
Rocky Enterprise Linux 9.2 Manual Pages on command 'inode.7'

$ man inode.7

INODE(7) Linux Programmer's Manual INODE(7)

NAME

 inode - file inode information

DESCRIPTION

 Each file has an inode containing metadata about the file. An application can retrieve

 this metadata using stat(2) (or related calls), which returns a stat structure, or

 statx(2), which returns a statx structure.

 The following is a list of the information typically found in, or associated with, the

 file inode, with the names of the corresponding structure fields returned by stat(2) and

 statx(2):

 Device where inode resides

 stat.st_dev; statx.stx_dev_minor and statx.stx_dev_major

 Each inode (as well as the associated file) resides in a filesystem that is hosted

 on a device. That device is identified by the combination of its major ID (which

 identifies the general class of device) and minor ID (which identifies a specific

 instance in the general class).

 Inode number

 stat.st_ino; statx.stx_ino

 Each file in a filesystem has a unique inode number. Inode numbers are guaranteed

 to be unique only within a filesystem (i.e., the same inode numbers may be used by

 different filesystems, which is the reason that hard links may not cross filesystem

 boundaries). This field contains the file's inode number.

 File type and mode Page 1/7

 stat.st_mode; statx.stx_mode

 See the discussion of file type and mode, below.

 Link count

 stat.st_nlink; statx.stx_nlink

 This field contains the number of hard links to the file. Additional links to an

 existing file are created using link(2).

 User ID

 st_uid stat.st_uid; statx.stx_uid

 This field records the user ID of the owner of the file. For newly created files,

 the file user ID is the effective user ID of the creating process. The user ID of

 a file can be changed using chown(2).

 Group ID

 stat.st_gid; statx.stx_gid

 The inode records the ID of the group owner of the file. For newly created files,

 the file group ID is either the group ID of the parent directory or the effective

 group ID of the creating process, depending on whether or not the set-group-ID bit

 is set on the parent directory (see below). The group ID of a file can be changed

 using chown(2).

 Device represented by this inode

 stat.st_rdev; statx.stx_rdev_minor and statx.stx_rdev_major

 If this file (inode) represents a device, then the inode records the major and mi?

 nor ID of that device.

 File size

 stat.st_size; statx.stx_size

 This field gives the size of the file (if it is a regular file or a symbolic link)

 in bytes. The size of a symbolic link is the length of the pathname it contains,

 without a terminating null byte.

 Preferred block size for I/O

 stat.st_blksize; statx.stx_blksize

 This field gives the "preferred" blocksize for efficient filesystem I/O. (Writing

 to a file in smaller chunks may cause an inefficient read-modify-rewrite.)

 Number of blocks allocated to the file

 stat.st_blocks; statx.stx_size Page 2/7

 This field indicates the number of blocks allocated to the file, 512-byte units,

 (This may be smaller than st_size/512 when the file has holes.)

 The POSIX.1 standard notes that the unit for the st_blocks member of the stat

 structure is not defined by the standard. On many implementations it is 512

 bytes; on a few systems, a different unit is used, such as 1024. Furthermore, the

 unit may differ on a per-filesystem basis.

 Last access timestamp (atime)

 stat.st_atime; statx.stx_atime

 This is the file's last access timestamp. It is changed by file accesses, for ex?

 ample, by execve(2), mknod(2), pipe(2), utime(2), and read(2) (of more than zero

 bytes). Other interfaces, such as mmap(2), may or may not update the atime time?

 stamp

 Some filesystem types allow mounting in such a way that file and/or directory ac?

 cesses do not cause an update of the atime timestamp. (See noatime, nodiratime,

 and relatime in mount(8), and related information in mount(2).) In addition, the

 atime timestamp is not updated if a file is opened with the O_NOATIME flag; see

 open(2).

 File creation (birth) timestamp (btime)

 (not returned in the stat structure); statx.stx_btime

 The file's creation timestamp. This is set on file creation and not changed subse?

 quently.

 The btime timestamp was not historically present on UNIX systems and is not cur?

 rently supported by most Linux filesystems.

 Last modification timestamp (mtime)

 stat.st_mtime; statx.stx_mtime

 This is the file's last modification timestamp. It is changed by file modifica?

 tions, for example, by mknod(2), truncate(2), utime(2), and write(2) (of more than

 zero bytes). Moreover, the mtime timestamp of a directory is changed by the cre?

 ation or deletion of files in that directory. The mtime timestamp is not changed

 for changes in owner, group, hard link count, or mode.

 Last status change timestamp (ctime)

 stat.st_ctime; statx.stx_ctime

 This is the file's last status change timestamp. It is changed by writing or by Page 3/7

 setting inode information (i.e., owner, group, link count, mode, etc.).

 The timestamp fields report time measured with a zero point at the Epoch, 1970-01-02

 00:00:00 +0000, UTC (see time(7)).

 Nanosecond timestamps are supported on XFS, JFS, Btrfs, and ext4 (since Linux 2.6.23).

 Nanosecond timestamps are not supported in ext2, ext3, and Reiserfs. In order to return

 timestamps with nanosecond precision, the timestamp fields in the stat and statx struc?

 tures are defined as structures that include a nanosecond component. See stat(2) and

 statx(2) for details. On filesystems that do not support subsecond timestamps, the

 nanosecond fields in the stat and statx structures are returned with the value 0.

 The file type and mode

 The stat.st_mode field (for statx(2), the statx.stx_mode field) contains the file type and

 mode.

 POSIX refers to the stat.st_mode bits corresponding to the mask S_IFMT (see below) as the

 file type, the 12 bits corresponding to the mask 07777 as the file mode bits and the least

 significant 9 bits (0777) as the file permission bits.

 The following mask values are defined for the file type:

 S_IFMT 0170000 bit mask for the file type bit field

 S_IFSOCK 0140000 socket

 S_IFLNK 0120000 symbolic link

 S_IFREG 0100000 regular file

 S_IFBLK 0060000 block device

 S_IFDIR 0040000 directory

 S_IFCHR 0020000 character device

 S_IFIFO 0010000 FIFO

 Thus, to test for a regular file (for example), one could write:

 stat(pathname, &sb);

 if ((sb.st_mode & S_IFMT) == S_IFREG) {

 /* Handle regular file */

 }

 Because tests of the above form are common, additional macros are defined by POSIX to al?

 low the test of the file type in st_mode to be written more concisely:

 S_ISREG(m) is it a regular file?

 S_ISDIR(m) directory? Page 4/7

 S_ISCHR(m) character device?

 S_ISBLK(m) block device?

 S_ISFIFO(m) FIFO (named pipe)?

 S_ISLNK(m) symbolic link? (Not in POSIX.1-1996.)

 S_ISSOCK(m) socket? (Not in POSIX.1-1996.)

 The preceding code snippet could thus be rewritten as:

 stat(pathname, &sb);

 if (S_ISREG(sb.st_mode)) {

 /* Handle regular file */

 }

 The definitions of most of the above file type test macros are provided if any of the fol?

 lowing feature test macros is defined: _BSD_SOURCE (in glibc 2.19 and earlier),

 _SVID_SOURCE (in glibc 2.19 and earlier), or _DEFAULT_SOURCE (in glibc 2.20 and later).

 In addition, definitions of all of the above macros except S_IFSOCK and S_ISSOCK() are

 provided if _XOPEN_SOURCE is defined.

 The definition of S_IFSOCK can also be exposed either by defining _XOPEN_SOURCE with a

 value of 500 or greater or (since glibc 2.24) by defining both _XOPEN_SOURCE and

 _XOPEN_SOURCE_EXTENDED.

 The definition of S_ISSOCK() is exposed if any of the following feature test macros is de?

 fined: _BSD_SOURCE (in glibc 2.19 and earlier), _DEFAULT_SOURCE (in glibc 2.20 and later),

 _XOPEN_SOURCE with a value of 500 or greater, _POSIX_C_SOURCE with a value of 200112L or

 greater, or (since glibc 2.24) by defining both _XOPEN_SOURCE and _XOPEN_SOURCE_EXTENDED.

 The following mask values are defined for the file mode component of the st_mode field:

 S_ISUID 04000 set-user-ID bit (see execve(2))

 S_ISGID 02000 set-group-ID bit (see below)

 S_ISVTX 01000 sticky bit (see below)

 S_IRWXU 00700 owner has read, write, and execute permission

 S_IRUSR 00400 owner has read permission

 S_IWUSR 00200 owner has write permission

 S_IXUSR 00100 owner has execute permission

 S_IRWXG 00070 group has read, write, and execute permission

 S_IRGRP 00040 group has read permission

 S_IWGRP 00020 group has write permission Page 5/7

 S_IXGRP 00010 group has execute permission

 S_IRWXO 00007 others (not in group) have read, write, and

 execute permission

 S_IROTH 00004 others have read permission

 S_IWOTH 00002 others have write permission

 S_IXOTH 00001 others have execute permission

 The set-group-ID bit (S_ISGID) has several special uses. For a directory, it indicates

 that BSD semantics are to be used for that directory: files created there inherit their

 group ID from the directory, not from the effective group ID of the creating process, and

 directories created there will also get the S_ISGID bit set. For an executable file, the

 set-group-ID bit causes the effective group ID of a process that executes the file to

 change as described in execve(2). For a file that does not have the group execution bit

 (S_IXGRP) set, the set-group-ID bit indicates mandatory file/record locking.

 The sticky bit (S_ISVTX) on a directory means that a file in that directory can be renamed

 or deleted only by the owner of the file, by the owner of the directory, and by a privi?

 leged process.

CONFORMING TO

 If you need to obtain the definition of the blkcnt_t or blksize_t types from <sys/stat.h>,

 then define _XOPEN_SOURCE with the value 500 or greater (before including any header

 files).

 POSIX.1-1990 did not describe the S_IFMT, S_IFSOCK, S_IFLNK, S_IFREG, S_IFBLK, S_IFDIR,

 S_IFCHR, S_IFIFO, S_ISVTX constants, but instead specified the use of the macros S_IS?

 DIR(), and so on. The S_IF* constants are present in POSIX.1-2001 and later.

 The S_ISLNK() and S_ISSOCK() macros were not in POSIX.1-1996, but both are present in

 POSIX.1-2001; the former is from SVID 4, the latter from SUSv2.

 UNIX V7 (and later systems) had S_IREAD, S_IWRITE, S_IEXEC, where POSIX prescribes the

 synonyms S_IRUSR, S_IWUSR, S_IXUSR.

NOTES

 For pseudofiles that are autogenerated by the kernel, the file size (stat.st_size;

 statx.stx_size) reported by the kernel is not accurate. For example, the value 0 is re?

 turned for many files under the /proc directory, while various files under /sys report a

 size of 4096 bytes, even though the file content is smaller. For such files, one should

 simply try to read as many bytes as possible (and append '\0' to the returned buffer if it Page 6/7

 is to be interpreted as a string).

SEE ALSO

 stat(1), stat(2), statx(2), symlink(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 INODE(7)

Page 7/7

