
Rocky Enterprise Linux 9.2 Manual Pages on command 'hosts.allow.5'

$ man hosts.allow.5

HOSTS_ACCESS(5) File Formats Manual HOSTS_ACCESS(5)

NAME

 hosts_access - format of host access control files

DESCRIPTION

 This manual page describes a simple access control language that is based on client (host

 name/address, user name), and server (process name, host name/address) patterns. Examples

 are given at the end. The impatient reader is encouraged to skip to the EXAMPLES section

 for a quick introduction.

 The extended version of the access control language is described in the hosts_options(5)

 document. Note that this language supersedes the meaning of shell_command as documented

 below.

 In the following text, daemon is the process name of a network daemon process, and client

 is the name and/or address of a host requesting service. Network daemon process names are

 specified in the inetd configuration file.

ACCESS CONTROL FILES

 The access control software consults two files. The search stops at the first match:

 ? Access will be granted when a (daemon,client) pair matches an entry in the

 /etc/hosts.allow file.

 ? Otherwise, access will be denied when a (daemon,client) pair matches an entry in

 the /etc/hosts.deny file.

 ? Otherwise, access will be granted.

 A non-existing access control file is treated as if it were an empty file. Thus, access

 control can be turned off by providing no access control files. Page 1/9

ACCESS CONTROL RULES

 Each access control file consists of zero or more lines of text. These lines are pro?

 cessed in order of appearance. The search terminates when a match is found.

 ? A newline character is ignored when it is preceded by a backslash character. This

 permits you to break up long lines so that they are easier to edit.

 ? Blank lines or lines that begin with a `#? character are ignored. This permits you

 to insert comments and whitespace so that the tables are easier to read.

 ? All other lines should satisfy the following format, things between [] being op?

 tional:

 daemon_list : client_list [: shell_command]

 daemon_list is a list of one or more daemon process names (argv[0] values) or server port

 numbers or wildcards (see below).

 client_list is a list of one or more host names, host addresses, patterns or wildcards

 (see below) that will be matched against the client host name or address.

 The more complex forms daemon@host and user@host are explained in the sections on server

 endpoint patterns and on client username lookups, respectively.

 List elements should be separated by blanks and/or commas.

 With the exception of NIS (YP) netgroup lookups, all access control checks are case insen?

 sitive.

PATTERNS

 The access control language implements the following patterns:

 ? A string that begins with a `.? character. A host name is matched if the last com?

 ponents of its name match the specified pattern. For example, the pattern

 `.tue.nl? matches the host name `wzv.win.tue.nl?.

 ? A string that ends with a `.? character. A host address is matched if its first nu?

 meric fields match the given string. For example, the pattern `131.155.? matches

 the address of (almost) every host on the Eindhoven University network

 (131.155.x.x).

 ? A string that begins with an `@? character is treated as an NIS (formerly YP) net?

 group name. A host name is matched if it is a host member of the specified net?

 group. Netgroup matches are not supported for daemon process names or for client

 user names.

 ? An expression of the form `n.n.n.n/m.m.m.m? is interpreted as a `net/mask? pair. An Page 2/9

 IPv4 host address is matched if `net? is equal to the bitwise AND of the address

 and the `mask?. For example, the net/mask pattern `131.155.72.0/255.255.254.0?

 matches every address in the range `131.155.72.0? through `131.155.73.255?.

 `255.255.255.255? is not a valid mask value, so a single host can be matched just

 by its IP.

 ? An expression of the form `n.n.n.n/mm' is interpreted as a `net/masklength' pair,

 where `mm' is the number of consecutive `1' bits in the netmask applied to the

 `n.n.n.n' address.

 ? An expression of the form `[n:n:n:n:n:n:n:n]/m? is interpreted as a `[net]/pre?

 fixlen? pair. An IPv6 host address is matched if `prefixlen? bits of `net? is equal

 to the `prefixlen? bits of the address. For example, the [net]/prefixlen pattern

 `[3ffe:505:2:1::]/64? matches every address in the range `3ffe:505:2:1::? through

 `3ffe:505:2:1:ffff:ffff:ffff:ffff?.

 ? A string that begins with a `/? character is treated as a file name. A host name or

 address is matched if it matches any host name or address pattern listed in the

 named file. The file format is zero or more lines with zero or more host name or

 address patterns separated by whitespace. A file name pattern can be used anywhere

 a host name or address pattern can be used.

 ? Wildcards `*? and `?? can be used to match hostnames or IP addresses. This method

 of matching cannot be used in conjunction with `net/mask? matching, hostname match?

 ing beginning with `.? or IP address matching ending with `.?.

WILDCARDS

 The access control language supports explicit wildcards:

 ALL The universal wildcard, always matches.

 LOCAL Matches any host whose name does not contain a dot character.

 UNKNOWN

 Matches any user whose name is unknown, and matches any host whose name or address

 are unknown. This pattern should be used with care: host names may be unavailable

 due to temporary name server problems. A network address will be unavailable when

 the software cannot figure out what type of network it is talking to.

 KNOWN Matches any user whose name is known, and matches any host whose name and address

 are known. This pattern should be used with care: host names may be unavailable due

 to temporary name server problems. A network address will be unavailable when the Page 3/9

 software cannot figure out what type of network it is talking to.

 PARANOID

 Matches any host whose name does not match its address. When tcpd is built with

 -DPARANOID (default mode), it drops requests from such clients even before looking

 at the access control tables. Build without -DPARANOID when you want more control

 over such requests.

OPERATORS

 EXCEPT Intended use is of the form: `list_1 EXCEPT list_2?; this construct matches any?

 thing that matches list_1 unless it matches list_2. The EXCEPT operator can be

 used in daemon_lists and in client_lists. The EXCEPT operator can be nested: if the

 control language would permit the use of parentheses, `a EXCEPT b EXCEPT c? would

 parse as `(a EXCEPT (b EXCEPT c))?.

SHELL COMMANDS

 If the first-matched access control rule contains a shell command, that command is sub?

 jected to %<letter> substitutions (see next section). The result is executed by a /bin/sh

 child process with standard input, output and error connected to /dev/null. Specify an

 `&? at the end of the command if you do not want to wait until it has completed.

 Shell commands should not rely on the PATH setting of the inetd. Instead, they should use

 absolute path names, or they should begin with an explicit PATH=whatever statement.

 The hosts_options(5) document describes an alternative language that uses the shell com?

 mand field in a different and incompatible way.

% EXPANSIONS

 The following expansions are available within shell commands:

 %a (%A)

 The client (server) host address.

 %c Client information: user@host, user@address, a host name, or just an address, de?

 pending on how much information is available.

 %d The daemon process name (argv[0] value).

 %h (%H)

 The client (server) host name or address, if the host name is unavailable.

 %n (%N)

 The client (server) host name (or "unknown" or "paranoid").

 %r (%R) Page 4/9

 The clients (servers) port number (or "0").

 %p The daemon process id.

 %s Server information: daemon@host, daemon@address, or just a daemon name, depending

 on how much information is available.

 %u The client user name (or "unknown").

 %% Expands to a single `%? character.

 Characters in % expansions that may confuse the shell are replaced by underscores.

SERVER ENDPOINT PATTERNS

 In order to distinguish clients by the network address that they connect to, use patterns

 of the form:

 process_name@host_pattern : client_list ...

 Patterns like these can be used when the machine has different internet addresses with

 different internet hostnames. Service providers can use this facility to offer FTP, GO?

 PHER or WWW archives with internet names that may even belong to different organizations.

 See also the `twist? option in the hosts_options(5) document. Some systems (Solaris, Free?

 BSD) can have more than one internet address on one physical interface; with other systems

 you may have to resort to SLIP or PPP pseudo interfaces that live in a dedicated network

 address space.

 The host_pattern obeys the same syntax rules as host names and addresses in client_list

 context. Usually, server endpoint information is available only with connection-oriented

 services.

CLIENT USERNAME LOOKUP

 When the client host supports the RFC 931 protocol or one of its descendants (TAP, IDENT,

 RFC 1413) the wrapper programs can retrieve additional information about the owner of a

 connection. Client username information, when available, is logged together with the

 client host name, and can be used to match patterns like:

 daemon_list : ... user_pattern@host_pattern ...

 The daemon wrappers can be configured at compile time to perform rule-driven username

 lookups (default) or to always interrogate the client host. In the case of rule-driven

 username lookups, the above rule would cause username lookup only when both the dae?

 mon_list and the host_pattern match.

 A user pattern has the same syntax as a daemon process pattern, so the same wildcards ap?

 ply (netgroup membership is not supported). One should not get carried away with username Page 5/9

 lookups, though.

 ? The client username information cannot be trusted when it is needed most, i.e. when

 the client system has been compromised. In general, ALL and (UN)KNOWN are the only

 user name patterns that make sense.

 ? Username lookups are possible only with TCP-based services, and only when the

 client host runs a suitable daemon; in all other cases the result is "unknown".

 ? A well-known UNIX kernel bug may cause loss of service when username lookups are

 blocked by a firewall. The wrapper README document describes a procedure to find

 out if your kernel has this bug.

 ? Username lookups may cause noticeable delays for non-UNIX users. The default time?

 out for username lookups is 10 seconds: too short to cope with slow networks, but

 long enough to irritate PC users.

 Selective username lookups can alleviate the last problem. For example, a rule like:

 daemon_list : @pcnetgroup ALL@ALL

 would match members of the pc netgroup without doing username lookups, but would perform

 username lookups with all other systems.

DETECTING ADDRESS SPOOFING ATTACKS

 A flaw in the sequence number generator of many TCP/IP implementations allows intruders to

 easily impersonate trusted hosts and to break in via, for example, the remote shell ser?

 vice. The IDENT (RFC931 etc.) service can be used to detect such and other host address

 spoofing attacks.

 Before accepting a client request, the wrappers can use the IDENT service to find out that

 the client did not send the request at all. When the client host provides IDENT service,

 a negative IDENT lookup result (the client matches `UNKNOWN@host?) is strong evidence of a

 host spoofing attack.

 A positive IDENT lookup result (the client matches `KNOWN@host?) is less trustworthy. It

 is possible for an intruder to spoof both the client connection and the IDENT lookup, al?

 though doing so is much harder than spoofing just a client connection. It may also be that

 the client?s IDENT server is lying.

 Note: IDENT lookups don?t work with UDP services.

EXAMPLES

 The language is flexible enough that different types of access control policy can be ex?

 pressed with a minimum of fuss. Although the language uses two access control tables, the Page 6/9

 most common policies can be implemented with one of the tables being trivial or even

 empty.

 When reading the examples below it is important to realize that the allow table is scanned

 before the deny table, that the search terminates when a match is found, and that access

 is granted when no match is found at all.

 The examples use host and domain names. They can be improved by including address and/or

 network/netmask information, to reduce the impact of temporary name server lookup fail?

 ures.

MOSTLY CLOSED

 In this case, access is denied by default. Only explicitly authorized hosts are permitted

 access.

 The default policy (no access) is implemented with a trivial deny file:

 /etc/hosts.deny:

 ALL: ALL

 This denies all service to all hosts, unless they are permitted access by entries in the

 allow file.

 The explicitly authorized hosts are listed in the allow file. For example:

 /etc/hosts.allow:

 ALL: LOCAL @some_netgroup

 ALL: .foobar.edu EXCEPT terminalserver.foobar.edu

 The first rule permits access from hosts in the local domain (no `.? in the host name) and

 from members of the some_netgroup netgroup. The second rule permits access from all hosts

 in the foobar.edu domain (notice the leading dot), with the exception of termi?

 nalserver.foobar.edu.

MOSTLY OPEN

 Here, access is granted by default; only explicitly specified hosts are refused service.

 The default policy (access granted) makes the allow file redundant so that it can be omit?

 ted. The explicitly non-authorized hosts are listed in the deny file. For example:

 /etc/hosts.deny:

 ALL: some.host.name, .some.domain

 ALL EXCEPT in.fingerd: other.host.name, .other.domain

 The first rule denies some hosts and domains all services; the second rule still permits

 finger requests from other hosts and domains. Page 7/9

BOOBY TRAPS

 The next example permits tftp requests from hosts in the local domain (notice the leading

 dot). Requests from any other hosts are denied. Instead of the requested file, a finger

 probe is sent to the offending host. The result is mailed to the superuser.

 /etc/hosts.allow:

 in.tftpd: LOCAL, .my.domain

 /etc/hosts.deny:

 in.tftpd: ALL: (/usr/sbin/safe_finger -l @%h | \

 /usr/bin/mail -s %d-%h root) &

 The safe_finger command comes with the tcpd wrapper and should be installed in a suitable

 place. It limits possible damage from data sent by the remote finger server. It gives

 better protection than the standard finger command.

 The expansion of the %h (client host) and %d (service name) sequences is described in the

 section on shell commands.

 Warning: do not booby-trap your finger daemon, unless you are prepared for infinite finger

 loops.

 On network firewall systems this trick can be carried even further. The typical network

 firewall only provides a limited set of services to the outer world. All other services

 can be "bugged" just like the above tftp example. The result is an excellent early-warning

 system.

DIAGNOSTICS

 An error is reported when a syntax error is found in a host access control rule; when the

 length of an access control rule exceeds the capacity of an internal buffer; when an ac?

 cess control rule is not terminated by a newline character; when the result of %<letter>

 expansion would overflow an internal buffer; when a system call fails that shouldn?t. All

 problems are reported via the syslog daemon.

FILES

 /etc/hosts.allow, (daemon,client) pairs that are granted access.

 /etc/hosts.deny, (daemon,client) pairs that are denied access.

SEE ALSO

 hosts_options(5) extended syntax.

 tcpd(8) tcp/ip daemon wrapper program.

 tcpdchk(8), tcpdmatch(8), test programs. Page 8/9

BUGS

 If a name server lookup times out, the host name will not be available to the access con?

 trol software, even though the host is registered.

 Domain name server lookups are case insensitive; NIS (formerly YP) netgroup lookups are

 case sensitive.

AUTHOR

 Wietse Venema (wietse@wzv.win.tue.nl)

 Department of Mathematics and Computing Science

 Eindhoven University of Technology

 Den Dolech 2, P.O. Box 513,

 5600 MB Eindhoven, The Netherlands

 HOSTS_ACCESS(5)

Page 9/9

