
Rocky Enterprise Linux 9.2 Manual Pages on command 'inotify.7'

$ man inotify.7

INOTIFY(7) Linux Programmer's Manual INOTIFY(7)

NAME

 inotify - monitoring filesystem events

DESCRIPTION

 The inotify API provides a mechanism for monitoring filesystem events. Inotify can be

 used to monitor individual files, or to monitor directories. When a directory is moni?

 tored, inotify will return events for the directory itself, and for files inside the di?

 rectory.

 The following system calls are used with this API:

 * inotify_init(2) creates an inotify instance and returns a file descriptor referring to

 the inotify instance. The more recent inotify_init1(2) is like inotify_init(2), but

 has a flags argument that provides access to some extra functionality.

 * inotify_add_watch(2) manipulates the "watch list" associated with an inotify instance.

 Each item ("watch") in the watch list specifies the pathname of a file or directory,

 along with some set of events that the kernel should monitor for the file referred to

 by that pathname. inotify_add_watch(2) either creates a new watch item, or modifies an

 existing watch. Each watch has a unique "watch descriptor", an integer returned by in?

 otify_add_watch(2) when the watch is created.

 * When events occur for monitored files and directories, those events are made available

 to the application as structured data that can be read from the inotify file descriptor

 using read(2) (see below).

 * inotify_rm_watch(2) removes an item from an inotify watch list.

 * When all file descriptors referring to an inotify instance have been closed (using Page 1/16

 close(2)), the underlying object and its resources are freed for reuse by the kernel;

 all associated watches are automatically freed.

 With careful programming, an application can use inotify to efficiently monitor and cache

 the state of a set of filesystem objects. However, robust applications should allow for

 the fact that bugs in the monitoring logic or races of the kind described below may leave

 the cache inconsistent with the filesystem state. It is probably wise to do some consis?

 tency checking, and rebuild the cache when inconsistencies are detected.

 Reading events from an inotify file descriptor

 To determine what events have occurred, an application read(2)s from the inotify file de?

 scriptor. If no events have so far occurred, then, assuming a blocking file descriptor,

 read(2) will block until at least one event occurs (unless interrupted by a signal, in

 which case the call fails with the error EINTR; see signal(7)).

 Each successful read(2) returns a buffer containing one or more of the following struc?

 tures:

 struct inotify_event {

 int wd; /* Watch descriptor */

 uint32_t mask; /* Mask describing event */

 uint32_t cookie; /* Unique cookie associating related

 events (for rename(2)) */

 uint32_t len; /* Size of name field */

 char name[]; /* Optional null-terminated name */

 };

 wd identifies the watch for which this event occurs. It is one of the watch descriptors

 returned by a previous call to inotify_add_watch(2).

 mask contains bits that describe the event that occurred (see below).

 cookie is a unique integer that connects related events. Currently, this is used only for

 rename events, and allows the resulting pair of IN_MOVED_FROM and IN_MOVED_TO events to be

 connected by the application. For all other event types, cookie is set to 0.

 The name field is present only when an event is returned for a file inside a watched di?

 rectory; it identifies the filename within the watched directory. This filename is null-

 terminated, and may include further null bytes ('\0') to align subsequent reads to a suit?

 able address boundary.

 The len field counts all of the bytes in name, including the null bytes; the length of Page 2/16

 each inotify_event structure is thus sizeof(struct inotify_event)+len.

 The behavior when the buffer given to read(2) is too small to return information about the

 next event depends on the kernel version: in kernels before 2.6.21, read(2) returns 0;

 since kernel 2.6.21, read(2) fails with the error EINVAL. Specifying a buffer of size

 sizeof(struct inotify_event) + NAME_MAX + 1

 will be sufficient to read at least one event.

 inotify events

 The inotify_add_watch(2) mask argument and the mask field of the inotify_event structure

 returned when read(2)ing an inotify file descriptor are both bit masks identifying inotify

 events. The following bits can be specified in mask when calling inotify_add_watch(2) and

 may be returned in the mask field returned by read(2):

 IN_ACCESS (+)

 File was accessed (e.g., read(2), execve(2)).

 IN_ATTRIB (*)

 Metadata changed?for example, permissions (e.g., chmod(2)), timestamps (e.g.,

 utimensat(2)), extended attributes (setxattr(2)), link count (since Linux

 2.6.25; e.g., for the target of link(2) and for unlink(2)), and user/group ID

 (e.g., chown(2)).

 IN_CLOSE_WRITE (+)

 File opened for writing was closed.

 IN_CLOSE_NOWRITE (*)

 File or directory not opened for writing was closed.

 IN_CREATE (+)

 File/directory created in watched directory (e.g., open(2) O_CREAT, mkdir(2),

 link(2), symlink(2), bind(2) on a UNIX domain socket).

 IN_DELETE (+)

 File/directory deleted from watched directory.

 IN_DELETE_SELF

 Watched file/directory was itself deleted. (This event also occurs if an ob?

 ject is moved to another filesystem, since mv(1) in effect copies the file to

 the other filesystem and then deletes it from the original filesystem.) In ad?

 dition, an IN_IGNORED event will subsequently be generated for the watch de?

 scriptor. Page 3/16

 IN_MODIFY (+)

 File was modified (e.g., write(2), truncate(2)).

 IN_MOVE_SELF

 Watched file/directory was itself moved.

 IN_MOVED_FROM (+)

 Generated for the directory containing the old filename when a file is renamed.

 IN_MOVED_TO (+)

 Generated for the directory containing the new filename when a file is renamed.

 IN_OPEN (*)

 File or directory was opened.

 Inotify monitoring is inode-based: when monitoring a file (but not when monitoring the di?

 rectory containing a file), an event can be generated for activity on any link to the file

 (in the same or a different directory).

 When monitoring a directory:

 * the events marked above with an asterisk (*) can occur both for the directory itself

 and for objects inside the directory; and

 * the events marked with a plus sign (+) occur only for objects inside the directory (not

 for the directory itself).

 Note: when monitoring a directory, events are not generated for the files inside the di?

 rectory when the events are performed via a pathname (i.e., a link) that lies outside the

 monitored directory.

 When events are generated for objects inside a watched directory, the name field in the

 returned inotify_event structure identifies the name of the file within the directory.

 The IN_ALL_EVENTS macro is defined as a bit mask of all of the above events. This macro

 can be used as the mask argument when calling inotify_add_watch(2).

 Two additional convenience macros are defined:

 IN_MOVE

 Equates to IN_MOVED_FROM | IN_MOVED_TO.

 IN_CLOSE

 Equates to IN_CLOSE_WRITE | IN_CLOSE_NOWRITE.

 The following further bits can be specified in mask when calling inotify_add_watch(2):

 IN_DONT_FOLLOW (since Linux 2.6.15)

 Don't dereference pathname if it is a symbolic link. Page 4/16

 IN_EXCL_UNLINK (since Linux 2.6.36)

 By default, when watching events on the children of a directory, events are

 generated for children even after they have been unlinked from the directory.

 This can result in large numbers of uninteresting events for some applications

 (e.g., if watching /tmp, in which many applications create temporary files

 whose names are immediately unlinked). Specifying IN_EXCL_UNLINK changes the

 default behavior, so that events are not generated for children after they have

 been unlinked from the watched directory.

 IN_MASK_ADD

 If a watch instance already exists for the filesystem object corresponding to

 pathname, add (OR) the events in mask to the watch mask (instead of replacing

 the mask); the error EINVAL results if IN_MASK_CREATE is also specified.

 IN_ONESHOT

 Monitor the filesystem object corresponding to pathname for one event, then re?

 move from watch list.

 IN_ONLYDIR (since Linux 2.6.15)

 Watch pathname only if it is a directory; the error ENOTDIR results if pathname

 is not a directory. Using this flag provides an application with a race-free

 way of ensuring that the monitored object is a directory.

 IN_MASK_CREATE (since Linux 4.18)

 Watch pathname only if it does not already have a watch associated with it; the

 error EEXIST results if pathname is already being watched.

 Using this flag provides an application with a way of ensuring that new watches

 do not modify existing ones. This is useful because multiple paths may refer

 to the same inode, and multiple calls to inotify_add_watch(2) without this flag

 may clobber existing watch masks.

 The following bits may be set in the mask field returned by read(2):

 IN_IGNORED

 Watch was removed explicitly (inotify_rm_watch(2)) or automatically (file was

 deleted, or filesystem was unmounted). See also BUGS.

 IN_ISDIR

 Subject of this event is a directory.

 IN_Q_OVERFLOW Page 5/16

 Event queue overflowed (wd is -1 for this event).

 IN_UNMOUNT

 Filesystem containing watched object was unmounted. In addition, an IN_IGNORED

 event will subsequently be generated for the watch descriptor.

 Examples

 Suppose an application is watching the directory dir and the file dir/myfile for all

 events. The examples below show some events that will be generated for these two objects.

 fd = open("dir/myfile", O_RDWR);

 Generates IN_OPEN events for both dir and dir/myfile.

 read(fd, buf, count);

 Generates IN_ACCESS events for both dir and dir/myfile.

 write(fd, buf, count);

 Generates IN_MODIFY events for both dir and dir/myfile.

 fchmod(fd, mode);

 Generates IN_ATTRIB events for both dir and dir/myfile.

 close(fd);

 Generates IN_CLOSE_WRITE events for both dir and dir/myfile.

 Suppose an application is watching the directories dir1 and dir2, and the file dir1/my?

 file. The following examples show some events that may be generated.

 link("dir1/myfile", "dir2/new");

 Generates an IN_ATTRIB event for myfile and an IN_CREATE event for dir2.

 rename("dir1/myfile", "dir2/myfile");

 Generates an IN_MOVED_FROM event for dir1, an IN_MOVED_TO event for dir2, and

 an IN_MOVE_SELF event for myfile. The IN_MOVED_FROM and IN_MOVED_TO events

 will have the same cookie value.

 Suppose that dir1/xx and dir2/yy are (the only) links to the same file, and an application

 is watching dir1, dir2, dir1/xx, and dir2/yy. Executing the following calls in the order

 given below will generate the following events:

 unlink("dir2/yy");

 Generates an IN_ATTRIB event for xx (because its link count changes) and an

 IN_DELETE event for dir2.

 unlink("dir1/xx");

 Generates IN_ATTRIB, IN_DELETE_SELF, and IN_IGNORED events for xx, and an Page 6/16

 IN_DELETE event for dir1.

 Suppose an application is watching the directory dir and (the empty) directory dir/subdir.

 The following examples show some events that may be generated.

 mkdir("dir/new", mode);

 Generates an IN_CREATE | IN_ISDIR event for dir.

 rmdir("dir/subdir");

 Generates IN_DELETE_SELF and IN_IGNORED events for subdir, and an IN_DELETE |

 IN_ISDIR event for dir.

 /proc interfaces

 The following interfaces can be used to limit the amount of kernel memory consumed by ino?

 tify:

 /proc/sys/fs/inotify/max_queued_events

 The value in this file is used when an application calls inotify_init(2) to set an

 upper limit on the number of events that can be queued to the corresponding inotify

 instance. Events in excess of this limit are dropped, but an IN_Q_OVERFLOW event

 is always generated.

 /proc/sys/fs/inotify/max_user_instances

 This specifies an upper limit on the number of inotify instances that can be cre?

 ated per real user ID.

 /proc/sys/fs/inotify/max_user_watches

 This specifies an upper limit on the number of watches that can be created per real

 user ID.

VERSIONS

 Inotify was merged into the 2.6.13 Linux kernel. The required library interfaces were

 added to glibc in version 2.4. (IN_DONT_FOLLOW, IN_MASK_ADD, and IN_ONLYDIR were added in

 glibc version 2.5.)

CONFORMING TO

 The inotify API is Linux-specific.

NOTES

 Inotify file descriptors can be monitored using select(2), poll(2), and epoll(7). When an

 event is available, the file descriptor indicates as readable.

 Since Linux 2.6.25, signal-driven I/O notification is available for inotify file descrip?

 tors; see the discussion of F_SETFL (for setting the O_ASYNC flag), F_SETOWN, and F_SETSIG Page 7/16

 in fcntl(2). The siginfo_t structure (described in sigaction(2)) that is passed to the

 signal handler has the following fields set: si_fd is set to the inotify file descriptor

 number; si_signo is set to the signal number; si_code is set to POLL_IN; and POLLIN is set

 in si_band.

 If successive output inotify events produced on the inotify file descriptor are identical

 (same wd, mask, cookie, and name), then they are coalesced into a single event if the

 older event has not yet been read (but see BUGS). This reduces the amount of kernel mem?

 ory required for the event queue, but also means that an application can't use inotify to

 reliably count file events.

 The events returned by reading from an inotify file descriptor form an ordered queue.

 Thus, for example, it is guaranteed that when renaming from one directory to another,

 events will be produced in the correct order on the inotify file descriptor.

 The set of watch descriptors that is being monitored via an inotify file descriptor can be

 viewed via the entry for the inotify file descriptor in the process's /proc/[pid]/fdinfo

 directory. See proc(5) for further details. The FIONREAD ioctl(2) returns the number of

 bytes available to read from an inotify file descriptor.

 Limitations and caveats

 The inotify API provides no information about the user or process that triggered the ino?

 tify event. In particular, there is no easy way for a process that is monitoring events

 via inotify to distinguish events that it triggers itself from those that are triggered by

 other processes.

 Inotify reports only events that a user-space program triggers through the filesystem API.

 As a result, it does not catch remote events that occur on network filesystems. (Applica?

 tions must fall back to polling the filesystem to catch such events.) Furthermore, vari?

 ous pseudo-filesystems such as /proc, /sys, and /dev/pts are not monitorable with inotify.

 The inotify API does not report file accesses and modifications that may occur because of

 mmap(2), msync(2), and munmap(2).

 The inotify API identifies affected files by filename. However, by the time an applica?

 tion processes an inotify event, the filename may already have been deleted or renamed.

 The inotify API identifies events via watch descriptors. It is the application's respon?

 sibility to cache a mapping (if one is needed) between watch descriptors and pathnames.

 Be aware that directory renamings may affect multiple cached pathnames.

 Inotify monitoring of directories is not recursive: to monitor subdirectories under a di? Page 8/16

 rectory, additional watches must be created. This can take a significant amount time for

 large directory trees.

 If monitoring an entire directory subtree, and a new subdirectory is created in that tree

 or an existing directory is renamed into that tree, be aware that by the time you create a

 watch for the new subdirectory, new files (and subdirectories) may already exist inside

 the subdirectory. Therefore, you may want to scan the contents of the subdirectory imme?

 diately after adding the watch (and, if desired, recursively add watches for any subdirec?

 tories that it contains).

 Note that the event queue can overflow. In this case, events are lost. Robust applica?

 tions should handle the possibility of lost events gracefully. For example, it may be

 necessary to rebuild part or all of the application cache. (One simple, but possibly ex?

 pensive, approach is to close the inotify file descriptor, empty the cache, create a new

 inotify file descriptor, and then re-create watches and cache entries for the objects to

 be monitored.)

 If a filesystem is mounted on top of a monitored directory, no event is generated, and no

 events are generated for objects immediately under the new mount point. If the filesystem

 is subsequently unmounted, events will subsequently be generated for the directory and the

 objects it contains.

 Dealing with rename() events

 As noted above, the IN_MOVED_FROM and IN_MOVED_TO event pair that is generated by re?

 name(2) can be matched up via their shared cookie value. However, the task of matching

 has some challenges.

 These two events are usually consecutive in the event stream available when reading from

 the inotify file descriptor. However, this is not guaranteed. If multiple processes are

 triggering events for monitored objects, then (on rare occasions) an arbitrary number of

 other events may appear between the IN_MOVED_FROM and IN_MOVED_TO events. Furthermore, it

 is not guaranteed that the event pair is atomically inserted into the queue: there may be

 a brief interval where the IN_MOVED_FROM has appeared, but the IN_MOVED_TO has not.

 Matching up the IN_MOVED_FROM and IN_MOVED_TO event pair generated by rename(2) is thus

 inherently racy. (Don't forget that if an object is renamed outside of a monitored direc?

 tory, there may not even be an IN_MOVED_TO event.) Heuristic approaches (e.g., assume the

 events are always consecutive) can be used to ensure a match in most cases, but will in?

 evitably miss some cases, causing the application to perceive the IN_MOVED_FROM and Page 9/16

 IN_MOVED_TO events as being unrelated. If watch descriptors are destroyed and re-created

 as a result, then those watch descriptors will be inconsistent with the watch descriptors

 in any pending events. (Re-creating the inotify file descriptor and rebuilding the cache

 may be useful to deal with this scenario.)

 Applications should also allow for the possibility that the IN_MOVED_FROM event was the

 last event that could fit in the buffer returned by the current call to read(2), and the

 accompanying IN_MOVED_TO event might be fetched only on the next read(2), which should be

 done with a (small) timeout to allow for the fact that insertion of the IN_MOVED_FROM-

 IN_MOVED_TO event pair is not atomic, and also the possibility that there may not be any

 IN_MOVED_TO event.

BUGS

 Before Linux 3.19, fallocate(2) did not create any inotify events. Since Linux 3.19,

 calls to fallocate(2) generate IN_MODIFY events.

 In kernels before 2.6.16, the IN_ONESHOT mask flag does not work.

 As originally designed and implemented, the IN_ONESHOT flag did not cause an IN_IGNORED

 event to be generated when the watch was dropped after one event. However, as an unin?

 tended effect of other changes, since Linux 2.6.36, an IN_IGNORED event is generated in

 this case.

 Before kernel 2.6.25, the kernel code that was intended to coalesce successive identical

 events (i.e., the two most recent events could potentially be coalesced if the older had

 not yet been read) instead checked if the most recent event could be coalesced with the

 oldest unread event.

 When a watch descriptor is removed by calling inotify_rm_watch(2) (or because a watch file

 is deleted or the filesystem that contains it is unmounted), any pending unread events for

 that watch descriptor remain available to read. As watch descriptors are subsequently al?

 located with inotify_add_watch(2), the kernel cycles through the range of possible watch

 descriptors (0 to INT_MAX) incrementally. When allocating a free watch descriptor, no

 check is made to see whether that watch descriptor number has any pending unread events in

 the inotify queue. Thus, it can happen that a watch descriptor is reallocated even when

 pending unread events exist for a previous incarnation of that watch descriptor number,

 with the result that the application might then read those events and interpret them as

 belonging to the file associated with the newly recycled watch descriptor. In practice,

 the likelihood of hitting this bug may be extremely low, since it requires that an appli? Page 10/16

 cation cycle through INT_MAX watch descriptors, release a watch descriptor while leaving

 unread events for that watch descriptor in the queue, and then recycle that watch descrip?

 tor. For this reason, and because there have been no reports of the bug occurring in

 real-world applications, as of Linux 3.15, no kernel changes have yet been made to elimi?

 nate this possible bug.

EXAMPLES

 The following program demonstrates the usage of the inotify API. It marks the directories

 passed as a command-line arguments and waits for events of type IN_OPEN, IN_CLOSE_NOWRITE,

 and IN_CLOSE_WRITE.

 The following output was recorded while editing the file /home/user/temp/foo and listing

 directory /tmp. Before the file and the directory were opened, IN_OPEN events occurred.

 After the file was closed, an IN_CLOSE_WRITE event occurred. After the directory was

 closed, an IN_CLOSE_NOWRITE event occurred. Execution of the program ended when the user

 pressed the ENTER key.

 Example output

 $./a.out /tmp /home/user/temp

 Press enter key to terminate.

 Listening for events.

 IN_OPEN: /home/user/temp/foo [file]

 IN_CLOSE_WRITE: /home/user/temp/foo [file]

 IN_OPEN: /tmp/ [directory]

 IN_CLOSE_NOWRITE: /tmp/ [directory]

 Listening for events stopped.

 Program source

 #include <errno.h>

 #include <poll.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <sys/inotify.h>

 #include <unistd.h>

 #include <string.h>

 /* Read all available inotify events from the file descriptor 'fd'.

 wd is the table of watch descriptors for the directories in argv. Page 11/16

 argc is the length of wd and argv.

 argv is the list of watched directories.

 Entry 0 of wd and argv is unused. */

 static void

 handle_events(int fd, int *wd, int argc, char* argv[])

 {

 /* Some systems cannot read integer variables if they are not

 properly aligned. On other systems, incorrect alignment may

 decrease performance. Hence, the buffer used for reading from

 the inotify file descriptor should have the same alignment as

 struct inotify_event. */

 char buf[4096]

 __attribute__ ((aligned(__alignof__(struct inotify_event))));

 const struct inotify_event *event;

 ssize_t len;

 /* Loop while events can be read from inotify file descriptor. */

 for (;;) {

 /* Read some events. */

 len = read(fd, buf, sizeof(buf));

 if (len == -1 && errno != EAGAIN) {

 perror("read");

 exit(EXIT_FAILURE);

 }

 /* If the nonblocking read() found no events to read, then

 it returns -1 with errno set to EAGAIN. In that case,

 we exit the loop. */

 if (len <= 0)

 break;

 /* Loop over all events in the buffer */

 for (char *ptr = buf; ptr < buf + len;

 ptr += sizeof(struct inotify_event) + event->len) {

 event = (const struct inotify_event *) ptr;

 /* Print event type */ Page 12/16

 if (event->mask & IN_OPEN)

 printf("IN_OPEN: ");

 if (event->mask & IN_CLOSE_NOWRITE)

 printf("IN_CLOSE_NOWRITE: ");

 if (event->mask & IN_CLOSE_WRITE)

 printf("IN_CLOSE_WRITE: ");

 /* Print the name of the watched directory */

 for (int i = 1; i < argc; ++i) {

 if (wd[i] == event->wd) {

 printf("%s/", argv[i]);

 break;

 }

 }

 /* Print the name of the file */

 if (event->len)

 printf("%s", event->name);

 /* Print type of filesystem object */

 if (event->mask & IN_ISDIR)

 printf(" [directory]\n");

 else

 printf(" [file]\n");

 }

 }

 }

 int

 main(int argc, char* argv[])

 {

 char buf;

 int fd, i, poll_num;

 int *wd;

 nfds_t nfds;

 struct pollfd fds[2];

 if (argc < 2) { Page 13/16

 printf("Usage: %s PATH [PATH ...]\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 printf("Press ENTER key to terminate.\n");

 /* Create the file descriptor for accessing the inotify API */

 fd = inotify_init1(IN_NONBLOCK);

 if (fd == -1) {

 perror("inotify_init1");

 exit(EXIT_FAILURE);

 }

 /* Allocate memory for watch descriptors */

 wd = calloc(argc, sizeof(int));

 if (wd == NULL) {

 perror("calloc");

 exit(EXIT_FAILURE);

 }

 /* Mark directories for events

 - file was opened

 - file was closed */

 for (i = 1; i < argc; i++) {

 wd[i] = inotify_add_watch(fd, argv[i],

 IN_OPEN | IN_CLOSE);

 if (wd[i] == -1) {

 fprintf(stderr, "Cannot watch '%s': %s\n",

 argv[i], strerror(errno));

 exit(EXIT_FAILURE);

 }

 }

 /* Prepare for polling */

 nfds = 2;

 /* Console input */

 fds[0].fd = STDIN_FILENO;

 fds[0].events = POLLIN; Page 14/16

 /* Inotify input */

 fds[1].fd = fd;

 fds[1].events = POLLIN;

 /* Wait for events and/or terminal input */

 printf("Listening for events.\n");

 while (1) {

 poll_num = poll(fds, nfds, -1);

 if (poll_num == -1) {

 if (errno == EINTR)

 continue;

 perror("poll");

 exit(EXIT_FAILURE);

 }

 if (poll_num > 0) {

 if (fds[0].revents & POLLIN) {

 /* Console input is available. Empty stdin and quit */

 while (read(STDIN_FILENO, &buf, 1) > 0 && buf != '\n')

 continue;

 break;

 }

 if (fds[1].revents & POLLIN) {

 /* Inotify events are available */

 handle_events(fd, wd, argc, argv);

 }

 }

 }

 printf("Listening for events stopped.\n");

 /* Close inotify file descriptor */

 close(fd);

 free(wd);

 exit(EXIT_SUCCESS);

 }

SEE ALSO Page 15/16

 inotifywait(1), inotifywatch(1), inotify_add_watch(2), inotify_init(2), inotify_init1(2),

 inotify_rm_watch(2), read(2), stat(2), fanotify(7)

 Documentation/filesystems/inotify.txt in the Linux kernel source tree

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 INOTIFY(7)

Page 16/16

