
Rocky Enterprise Linux 9.2 Manual Pages on command 'ioctl_fat.2'

$ man ioctl_fat.2

IOCTL_FAT(2) Linux Programmer's Manual IOCTL_FAT(2)

NAME

 ioctl_fat - manipulating the FAT filesystem

SYNOPSIS

 #include <linux/msdos_fs.h>

 #include <sys/ioctl.h>

 int ioctl(int fd, FAT_IOCTL_GET_ATTRIBUTES, uint32_t *attr);

 int ioctl(int fd, FAT_IOCTL_SET_ATTRIBUTES, uint32_t *attr);

 int ioctl(int fd, FAT_IOCTL_GET_VOLUME_ID, uint32_t *id);

 int ioctl(int fd, VFAT_IOCTL_READDIR_BOTH,

 struct __fat_dirent[2] entry);

 int ioctl(int fd, VFAT_IOCTL_READDIR_SHORT,

 struct __fat_dirent[2] entry);

DESCRIPTION

 The ioctl(2) system call can be used to read and write metadata of FAT filesystems that

 are not accessible using other system calls.

 Reading and setting file attributes

 Files and directories in the FAT filesystem possess an attribute bit mask that can be read

 with FAT_IOCTL_GET_ATTRIBUTES and written with FAT_IOCTL_SET_ATTRIBUTES.

 The fd argument contains a file descriptor for a file or directory. It is sufficient to

 create the file descriptor by calling open(2) with the O_RDONLY flag.

 The attr argument contains a pointer to a bit mask. The bits of the bit mask are:

 ATTR_RO Page 1/9

 This bit specifies that the file or directory is read-only.

 ATTR_HIDDEN

 This bit specifies that the file or directory is hidden.

 ATTR_SYS

 This bit specifies that the file is a system file.

 ATTR_VOLUME

 This bit specifies that the file is a volume label. This attribute is read-only.

 ATTR_DIR

 This bit specifies that this is a directory. This attribute is read-only.

 ATTR_ARCH

 This bit indicates that this file or directory should be archived. It is set when

 a file is created or modified. It is reset by an archiving system.

 The zero value ATTR_NONE can be used to indicate that no attribute bit is set.

 Reading the volume ID

 FAT filesystems are identified by a volume ID. The volume ID can be read with

 FAT_IOCTL_GET_VOLUME_ID.

 The fd argument can be a file descriptor for any file or directory of the filesystem. It

 is sufficient to create the file descriptor by calling open(2) with the O_RDONLY flag.

 The id argument is a pointer to the field that will be filled with the volume ID. Typi?

 cally the volume ID is displayed to the user as a group of two 16-bit fields:

 printf("Volume ID %04x-%04x\n", id >> 16, id & 0xFFFF);

 Reading short filenames of a directory

 A file or directory on a FAT filesystem always has a short filename consisting of up to 8

 capital letters, optionally followed by a period and up to 3 capital letters for the file

 extension. If the actual filename does not fit into this scheme, it is stored as a long

 filename of up to 255 UTF-16 characters.

 The short filenames in a directory can be read with VFAT_IOCTL_READDIR_SHORT.

 VFAT_IOCTL_READDIR_BOTH reads both the short and the long filenames.

 The fd argument must be a file descriptor for a directory. It is sufficient to create the

 file descriptor by calling open(2) with the O_RDONLY flag. The file descriptor can be

 used only once to iterate over the directory entries by calling ioctl(2) repeatedly.

 The entry argument is a two-element array of the following structures:

 struct __fat_dirent { Page 2/9

 long d_ino;

 __kernel_off_t d_off;

 uint32_t short d_reclen;

 char d_name[256];

 };

 The first entry in the array is for the short filename. The second entry is for the long

 filename.

 The d_ino and d_off fields are filled only for long filenames. The d_ino field holds the

 inode number of the directory. The d_off field holds the offset of the file entry in the

 directory. As these values are not available for short filenames, the user code should

 simply ignore them.

 The field d_reclen contains the length of the filename in the field d_name. To keep back?

 ward compatibility, a length of 0 for the short filename signals that the end of the di?

 rectory has been reached. However, the preferred method for detecting the end of the di?

 rectory is to test the ioctl(2) return value. If no long filename exists, field d_reclen

 is set to 0 and d_name is a character string of length 0 for the long filename.

RETURN VALUE

 On error, -1 is returned, and errno is set to indicate the error.

 For VFAT_IOCTL_READDIR_BOTH and VFAT_IOCTL_READDIR_SHORT a return value of 1 signals that

 a new directory entry has been read and a return value of 0 signals that the end of the

 directory has been reached.

ERRORS

 ENOENT This error is returned by VFAT_IOCTL_READDIR_BOTH and VFAT_IOCTL_READDIR_SHORT if

 the file descriptor fd refers to a removed, but still open directory.

 ENOTDIR

 This error is returned by VFAT_IOCTL_READDIR_BOTH and VFAT_IOCTL_READDIR_SHORT if

 the file descriptor fd does not refer to a directory.

 ENOTTY The file descriptor fd does not refer to an object in a FAT filesystem.

 For further error values, see ioctl(2).

VERSIONS

 VFAT_IOCTL_READDIR_BOTH and VFAT_IOCTL_READDIR_SHORT first appeared in Linux 2.0.

 FAT_IOCTL_GET_ATTRIBUTES and FAT_IOCTL_SET_ATTRIBUTES first appeared in Linux 2.6.12.

 FAT_IOCTL_GET_VOLUME_ID was introduced in version 3.11 of the Linux kernel. Page 3/9

CONFORMING TO

 This API is Linux-specific.

EXAMPLES

 Toggling the archive flag

 The following program demonstrates the usage of ioctl(2) to manipulate file attributes.

 The program reads and displays the archive attribute of a file. After inverting the value

 of the attribute, the program reads and displays the attribute again.

 The following was recorded when applying the program for the file /mnt/user/foo:

 # ./toggle_fat_archive_flag /mnt/user/foo

 Archive flag is set

 Toggling archive flag

 Archive flag is not set

 Program source (toggle_fat_archive_flag.c)

 #include <fcntl.h>

 #include <linux/msdos_fs.h>

 #include <stdint.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <sys/ioctl.h>

 #include <unistd.h>

 /*

 * Read file attributes of a file on a FAT filesystem.

 * Output the state of the archive flag.

 */

 static uint32_t

 readattr(int fd)

 {

 uint32_t attr;

 int ret;

 ret = ioctl(fd, FAT_IOCTL_GET_ATTRIBUTES, &attr);

 if (ret == -1) {

 perror("ioctl");

 exit(EXIT_FAILURE); Page 4/9

 }

 if (attr & ATTR_ARCH)

 printf("Archive flag is set\n");

 else

 printf("Archive flag is not set\n");

 return attr;

 }

 int

 main(int argc, char *argv[])

 {

 uint32_t attr;

 int fd;

 int ret;

 if (argc != 2) {

 printf("Usage: %s FILENAME\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 fd = open(argv[1], O_RDONLY);

 if (fd == -1) {

 perror("open");

 exit(EXIT_FAILURE);

 }

 /*

 * Read and display the FAT file attributes.

 */

 attr = readattr(fd);

 /*

 * Invert archive attribute.

 */

 printf("Toggling archive flag\n");

 attr ^= ATTR_ARCH;

 /*

 * Write the changed FAT file attributes. Page 5/9

 */

 ret = ioctl(fd, FAT_IOCTL_SET_ATTRIBUTES, &attr);

 if (ret == -1) {

 perror("ioctl");

 exit(EXIT_FAILURE);

 }

 /*

 * Read and display the FAT file attributes.

 */

 readattr(fd);

 close(fd);

 exit(EXIT_SUCCESS);

 }

 Reading the volume ID

 The following program demonstrates the use of ioctl(2) to display the volume ID of a FAT

 filesystem.

 The following output was recorded when applying the program for directory /mnt/user:

 $./display_fat_volume_id /mnt/user

 Volume ID 6443-6241

 Program source (display_fat_volume_id.c)

 #include <fcntl.h>

 #include <linux/msdos_fs.h>

 #include <stdint.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <sys/ioctl.h>

 #include <unistd.h>

 int

 main(int argc, char *argv[])

 {

 uint32_t id;

 int fd;

 int ret; Page 6/9

 if (argc != 2) {

 printf("Usage: %s FILENAME\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 fd = open(argv[1], O_RDONLY);

 if (fd == -1) {

 perror("open");

 exit(EXIT_FAILURE);

 }

 /*

 * Read volume ID.

 */

 ret = ioctl(fd, FAT_IOCTL_GET_VOLUME_ID, &id);

 if (ret == -1) {

 perror("ioctl");

 exit(EXIT_FAILURE);

 }

 /*

 * Format the output as two groups of 16 bits each.

 */

 printf("Volume ID %04x-%04x\n", id >> 16, id & 0xFFFF);

 close(fd);

 exit(EXIT_SUCCESS);

 }

 Listing a directory

 The following program demonstrates the use of ioctl(2) to list a directory.

 The following was recorded when applying the program to the directory /mnt/user:

 $./fat_dir /mnt/user

 . -> ''

 .. -> ''

 ALONGF~1.TXT -> 'a long filename.txt'

 UPPER.TXT -> ''

 LOWER.TXT -> 'lower.txt' Page 7/9

 Program source

 #include <fcntl.h>

 #include <linux/msdos_fs.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <sys/ioctl.h>

 #include <unistd.h>

 int

 main(int argc, char *argv[])

 {

 struct __fat_dirent entry[2];

 int fd;

 int ret;

 if (argc != 2) {

 printf("Usage: %s DIRECTORY\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 /*

 * Open file descriptor for the directory.

 */

 fd = open(argv[1], O_RDONLY | O_DIRECTORY);

 if (fd == -1) {

 perror("open");

 exit(EXIT_FAILURE);

 }

 for (;;) {

 /*

 * Read next directory entry.

 */

 ret = ioctl(fd, VFAT_IOCTL_READDIR_BOTH, entry);

 /*

 * If an error occurs, the return value is -1.

 * If the end of the directory list has been reached, Page 8/9

 * the return value is 0.

 * For backward compatibility the end of the directory

 * list is also signaled by d_reclen == 0.

 */

 if (ret < 1)

 break;

 /*

 * Write both the short name and the long name.

 */

 printf("%s -> '%s'\n", entry[0].d_name, entry[1].d_name);

 }

 if (ret == -1) {

 perror("VFAT_IOCTL_READDIR_BOTH");

 exit(EXIT_FAILURE);

 }

 /*

 * Close the file descriptor.

 */

 close(fd);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 ioctl(2)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 IOCTL_FAT(2)

Page 9/9

