
Rocky Enterprise Linux 9.2 Manual Pages on command 'go-packages.7'

$ man go-packages.7

GO-PACKAGES(7) Miscellaneous Information Manual GO-PACKAGES(7)

NAME

 go - tool for managing Go source code

DESCRIPTION

 Many commands apply to a set of packages:

 go action [packages]

 Usually, [packages] is a list of import paths.

 An import path that is a rooted path or that begins with a . or .. element is interpreted

 as a file system path and denotes the package in that directory.

 Otherwise, the import path P denotes the package found in the directory DIR/src/P for some

 DIR listed in the GOPATH environment variable (For more details see: 'go help gopath').

 If no import paths are given, the action applies to the package in the current directory.

 There are four reserved names for paths that should not be used for packages to be built

 with the go tool:

 ? "main" denotes the top-level package in a stand-alone executable.

 ? "all" expands to all packages found in all the GOPATH trees. For example, 'go list all'

 lists all the packages on the local system. When using modules, "all" expands to all

 packages in the main module and their dependencies, including dependencies needed by

 tests of any of those.

 ? "std" is like all but expands to just the packages in the standard Go library.

 ? "cmd" expands to the Go repository's commands and their internal libraries.

 Import paths beginning with "cmd/" only match source code in the Go repository.

 An import path is a pattern if it includes one or more "..." wildcards, each of which can Page 1/2

 match any string, including the empty string and strings containing slashes. Such a pat?

 tern expands to all package directories found in the GOPATH trees with names matching the

 patterns.

 To make common patterns more convenient, there are two special cases. First, /... at the

 end of the pattern can match an empty string, so that net/... matches both net and pack?

 ages in its subdirectories, like net/http. Second, any slash-separated pattern element

 containing a wildcard never participates in a match of the "vendor" element in the path of

 a vendored package, so that ./... does not match packages in subdirectories of ./vendor or

 ./mycode/vendor, but ./vendor/... and ./mycode/vendor/... do. Note, however, that a di?

 rectory named vendor that itself contains code is not a vendored package: cmd/vendor would

 be a command named vendor, and the pattern cmd/... matches it. See golang.org/s/go15ven?

 dor for more about vendoring.

 An import path can also name a package to be downloaded from a remote repository. Run 'go

 help importpath' for details.

 Every package in a program must have a unique import path. By convention, this is ar?

 ranged by starting each path with a unique prefix that belongs to you. For example, paths

 used internally at Google all begin with 'google', and paths denoting remote repositories

 begin with the path to the code, such as 'github.com/user/repo'.

 Packages in a program need not have unique package names, but there are two reserved pack?

 age names with special meaning. The name main indicates a command, not a library. Com?

 mands are built into binaries and cannot be imported. The name documentation indicates

 documentation for a non-Go program in the directory. Files in package documentation are

 ignored by the go command.

 As a special case, if the package list is a list of .go files from a single directory, the

 command is applied to a single synthesized package made up of exactly those files, ignor?

 ing any build constraints in those files and ignoring any other files in the directory.

 Directory and file names that begin with "." or "_" are ignored by the go tool, as are di?

 rectories named "testdata".

AUTHOR

 This manual page was written by Michael Stapelberg <stapelberg@debian.org> and is main?

 tained by the Debian Go Compiler Team <team+go-compiler@tracker.debian.org> based on the

 output of 'go help packages' for the Debian project (and may be used by others).

 2021-09-06 GO-PACKAGES(7) Page 2/2

