The message also contains the sockaddr_in of the node

 caused the error, which can be accessed with the SO_EE_OFFENDER macro. The

 sin_family field of the SO_EE_OFFENDER address is AF_UNSPEC when the source was un?

 known. When the error originated from the network, all IP options (IP_OPTIONS,

 IP_TTL, etc.) enabled on the socket and contained in the error packet are passed as

 control messages. The payload of the packet causing the error is returned as nor?

 mal payload. Note that TCP has no error queue; MSG_ERRQUEUE is not permitted on

 SOCK_STREAM sockets. IP_RECVERR is valid for TCP, but all errors are returned by

 socket function return or SO_ERROR only.

 For raw sockets, IP_RECVERR enables passing of all received ICMP errors to the ap?

 plication, otherwise errors are reported only on connected sockets

 It sets or retrieves an integer boolean flag. IP_RECVERR defaults to off.

 IP_RECVOPTS (since Linux 2.2)

 Pass all incoming IP options to the user in a IP_OPTIONS control message. The

 routing header and other options are already filled in for the local host. Not

 supported for SOCK_STREAM sockets.

 IP_RECVORIGDSTADDR (since Linux 2.6.29)

 This boolean option enables the IP_ORIGDSTADDR ancillary message in recvmsg(2), in

 which the kernel returns the original destination address of the datagram being re?

 ceived. The ancillary message contains a struct sockaddr_in.

 IP_RECVTOS (since Linux 2.2)

 If enabled, the IP_TOS ancillary message is passed with incoming packets. It con?

 tains a byte which specifies the Type of Service/Precedence field of the packet

 header. Expects a boolean integer flag.

 IP_RECVTTL (since Linux 2.2)

 When this flag is set, pass a IP_TTL control message with the time-to-live field of

 the received packet as a 32 bit integer. Not supported for SOCK_STREAM sockets.

 IP_RETOPTS (since Linux 2.2)

 Identical to IP_RECVOPTS, but returns raw unprocessed options with timestamp and

 route record options not filled in for this hop.

 IP_ROUTER_ALERT (since Linux 2.2)

 Pass all to-be forwarded packets with the IP Router Alert option set to this

 socket. Valid only for raw sockets. This is useful, for instance, for user-space Page 11/18

 RSVP daemons. The tapped packets are not forwarded by the kernel; it is the user's

 responsibility to send them out again. Socket binding is ignored, such packets are

 filtered only by protocol. Expects an integer flag.

 IP_TOS (since Linux 1.0)

 Set or receive the Type-Of-Service (TOS) field that is sent with every IP packet

 originating from this socket. It is used to prioritize packets on the network.

 TOS is a byte. There are some standard TOS flags defined: IPTOS_LOWDELAY to mini?

 mize delays for interactive traffic, IPTOS_THROUGHPUT to optimize throughput, IP?

 TOS_RELIABILITY to optimize for reliability, IPTOS_MINCOST should be used for

 "filler data" where slow transmission doesn't matter. At most one of these TOS

 values can be specified. Other bits are invalid and shall be cleared. Linux sends

 IPTOS_LOWDELAY datagrams first by default, but the exact behavior depends on the

 configured queueing discipline. Some high-priority levels may require superuser

 privileges (the CAP_NET_ADMIN capability).

 IP_TRANSPARENT (since Linux 2.6.24)

 Setting this boolean option enables transparent proxying on this socket. This

 socket option allows the calling application to bind to a nonlocal IP address and

 operate both as a client and a server with the foreign address as the local end?

 point. NOTE: this requires that routing be set up in a way that packets going to

 the foreign address are routed through the TProxy box (i.e., the system hosting the

 application that employs the IP_TRANSPARENT socket option). Enabling this socket

 option requires superuser privileges (the CAP_NET_ADMIN capability).

 TProxy redirection with the iptables TPROXY target also requires that this option

 be set on the redirected socket.

 IP_TTL (since Linux 1.0)

 Set or retrieve the current time-to-live field that is used in every packet sent

 from this socket.

 IP_UNBLOCK_SOURCE (since Linux 2.4.22 / 2.5.68)

 Unblock previously blocked multicast source. Returns EADDRNOTAVAIL when given

 source is not being blocked.

 Argument is an ip_mreq_source structure as described under IP_ADD_SOURCE_MEMBER?

 SHIP.

 SO_PEERSEC (since Linux 2.6.17) Page 12/18

 If labeled IPSEC or NetLabel is configured on both the sending and receiving hosts,

 this read-only socket option returns the security context of the peer socket con?

 nected to this socket. By default, this will be the same as the security context

 of the process that created the peer socket unless overridden by the policy or by a

 process with the required permissions.

 The argument to getsockopt(2) is a pointer to a buffer of the specified length in

 bytes into which the security context string will be copied. If the buffer length

 is less than the length of the security context string, then getsockopt(2) returns

 -1, sets errno to ERANGE, and returns the required length via optlen. The caller

 should allocate at least NAME_MAX bytes for the buffer initially, although this is

 not guaranteed to be sufficient. Resizing the buffer to the returned length and

 retrying may be necessary.

 The security context string may include a terminating null character in the re?

 turned length, but is not guaranteed to do so: a security context "foo" might be

 represented as either {'f','o','o'} of length 3 or {'f','o','o','\0'} of length 4,

 which are considered to be interchangeable. The string is printable, does not con?

 tain non-terminating null characters, and is in an unspecified encoding (in partic?

 ular, it is not guaranteed to be ASCII or UTF-8).

 The use of this option for sockets in the AF_INET address family is supported since

 Linux 2.6.17 for TCP sockets, and since Linux 4.17 for SCTP sockets.

 For SELinux, NetLabel conveys only the MLS portion of the security context of the

 peer across the wire, defaulting the rest of the security context to the values de?

 fined in the policy for the netmsg initial security identifier (SID). However,

 NetLabel can be configured to pass full security contexts over loopback. Labeled

 IPSEC always passes full security contexts as part of establishing the security as?

 sociation (SA) and looks them up based on the association for each packet.

 /proc interfaces

 The IP protocol supports a set of /proc interfaces to configure some global parameters.

 The parameters can be accessed by reading or writing files in the directory

 /proc/sys/net/ipv4/. Interfaces described as Boolean take an integer value, with a non?

 zero value ("true") meaning that the corresponding option is enabled, and a zero value

 ("false") meaning that the option is disabled.

 ip_always_defrag (Boolean; since Linux 2.2.13) Page 13/18

 [New with kernel 2.2.13; in earlier kernel versions this feature was controlled at

 compile time by the CONFIG_IP_ALWAYS_DEFRAG option; this option is not present in

 2.4.x and later]

 When this boolean flag is enabled (not equal 0), incoming fragments (parts of IP

 packets that arose when some host between origin and destination decided that the

 packets were too large and cut them into pieces) will be reassembled (defragmented)

 before being processed, even if they are about to be forwarded.

 Enable only if running either a firewall that is the sole link to your network or a

 transparent proxy; never ever use it for a normal router or host. Otherwise, frag?

 mented communication can be disturbed if the fragments travel over different links.

 Defragmentation also has a large memory and CPU time cost.

 This is automagically turned on when masquerading or transparent proxying are con?

 figured.

 ip_autoconfig (since Linux 2.2 to 2.6.17)

 Not documented.

 ip_default_ttl (integer; default: 64; since Linux 2.2)

 Set the default time-to-live value of outgoing packets. This can be changed per

 socket with the IP_TTL option.

 ip_dynaddr (Boolean; default: disabled; since Linux 2.0.31)

 Enable dynamic socket address and masquerading entry rewriting on interface address

 change. This is useful for dialup interface with changing IP addresses. 0 means

 no rewriting, 1 turns it on and 2 enables verbose mode.

 ip_forward (Boolean; default: disabled; since Linux 1.2)

 Enable IP forwarding with a boolean flag. IP forwarding can be also set on a per-

 interface basis.

 ip_local_port_range (since Linux 2.2)

 This file contains two integers that define the default local port range allocated

 to sockets that are not explicitly bound to a port number?that is, the range used

 for ephemeral ports. An ephemeral port is allocated to a socket in the following

 circumstances:

 * the port number in a socket address is specified as 0 when calling bind(2);

 * listen(2) is called on a stream socket that was not previously bound;

 * connect(2) was called on a socket that was not previously bound; Page 14/18

 * sendto(2) is called on a datagram socket that was not previously bound.

 Allocation of ephemeral ports starts with the first number in ip_local_port_range

 and ends with the second number. If the range of ephemeral ports is exhausted,

 then the relevant system call returns an error (but see BUGS).

 Note that the port range in ip_local_port_range should not conflict with the ports

 used by masquerading (although the case is handled). Also, arbitrary choices may

 cause problems with some firewall packet filters that make assumptions about the

 local ports in use. The first number should be at least greater than 1024, or bet?

 ter, greater than 4096, to avoid clashes with well known ports and to minimize

 firewall problems.

 ip_no_pmtu_disc (Boolean; default: disabled; since Linux 2.2)

 If enabled, don't do Path MTU Discovery for TCP sockets by default. Path MTU dis?

 covery may fail if misconfigured firewalls (that drop all ICMP packets) or miscon?

 figured interfaces (e.g., a point-to-point link where the both ends don't agree on

 the MTU) are on the path. It is better to fix the broken routers on the path than

 to turn off Path MTU Discovery globally, because not doing it incurs a high cost to

 the network.

 ip_nonlocal_bind (Boolean; default: disabled; since Linux 2.4)

 If set, allows processes to bind(2) to nonlocal IP addresses, which can be quite

 useful, but may break some applications.

 ip6frag_time (integer; default: 30)

 Time in seconds to keep an IPv6 fragment in memory.

 ip6frag_secret_interval (integer; default: 600)

 Regeneration interval (in seconds) of the hash secret (or lifetime for the hash se?

 cret) for IPv6 fragments.

 ipfrag_high_thresh (integer), ipfrag_low_thresh (integer)

 If the amount of queued IP fragments reaches ipfrag_high_thresh, the queue is

 pruned down to ipfrag_low_thresh. Contains an integer with the number of bytes.

 neigh/*

 See arp(7).

 Ioctls

 All ioctls described in socket(7) apply to ip.

 Ioctls to configure generic device parameters are described in netdevice(7). Page 15/18

ERRORS

 EACCES The user tried to execute an operation without the necessary permissions. These

 include: sending a packet to a broadcast address without having the SO_BROADCAST

 flag set; sending a packet via a prohibit route; modifying firewall settings with?

 out superuser privileges (the CAP_NET_ADMIN capability); binding to a privileged

 port without superuser privileges (the CAP_NET_BIND_SERVICE capability).

 EADDRINUSE

 Tried to bind to an address already in use.

 EADDRNOTAVAIL

 A nonexistent interface was requested or the requested source address was not lo?

 cal.

 EAGAIN Operation on a nonblocking socket would block.

 EALREADY

 A connection operation on a nonblocking socket is already in progress.

 ECONNABORTED

 A connection was closed during an accept(2).

 EHOSTUNREACH

 No valid routing table entry matches the destination address. This error can be

 caused by an ICMP message from a remote router or for the local routing table.

 EINVAL Invalid argument passed. For send operations this can be caused by sending to a

 blackhole route.

 EISCONN

 connect(2) was called on an already connected socket.

 EMSGSIZE

 Datagram is bigger than an MTU on the path and it cannot be fragmented.

 ENOBUFS, ENOMEM

 Not enough free memory. This often means that the memory allocation is limited by

 the socket buffer limits, not by the system memory, but this is not 100% consis?

 tent.

 ENOENT SIOCGSTAMP was called on a socket where no packet arrived.

 ENOPKG A kernel subsystem was not configured.

 ENOPROTOOPT and EOPNOTSUPP

 Invalid socket option passed. Page 16/18

 ENOTCONN

 The operation is defined only on a connected socket, but the socket wasn't con?

 nected.

 EPERM User doesn't have permission to set high priority, change configuration, or send

 signals to the requested process or group.

 EPIPE The connection was unexpectedly closed or shut down by the other end.

 ESOCKTNOSUPPORT

 The socket is not configured or an unknown socket type was requested.

 Other errors may be generated by the overlaying protocols; see tcp(7), raw(7), udp(7), and

 socket(7).

NOTES

 IP_FREEBIND, IP_MSFILTER, IP_MTU, IP_MTU_DISCOVER, IP_RECVORIGDSTADDR, IP_PASSSEC, IP_PKT?

 INFO, IP_RECVERR, IP_ROUTER_ALERT, and IP_TRANSPARENT are Linux-specific.

 Be very careful with the SO_BROADCAST option - it is not privileged in Linux. It is easy

 to overload the network with careless broadcasts. For new application protocols it is

 better to use a multicast group instead of broadcasting. Broadcasting is discouraged.

 Some other BSD sockets implementations provide IP_RCVDSTADDR and IP_RECVIF socket options

 to get the destination address and the interface of received datagrams. Linux has the

 more general IP_PKTINFO for the same task.

 Some BSD sockets implementations also provide an IP_RECVTTL option, but an ancillary mes?

 sage with type IP_RECVTTL is passed with the incoming packet. This is different from the

 IP_TTL option used in Linux.

 Using the SOL_IP socket options level isn't portable; BSD-based stacks use the IPPROTO_IP

 level.

 INADDR_ANY (0.0.0.0) and INADDR_BROADCAST (255.255.255.255) are byte-order-neutral.

 This means htonl(3) has no effect on them.

 Compatibility

 For compatibility with Linux 2.0, the obsolete socket(AF_INET, SOCK_PACKET, protocol) syn?

 tax is still supported to open a packet(7) socket. This is deprecated and should be re?

 placed by socket(AF_PACKET, SOCK_RAW, protocol) instead. The main difference is the new

 sockaddr_ll address structure for generic link layer information instead of the old sock?

 addr_pkt.

BUGS Page 17/18

 There are too many inconsistent error values.

 The error used to diagnose exhaustion of the ephemeral port range differs across the vari?

 ous system calls (connect(2), bind(2), listen(2), sendto(2)) that can assign ephemeral

 ports.

 The ioctls to configure IP-specific interface options and ARP tables are not described.

 Receiving the original destination address with MSG_ERRQUEUE in msg_name by recvmsg(2)

 does not work in some 2.2 kernels.

SEE ALSO

 recvmsg(2), sendmsg(2), byteorder(3), capabilities(7), icmp(7), ipv6(7), netdevice(7),

 netlink(7), raw(7), socket(7), tcp(7), udp(7), ip(8)

 The kernel source file Documentation/networking/ip-sysctl.txt.

 RFC 791 for the original IP specification. RFC 1122 for the IPv4 host requirements.

 RFC 1812 for the IPv4 router requirements.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 IP(7)

Page 18/18

