
Rocky Enterprise Linux 9.2 Manual Pages on command 'ioctl_userfaultfd.2'

$ man ioctl_userfaultfd.2

IOCTL_USERFAULTFD(2) Linux Programmer's Manual IOCTL_USERFAULTFD(2)

NAME

 ioctl_userfaultfd - create a file descriptor for handling page faults in user space

SYNOPSIS

 #include <sys/ioctl.h>

 int ioctl(int fd, int cmd, ...);

DESCRIPTION

 Various ioctl(2) operations can be performed on a userfaultfd object (created by a call to

 userfaultfd(2)) using calls of the form:

 ioctl(fd, cmd, argp);

 In the above, fd is a file descriptor referring to a userfaultfd object, cmd is one of the

 commands listed below, and argp is a pointer to a data structure that is specific to cmd.

 The various ioctl(2) operations are described below. The UFFDIO_API, UFFDIO_REGISTER, and

 UFFDIO_UNREGISTER operations are used to configure userfaultfd behavior. These operations

 allow the caller to choose what features will be enabled and what kinds of events will be

 delivered to the application. The remaining operations are range operations. These oper?

 ations enable the calling application to resolve page-fault events.

 UFFDIO_API

 (Since Linux 4.3.) Enable operation of the userfaultfd and perform API handshake.

 The argp argument is a pointer to a uffdio_api structure, defined as:

 struct uffdio_api {

 __u64 api; /* Requested API version (input) */

 __u64 features; /* Requested features (input/output) */ Page 1/8

 __u64 ioctls; /* Available ioctl() operations (output) */

 };

 The api field denotes the API version requested by the application.

 The kernel verifies that it can support the requested API version, and sets the features

 and ioctls fields to bit masks representing all the available features and the generic

 ioctl(2) operations available.

 For Linux kernel versions before 4.11, the features field must be initialized to zero be?

 fore the call to UFFDIO_API, and zero (i.e., no feature bits) is placed in the features

 field by the kernel upon return from ioctl(2).

 Starting from Linux 4.11, the features field can be used to ask whether particular fea?

 tures are supported and explicitly enable userfaultfd features that are disabled by de?

 fault. The kernel always reports all the available features in the features field.

 To enable userfaultfd features the application should set a bit corresponding to each fea?

 ture it wants to enable in the features field. If the kernel supports all the requested

 features it will enable them. Otherwise it will zero out the returned uffdio_api struc?

 ture and return EINVAL.

 The following feature bits may be set:

 UFFD_FEATURE_EVENT_FORK (since Linux 4.11)

 When this feature is enabled, the userfaultfd objects associated with a parent

 process are duplicated into the child process during fork(2) and a UFFD_EVENT_FORK

 event is delivered to the userfaultfd monitor

 UFFD_FEATURE_EVENT_REMAP (since Linux 4.11)

 If this feature is enabled, when the faulting process invokes mremap(2), the user?

 faultfd monitor will receive an event of type UFFD_EVENT_REMAP.

 UFFD_FEATURE_EVENT_REMOVE (since Linux 4.11)

 If this feature is enabled, when the faulting process calls madvise(2) with the

 MADV_DONTNEED or MADV_REMOVE advice value to free a virtual memory area the user?

 faultfd monitor will receive an event of type UFFD_EVENT_REMOVE.

 UFFD_FEATURE_EVENT_UNMAP (since Linux 4.11)

 If this feature is enabled, when the faulting process unmaps virtual memory either

 explicitly with munmap(2), or implicitly during either mmap(2) or mremap(2). the

 userfaultfd monitor will receive an event of type UFFD_EVENT_UNMAP.

 UFFD_FEATURE_MISSING_HUGETLBFS (since Linux 4.11) Page 2/8

 If this feature bit is set, the kernel supports registering userfaultfd ranges on

 hugetlbfs virtual memory areas

 UFFD_FEATURE_MISSING_SHMEM (since Linux 4.11)

 If this feature bit is set, the kernel supports registering userfaultfd ranges on

 shared memory areas. This includes all kernel shared memory APIs: System V shared

 memory, tmpfs(5), shared mappings of /dev/zero, mmap(2) with the MAP_SHARED flag

 set, memfd_create(2), and so on.

 UFFD_FEATURE_SIGBUS (since Linux 4.14)

 If this feature bit is set, no page-fault events (UFFD_EVENT_PAGEFAULT) will be de?

 livered. Instead, a SIGBUS signal will be sent to the faulting process. Applica?

 tions using this feature will not require the use of a userfaultfd monitor for pro?

 cessing memory accesses to the regions registered with userfaultfd.

 The returned ioctls field can contain the following bits:

 1 << _UFFDIO_API

 The UFFDIO_API operation is supported.

 1 << _UFFDIO_REGISTER

 The UFFDIO_REGISTER operation is supported.

 1 << _UFFDIO_UNREGISTER

 The UFFDIO_UNREGISTER operation is supported.

 This ioctl(2) operation returns 0 on success. On error, -1 is returned and errno is set

 to indicate the cause of the error. Possible errors include:

 EFAULT argp refers to an address that is outside the calling process's accessible address

 space.

 EINVAL The userfaultfd has already been enabled by a previous UFFDIO_API operation.

 EINVAL The API version requested in the api field is not supported by this kernel, or the

 features field passed to the kernel includes feature bits that are not supported by

 the current kernel version.

 UFFDIO_REGISTER

 (Since Linux 4.3.) Register a memory address range with the userfaultfd object. The

 pages in the range must be "compatible".

 Up to Linux kernel 4.11, only private anonymous ranges are compatible for registering with

 UFFDIO_REGISTER.

 Since Linux 4.11, hugetlbfs and shared memory ranges are also compatible with UFFDIO_REG? Page 3/8

 ISTER.

 The argp argument is a pointer to a uffdio_register structure, defined as:

 struct uffdio_range {

 __u64 start; /* Start of range */

 __u64 len; /* Length of range (bytes) */

 };

 struct uffdio_register {

 struct uffdio_range range;

 __u64 mode; /* Desired mode of operation (input) */

 __u64 ioctls; /* Available ioctl() operations (output) */

 };

 The range field defines a memory range starting at start and continuing for len bytes that

 should be handled by the userfaultfd.

 The mode field defines the mode of operation desired for this memory region. The follow?

 ing values may be bitwise ORed to set the userfaultfd mode for the specified range:

 UFFDIO_REGISTER_MODE_MISSING

 Track page faults on missing pages.

 UFFDIO_REGISTER_MODE_WP

 Track page faults on write-protected pages.

 Currently, the only supported mode is UFFDIO_REGISTER_MODE_MISSING.

 If the operation is successful, the kernel modifies the ioctls bit-mask field to indicate

 which ioctl(2) operations are available for the specified range. This returned bit mask

 is as for UFFDIO_API.

 This ioctl(2) operation returns 0 on success. On error, -1 is returned and errno is set

 to indicate the cause of the error. Possible errors include:

 EBUSY A mapping in the specified range is registered with another userfaultfd object.

 EFAULT argp refers to an address that is outside the calling process's accessible address

 space.

 EINVAL An invalid or unsupported bit was specified in the mode field; or the mode field

 was zero.

 EINVAL There is no mapping in the specified address range.

 EINVAL range.start or range.len is not a multiple of the system page size; or, range.len

 is zero; or these fields are otherwise invalid. Page 4/8

 EINVAL There as an incompatible mapping in the specified address range.

 UFFDIO_UNREGISTER

 (Since Linux 4.3.) Unregister a memory address range from userfaultfd. The pages in the

 range must be "compatible" (see the description of UFFDIO_REGISTER.)

 The address range to unregister is specified in the uffdio_range structure pointed to by

 argp.

 This ioctl(2) operation returns 0 on success. On error, -1 is returned and errno is set

 to indicate the cause of the error. Possible errors include:

 EINVAL Either the start or the len field of the ufdio_range structure was not a multiple

 of the system page size; or the len field was zero; or these fields were otherwise

 invalid.

 EINVAL There as an incompatible mapping in the specified address range.

 EINVAL There was no mapping in the specified address range.

 UFFDIO_COPY

 (Since Linux 4.3.) Atomically copy a continuous memory chunk into the userfault regis?

 tered range and optionally wake up the blocked thread. The source and destination ad?

 dresses and the number of bytes to copy are specified by the src, dst, and len fields of

 the uffdio_copy structure pointed to by argp:

 struct uffdio_copy {

 __u64 dst; /* Destination of copy */

 __u64 src; /* Source of copy */

 __u64 len; /* Number of bytes to copy */

 __u64 mode; /* Flags controlling behavior of copy */

 __s64 copy; /* Number of bytes copied, or negated error */

 };

 The following value may be bitwise ORed in mode to change the behavior of the UFFDIO_COPY

 operation:

 UFFDIO_COPY_MODE_DONTWAKE

 Do not wake up the thread that waits for page-fault resolution

 The copy field is used by the kernel to return the number of bytes that was actually

 copied, or an error (a negated errno-style value). If the value returned in copy doesn't

 match the value that was specified in len, the operation fails with the error EAGAIN. The

 copy field is output-only; it is not read by the UFFDIO_COPY operation. Page 5/8

 This ioctl(2) operation returns 0 on success. In this case, the entire area was copied.

 On error, -1 is returned and errno is set to indicate the cause of the error. Possible

 errors include:

 EAGAIN The number of bytes copied (i.e., the value returned in the copy field) does not

 equal the value that was specified in the len field.

 EINVAL Either dst or len was not a multiple of the system page size, or the range speci?

 fied by src and len or dst and len was invalid.

 EINVAL An invalid bit was specified in the mode field.

 ENOENT (since Linux 4.11)

 The faulting process has changed its virtual memory layout simultaneously with an

 outstanding UFFDIO_COPY operation.

 ENOSPC (from Linux 4.11 until Linux 4.13)

 The faulting process has exited at the time of a UFFDIO_COPY operation.

 ESRCH (since Linux 4.13)

 The faulting process has exited at the time of a UFFDIO_COPY operation.

 UFFDIO_ZEROPAGE

 (Since Linux 4.3.) Zero out a memory range registered with userfaultfd.

 The requested range is specified by the range field of the uffdio_zeropage structure

 pointed to by argp:

 struct uffdio_zeropage {

 struct uffdio_range range;

 __u64 mode; /* Flags controlling behavior of copy */

 __s64 zeropage; /* Number of bytes zeroed, or negated error */

 };

 The following value may be bitwise ORed in mode to change the behavior of the UFFDIO_ZE?

 ROPAGE operation:

 UFFDIO_ZEROPAGE_MODE_DONTWAKE

 Do not wake up the thread that waits for page-fault resolution.

 The zeropage field is used by the kernel to return the number of bytes that was actually

 zeroed, or an error in the same manner as UFFDIO_COPY. If the value returned in the ze?

 ropage field doesn't match the value that was specified in range.len, the operation fails

 with the error EAGAIN. The zeropage field is output-only; it is not read by the UFF?

 DIO_ZEROPAGE operation. Page 6/8

 This ioctl(2) operation returns 0 on success. In this case, the entire area was zeroed.

 On error, -1 is returned and errno is set to indicate the cause of the error. Possible

 errors include:

 EAGAIN The number of bytes zeroed (i.e., the value returned in the zeropage field) does

 not equal the value that was specified in the range.len field.

 EINVAL Either range.start or range.len was not a multiple of the system page size; or

 range.len was zero; or the range specified was invalid.

 EINVAL An invalid bit was specified in the mode field.

 ESRCH (since Linux 4.13)

 The faulting process has exited at the time of a UFFDIO_ZEROPAGE operation.

 UFFDIO_WAKE

 (Since Linux 4.3.) Wake up the thread waiting for page-fault resolution on a specified

 memory address range.

 The UFFDIO_WAKE operation is used in conjunction with UFFDIO_COPY and UFFDIO_ZEROPAGE op?

 erations that have the UFFDIO_COPY_MODE_DONTWAKE or UFFDIO_ZEROPAGE_MODE_DONTWAKE bit set

 in the mode field. The userfault monitor can perform several UFFDIO_COPY and UFFDIO_ZE?

 ROPAGE operations in a batch and then explicitly wake up the faulting thread using UFF?

 DIO_WAKE.

 The argp argument is a pointer to a uffdio_range structure (shown above) that specifies

 the address range.

 This ioctl(2) operation returns 0 on success. On error, -1 is returned and errno is set

 to indicate the cause of the error. Possible errors include:

 EINVAL The start or the len field of the ufdio_range structure was not a multiple of the

 system page size; or len was zero; or the specified range was otherwise invalid.

RETURN VALUE

 See descriptions of the individual operations, above.

ERRORS

 See descriptions of the individual operations, above. In addition, the following general

 errors can occur for all of the operations described above:

 EFAULT argp does not point to a valid memory address.

 EINVAL (For all operations except UFFDIO_API.) The userfaultfd object has not yet been

 enabled (via the UFFDIO_API operation).

CONFORMING TO Page 7/8

 These ioctl(2) operations are Linux-specific.

BUGS

 In order to detect available userfault features and enable some subset of those features

 the userfaultfd file descriptor must be closed after the first UFFDIO_API operation that

 queries features availability and reopened before the second UFFDIO_API operation that ac?

 tually enables the desired features.

EXAMPLES

 See userfaultfd(2).

SEE ALSO

 ioctl(2), mmap(2), userfaultfd(2)

 Documentation/admin-guide/mm/userfaultfd.rst in the Linux kernel source tree

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 IOCTL_USERFAULTFD(2)

Page 8/8

