
Rocky Enterprise Linux 9.2 Manual Pages on command 'go-test.1'

$ man go-test.1

GO-TEST(1) General Commands Manual GO-TEST(1)

NAME

 go-test - test packages

SYNOPSIS

 go test [build/test flags] [packages] [build/test flags & test binary flags]

DESCRIPTION

 "Go test" automates testing the packages named by the import paths. It prints a summary

 of the test results in the format:

 ok archive/tar 0.011s

 FAIL archive/zip 0.022s

 ok compress/gzip 0.033s

 ...

 followed by detailed output for each failed package.

 "Go test" recompiles each package along with any files with names matching the file pat?

 tern "*_test.go". These additional files can contain test functions, benchmark functions,

 and example functions. See 'go help testfunc' for more.

 Each listed package causes the execution of a separate test binary. Files whose names be?

 gin with "_" (including "_test.go") or "." are ignored.

 Test files that declare a package with the suffix "_test" will be compiled as a separate

 package, and then linked and run with the main test binary.

 The go tool will ignore a directory named "testdata", making it available to hold ancil?

 lary data needed by the tests.

 As part of building a test binary, go test runs go vet on the package and its test source Page 1/4

 files to identify significant problems. If go vet finds any problems, go test reports

 those and does not run the test binary. Only a high-confidence subset of the default go

 vet checks are used. That subset is: 'atomic', 'bool', 'buildtags', 'errorsas', 'iface?

 assert', 'nilfunc', 'printf', and 'stringintconv'. You can see the documentation for these

 and other vet tests via "go doc cmd/vet". To disable the running of go vet, use the

 -vet=off flag.

 All test output and summary lines are printed to the go command's standard output, even if

 the test printed them to its own standard error. (The go command's standard error is re?

 served for printing errors building the tests.)

 Go test runs in two different modes:

 The first, called local directory mode, occurs when go test is invoked with no package ar?

 guments (for example, 'go test' or 'go test -v'). In this mode, go test compiles the pack?

 age sources and tests found in the current directory and then runs the resulting test bi?

 nary. In this mode, caching (discussed below) is disabled. After the package test fin?

 ishes, go test prints a summary line showing the test status ('ok' or 'FAIL'), package

 name, and elapsed time.

 The second, called package list mode, occurs when go test is invoked with explicit package

 arguments (for example 'go test math', 'go test ./...', and even 'go test .'). In this

 mode, go test compiles and tests each of the packages listed on the command line. If a

 package test passes, go test prints only the final 'ok' summary line. If a package test

 fails, go test prints the full test output. If invoked with the -bench or -v flag, go

 test prints the full output even for passing package tests, in order to display the re?

 quested benchmark results or verbose logging. After the package tests for all of the

 listed packages finish, and their output is printed, go test prints a final 'FAIL' status

 if any package test has failed.

 In package list mode only, go test caches successful package test results to avoid unnec?

 essary repeated running of tests. When the result of a test can be recovered from the

 cache, go test will redisplay the previous output instead of running the test binary

 again. When this happens, go test prints '(cached)' in place of the elapsed time in the

 summary line.

 The rule for a match in the cache is that the run involves the same test binary and the

 flags on the command line come entirely from a restricted set of ?cacheable? test flags,

 defined as -benchtime, -cpu, -list, -parallel, -run, -short, and -v. If a run of go test Page 2/4

 has any test or non-test flags outside this set, the result is not cached. To disable test

 caching, use any test flag or argument other than the cacheable flags. The idiomatic way

 to disable test caching explicitly is to use -count=1. Tests that open files within the

 package's source root (usually $GOPATH) or that consult environment variables only match

 future runs in which the files and environment variables are unchanged. A cached test re?

 sult is treated as executing in no time at all, so a successful package test result will

 be cached and reused regardless of -timeout setting.

OPTIONS

 In addition to the build flags, the flags handled by 'go test' itself are:

 -args Pass the remainder of the command line (everything after -args) to the test binary,

 uninterpreted and unchanged. Because this flag consumes the remainder of the com?

 mand line, the package list (if present) must appear before this flag.

 -c Compile the test binary to pkg.test but do not run it (where pkg is the last ele?

 ment of the package's import path). The file name can be changed with the -o flag.

 -exec xprog

 Run the test binary using xprog. The behavior is the same as in 'go run'. See 'go

 help run' for details.

 -i Install packages that are dependencies of the test. Do not run the test.

 -json Convert test output to JSON suitable for automated processing. See 'go doc

 test2json' for the encoding details.

 -o file

 Compile the test binary to the named file. The test still runs (unless -c or -i is

 specified).

 The test binary also accepts flags that control execution of the test; these flags are

 also accessible by 'go test'. See go-testflag(7) for details.

 For more about build flags, see go-build(1).

 For more about specifying packages, see go-packages(7).

SEE ALSO

 go-build(1), go-vet(1).

AUTHOR

 This manual page was written by Michael Stapelberg <stapelberg@debian.org> and is main?

 tained by the Debian Go Compiler Team <team+go-compiler@tracker.debian.org> based on the

 output of 'go help test' for the Debian project (and may be used by others). Page 3/4

 2021-10-15 GO-TEST(1)

Page 4/4

