
Rocky Enterprise Linux 9.2 Manual Pages on command 'ip-xfrm.8'

$ man ip-xfrm.8

IP-XFRM(8) Linux IP-XFRM(8)

NAME

 ip-xfrm - transform configuration

SYNOPSIS

 ip [OPTIONS] xfrm { COMMAND | help }

 ip xfrm XFRM-OBJECT { COMMAND | help }

 XFRM-OBJECT := state | policy | monitor

 ip xfrm state { add | update } ID [ALGO-LIST] [mode MODE] [mark MARK [mask MASK]]

 [reqid REQID] [seq SEQ] [replay-window SIZE] [replay-seq SEQ] [replay-

 oseq SEQ] [replay-seq-hi SEQ] [replay-oseq-hi SEQ] [flag FLAG-LIST] [sel

 SELECTOR] [LIMIT-LIST] [encap ENCAP] [coa ADDR[/PLEN]] [ctx CTX] [extra-

 flag EXTRA-FLAG-LIST] [output-mark OUTPUT-MARK [mask MASK]] [if_id IF-ID] [

 tfcpad LENGTH]

 ip xfrm state allocspi ID [mode MODE] [mark MARK [mask MASK]] [reqid REQID] [seq

 SEQ] [min SPI max SPI]

 ip xfrm state { delete | get } ID [mark MARK [mask MASK]] Page 1/10

 ip [-4 | -6] xfrm state deleteall [ID] [mode MODE] [reqid REQID] [flag FLAG-LIST

]

 ip [-4 | -6] xfrm state list [ID] [nokeys] [mode MODE] [reqid REQID] [flag

 FLAG-LIST]

 ip xfrm state flush [proto XFRM-PROTO]

 ip xfrm state count

 ID := [src ADDR] [dst ADDR] [proto XFRM-PROTO] [spi SPI]

 XFRM-PROTO := esp | ah | comp | route2 | hao

 ALGO-LIST := [ALGO-LIST] ALGO

 ALGO := { enc | auth } ALGO-NAME ALGO-KEYMAT |

 auth-trunc ALGO-NAME ALGO-KEYMAT ALGO-TRUNC-LEN |

 aead ALGO-NAME ALGO-KEYMAT ALGO-ICV-LEN |

 comp ALGO-NAME

 MODE := transport | tunnel | beet | ro | in_trigger

 FLAG-LIST := [FLAG-LIST] FLAG

 FLAG := noecn | decap-dscp | nopmtudisc | wildrecv | icmp | af-unspec | align4 | esn

 SELECTOR := [src ADDR[/PLEN]] [dst ADDR[/PLEN]] [dev DEV]

 [UPSPEC]

 UPSPEC := proto { PROTO |

 { tcp | udp | sctp | dccp } [sport PORT] [dport PORT] | Page 2/10

 { icmp | ipv6-icmp | mobility-header } [type NUMBER] [code NUMBER] |

 gre [key { DOTTED-QUAD | NUMBER }] }

 LIMIT-LIST := [LIMIT-LIST] limit LIMIT

 LIMIT := { time-soft | time-hard | time-use-soft | time-use-hard } SECONDS |

 { byte-soft | byte-hard } SIZE |

 { packet-soft | packet-hard } COUNT

 ENCAP := { espinudp | espinudp-nonike | espintcp } SPORT DPORT OADDR

 EXTRA-FLAG-LIST := [EXTRA-FLAG-LIST] EXTRA-FLAG

 EXTRA-FLAG := dont-encap-dscp | oseq-may-wrap

 ip xfrm policy { add | update } SELECTOR dir DIR [ctx CTX] [mark MARK [mask MASK]] [

 index INDEX] [ptype PTYPE] [action ACTION] [priority PRIORITY] [flag FLAG-

 LIST] [if_id IF-ID] [LIMIT-LIST] [TMPL-LIST]

 ip xfrm policy { delete | get } { SELECTOR | index INDEX } dir DIR [ctx CTX] [mark MARK

 [mask MASK]] [ptype PTYPE] [if_id IF-ID]

 ip [-4 | -6] xfrm policy { deleteall | list } [nosock] [SELECTOR] [dir DIR] [in?

 dex INDEX] [ptype PTYPE] [action ACTION] [priority PRIORITY] [flag FLAG-

 LIST]

 ip xfrm policy flush [ptype PTYPE]

 ip xfrm policy count

 ip xfrm policy set [hthresh4 LBITS RBITS] [hthresh6 LBITS RBITS]

 SELECTOR := [src ADDR[/PLEN]] [dst ADDR[/PLEN]] [dev DEV] [UPSPEC] Page 3/10

 UPSPEC := proto { PROTO |

 { tcp | udp | sctp | dccp } [sport PORT] [dport PORT] |

 { icmp | ipv6-icmp | mobility-header } [type NUMBER] [code NUMBER] |

 gre [key { DOTTED-QUAD | NUMBER }] }

 DIR := in | out | fwd

 PTYPE := main | sub

 ACTION := allow | block

 FLAG-LIST := [FLAG-LIST] FLAG

 FLAG := localok | icmp

 LIMIT-LIST := [LIMIT-LIST] limit LIMIT

 LIMIT := { time-soft | time-hard | time-use-soft | time-use-hard } SECONDS |

 { byte-soft | byte-hard } SIZE |

 { packet-soft | packet-hard } COUNT

 TMPL-LIST := [TMPL-LIST] tmpl TMPL

 TMPL := ID [mode MODE] [reqid REQID] [level LEVEL]

 ID := [src ADDR] [dst ADDR] [proto XFRM-PROTO] [spi SPI]

 XFRM-PROTO := esp | ah | comp | route2 | hao

 MODE := transport | tunnel | beet | ro | in_trigger

 LEVEL := required | use Page 4/10

 ip xfrm monitor [all-nsid] [nokeys] [all

 | LISTofXFRM-OBJECTS]

 LISTofXFRM-OBJECTS := [LISTofXFRM-OBJECTS] XFRM-OBJECT

 XFRM-OBJECT := acquire | expire | SA | policy | aevent | report

DESCRIPTION

 xfrm is an IP framework for transforming packets (such as encrypting their payloads). This

 framework is used to implement the IPsec protocol suite (with the state object operating

 on the Security Association Database, and the policy object operating on the Security Pol?

 icy Database). It is also used for the IP Payload Compression Protocol and features of Mo?

 bile IPv6.

 ip xfrm state add add new state into xfrm

 ip xfrm state update update existing state in xfrm

 ip xfrm state allocspi allocate an SPI value

 ip xfrm state delete delete existing state in xfrm

 ip xfrm state get get existing state in xfrm

 ip xfrm state deleteall delete all existing state in xfrm

 ip xfrm state list print out the list of existing state in xfrm

 ip xfrm state flush flush all state in xfrm

 ip xfrm state count count all existing state in xfrm

 ID is specified by a source address, destination address, transform protocol XFRM-

 PROTO, and/or Security Parameter Index SPI. (For IP Payload Compression, the Com?

 pression Parameter Index or CPI is used for SPI.)

 XFRM-PROTO

 specifies a transform protocol: IPsec Encapsulating Security Payload (esp), IPsec

 Authentication Header (ah), IP Payload Compression (comp), Mobile IPv6 Type 2 Rout?

 ing Header (route2), or Mobile IPv6 Home Address Option (hao). Page 5/10

 ALGO-LIST

 contains one or more algorithms to use. Each algorithm ALGO is specified by:

 ? the algorithm type: encryption (enc), authentication (auth or auth-trunc),

 authenticated encryption with associated data (aead), or compression (comp)

 ? the algorithm name ALGO-NAME (see below)

 ? (for all except comp) the keying material ALGO-KEYMAT, which may include

 both a key and a salt or nonce value; refer to the corresponding RFC

 ? (for auth-trunc only) the truncation length ALGO-TRUNC-LEN in bits

 ? (for aead only) the Integrity Check Value length ALGO-ICV-LEN in bits

 Encryption algorithms include ecb(cipher_null), cbc(des), cbc(des3_ede),

 cbc(cast5), cbc(blowfish), cbc(aes), cbc(serpent), cbc(camellia), cbc(twofish), and

 rfc3686(ctr(aes)).

 Authentication algorithms include digest_null, hmac(md5), hmac(sha1), hmac(sha256),

 hmac(sha384), hmac(sha512), hmac(rmd160), and xcbc(aes).

 Authenticated encryption with associated data (AEAD) algorithms include

 rfc4106(gcm(aes)), rfc4309(ccm(aes)), and rfc4543(gcm(aes)).

 Compression algorithms include deflate, lzs, and lzjh.

 MODE specifies a mode of operation for the transform protocol. IPsec and IP Payload Com?

 pression modes are transport, tunnel, and (for IPsec ESP only) Bound End-to-End

 Tunnel (beet). Mobile IPv6 modes are route optimization (ro) and inbound trigger

 (in_trigger).

Page 6/10

 FLAG-LIST

 contains one or more of the following optional flags: noecn, decap-dscp, nopmtud?

 isc, wildrecv, icmp, af-unspec, align4, or esn.

 SELECTOR

 selects the traffic that will be controlled by the policy, based on the source ad?

 dress, the destination address, the network device, and/or UPSPEC.

 UPSPEC selects traffic by protocol. For the tcp, udp, sctp, or dccp protocols, the source

 and destination port can optionally be specified. For the icmp, ipv6-icmp, or mo?

 bility-header protocols, the type and code numbers can optionally be specified.

 For the gre protocol, the key can optionally be specified as a dotted-quad or num?

 ber. Other protocols can be selected by name or number PROTO.

 LIMIT-LIST

 sets limits in seconds, bytes, or numbers of packets.

 ENCAP encapsulates packets with protocol espinudp, espinudp-nonike, or espintcp, using

 source port SPORT, destination port DPORT , and original address OADDR.

 MARK used to match xfrm policies and states

 OUTPUT-MARK

 used to set the output mark to influence the routing of the packets emitted by the

 state

 IF-ID xfrm interface identifier used to in both xfrm policies and states

 ip xfrm policy add add a new policy

 ip xfrm policy update update an existing policy

 ip xfrm policy delete delete an existing policy

 ip xfrm policy get get an existing policy

 ip xfrm policy deleteall delete all existing xfrm policies Page 7/10

 ip xfrm policy list print out the list of xfrm policies

 ip xfrm policy flush flush policies

 nosock filter (remove) all socket policies from the output.

 SELECTOR

 selects the traffic that will be controlled by the policy, based on the source ad?

 dress, the destination address, the network device, and/or UPSPEC.

 UPSPEC selects traffic by protocol. For the tcp, udp, sctp, or dccp protocols, the source

 and destination port can optionally be specified. For the icmp, ipv6-icmp, or mo?

 bility-header protocols, the type and code numbers can optionally be specified.

 For the gre protocol, the key can optionally be specified as a dotted-quad or num?

 ber. Other protocols can be selected by name or number PROTO.

 DIR selects the policy direction as in, out, or fwd.

 CTX sets the security context.

 PTYPE can be main (default) or sub.

 ACTION can be allow (default) or block.

 PRIORITY

 is a number that defaults to zero.

 FLAG-LIST

 contains one or both of the following optional flags: local or icmp.

 LIMIT-LIST

 sets limits in seconds, bytes, or numbers of packets.

 TMPL-LIST Page 8/10

 is a template list specified using ID, MODE, REQID, and/or LEVEL.

 ID is specified by a source address, destination address, transform protocol XFRM-PRO?

 TO, and/or Security Parameter Index SPI. (For IP Payload Compression, the Compres?

 sion Parameter Index or CPI is used for SPI.)

 XFRM-PROTO

 specifies a transform protocol: IPsec Encapsulating Security Payload (esp), IPsec

 Authentication Header (ah), IP Payload Compression (comp), Mobile IPv6 Type 2 Rout?

 ing Header (route2), or Mobile IPv6 Home Address Option (hao).

 MODE specifies a mode of operation for the transform protocol. IPsec and IP Payload Com?

 pression modes are transport, tunnel, and (for IPsec ESP only) Bound End-to-End

 Tunnel (beet). Mobile IPv6 modes are route optimization (ro) and inbound trigger

 (in_trigger).

 LEVEL can be required (default) or use.

 ip xfrm policy count count existing policies

 Use one or more -s options to display more details, including policy hash table informa?

 tion.

 ip xfrm policy set configure the policy hash table

 Security policies whose address prefix lengths are greater than or equal policy hash table

 thresholds are hashed. Others are stored in the policy_inexact chained list.

 LBITS specifies the minimum local address prefix length of policies that are stored in

 the Security Policy Database hash table.

 RBITS specifies the minimum remote address prefix length of policies that are stored in

 the Security Policy Database hash table. Page 9/10

 ip xfrm monitor state monitoring for xfrm objects

 The xfrm objects to monitor can be optionally specified.

 If the all-nsid option is set, the program listens to all network namespaces that have a

 nsid assigned into the network namespace were the program is running. A prefix is dis?

 played to show the network namespace where the message originates. Example:

 [nsid 1]Flushed state proto 0

AUTHOR

 Manpage revised by David Ward <david.ward@ll.mit.edu>

 Manpage revised by Christophe Gouault <christophe.gouault@6wind.com>

 Manpage revised by Nicolas Dichtel <nicolas.dichtel@6wind.com>

iproute2 20 Dec 2011 IP-XFRM(8)

Page 10/10

