
Rocky Enterprise Linux 9.2 Manual Pages on command 'go-list.1'

$ man go-list.1

GO-LIST(1) General Commands Manual GO-LIST(1)

NAME

 go-list - list packages or modules

SYNOPSIS

 go list [-f format] [-json] [-m] [list flags] [build flags] [packages]

DESCRIPTION

 List lists the packages named by the import paths, one per line.

 The most commonly-used flags are -f and -json, which control the form of the output

 printed for each package. Other list flags, documented below, control more specific de?

 tails.

 The default output shows the package import path:

 bytes

 encoding/json

 github.com/gorilla/mux

 golang.org/x/net/html

OPTIONS

 -f The -f flag specifies an alternate format for the list, using the syntax of package

 template. The default output is equivalent to -f '{{.ImportPath}}'. The struct

 being passed to the template is:

 type Package struct {

 Dir string // directory containing package sources

 ImportPath string // import path of package in dir

 ImportComment string // path in import comment on package statement Page 1/8

 Name string // package name

 Doc string // package documentation string

 Target string // install path

 Shlib string // the shared library that contains this package (only set when -linkshared)

 Goroot bool // is this package in the Go root?

 Standard bool // is this package part of the standard Go library?

 Stale bool // would 'go install' do anything for this package?

 StaleReason string // explanation for Stale==true

 Root string // Go root or Go path dir containing this package

 ConflictDir string // this directory shadows Dir in $GOPATH

 BinaryOnly bool // binary-only package (no longer supported)

 ForTest string // package is only for use in named test

 Export string // file containing export data (when using -export)

 BuildID string // build ID of the compiled package (when using -export)

 Module *Module // info about package's containing module, if any (can be nil)

 Match []string // command-line patterns matching this package

 DepOnly bool // package is only a dependency, not explicitly listed

 // Source files

 GoFiles []string // .go source files (excluding CgoFiles, TestGoFiles, XTestGoFiles)

 CgoFiles []string // .go source files that import "C"

 CompiledGoFiles []string // .go files presented to compiler (when using -compiled)

 IgnoredGoFiles []string // .go source files ignored due to build constraints

 IgnoredOtherFiles []string // non-.go source files ignored due to build constraints

 CFiles []string // .c source files

 CXXFiles []string // .cc, .cxx and .cpp source files

 MFiles []string // .m source files

 HFiles []string // .h, .hh, .hpp and .hxx source files

 FFiles []string // .f, .F, .for and .f90 Fortran source files

 SFiles []string // .s source files

 SwigFiles []string // .swig files

 SwigCXXFiles []string // .swigcxx files

 SysoFiles []string // .syso object files to add to archive

 TestGoFiles []string // _test.go files in package Page 2/8

 XTestGoFiles []string // _test.go files outside package

 // Embedded files

 EmbedPatterns []string // //go:embed patterns

 EmbedFiles []string // files matched by EmbedPatterns

 TestEmbedPatterns []string // //go:embed patterns in TestGoFiles

 TestEmbedFiles []string // files matched by TestEmbedPatterns

 XTestEmbedPatterns []string // //go:embed patterns in XTestGoFiles

 XTestEmbedFiles []string // files matched by XTestEmbedPatterns

 // Cgo directives

 CgoCFLAGS []string // cgo: flags for C compiler

 CgoCPPFLAGS []string // cgo: flags for C preprocessor

 CgoCXXFLAGS []string // cgo: flags for C++ compiler

 CgoFFLAGS []string // cgo: flags for Fortran compiler

 CgoLDFLAGS []string // cgo: flags for linker

 CgoPkgConfig []string // cgo: pkg-config names

 // Dependency information

 Imports []string // import paths used by this package

 ImportMap map[string]string // map from source import to ImportPath (identity entries omitted)

 Deps []string // all (recursively) imported dependencies

 TestImports []string // imports from TestGoFiles

 XTestImports []string // imports from XTestGoFiles

 // Error information

 Incomplete bool // this package or a dependency has an error

 Error *PackageError // error loading package

 DepsErrors []*PackageError // errors loading dependencies

 }

 Packages stored in vendor directories report an ImportPath that includes the path

 to the vendor directory (for example, "d/vendor/p" instead of "p"), so that the Im?

 portPath uniquely identifies a given copy of a package. The Imports, Deps, TestIm?

 ports, and XTestImports lists also contain these expanded import paths. See

 golang.org/s/go15vendor for more about vendoring.

 The error information, if any, is

 type PackageError struct { Page 3/8

 ImportStack []string // shortest path from package named on command line to this one

 Pos string // position of error (if present, file:line:col)

 Err string // the error itself

 }

 The module information is a Module struct, defined in the discussion of list -m be?

 low.

 The template function "join" calls strings.Join.

 The template function "context" returns the build context, defined as:

 type Context struct {

 GOARCH string // target architecture

 GOOS string // target operating system

 GOROOT string // Go root

 GOPATH string // Go path

 CgoEnabled bool // whether cgo can be used

 UseAllFiles bool // use files regardless of +build lines, file names

 Compiler string // compiler to assume when computing target paths

 BuildTags []string // build constraints to match in +build lines

 ToolTags []string // toolchain-specific build constraints

 ReleaseTags []string // releases the current release is compatible with

 InstallSuffix string // suffix to use in the name of the install dir

 }

 For more information about the meaning of these fields see the documentation for

 the go/build package's Context type.

 -json The -json flag causes the package data to be printed in JSON format instead of us?

 ing the template format.

 -compiled

 The -compiled flag causes list to set CompiledGoFiles to the Go source files pre?

 sented to the compiler. Typically this means that it repeats the files listed in

 GoFiles and then also adds the Go code generated by processing CgoFiles and Swig?

 Files. The Imports list contains the union of all imports from both GoFiles and

 CompiledGoFiles.

 -deps The -deps flag causes list to iterate over not just the named packages but also all

 their dependencies. It visits them in a depth-first post-order traversal, so that a Page 4/8

 package is listed only after all its dependencies. Packages not explicitly listed

 on the command line will have the DepOnly field set to true.

 -e The -e flag changes the handling of erroneous packages, those that cannot be found

 or are malformed. By default, the list command prints an error to standard error

 for each erroneous package and omits the packages from consideration during the

 usual printing. With the -e flag, the list command never prints errors to standard

 error and instead processes the erroneous packages with the usual printing. Erro?

 neous packages will have a non-empty ImportPath and a non-nil Error field; other

 information may or may not be missing (zeroed).

 -export

 The -export flag causes list to set the Export field to the name of a file contain?

 ing up-to-date export information for the given package.

 -find The -find flag causes list to identify the named packages but not resolve their de?

 pendencies: the Imports and Deps lists will be empty.

 -test The -test flag causes list to report not only the named packages but also their

 test binaries (for packages with tests), to convey to source code analysis tools

 exactly how test binaries are constructed. The reported import path for a test bi?

 nary is the import path of the package followed by a ".test" suffix, as in

 "math/rand.test". When building a test, it is sometimes necessary to rebuild cer?

 tain dependencies specially for that test (most commonly the tested package it?

 self). The reported import path of a package recompiled for a particular test bi?

 nary is followed by a space and the name of the test binary in brackets, as in

 "math/rand [math/rand.test]" or "regexp [sort.test]". The ForTest field is also set

 to the name of the package being tested ("math/rand" or "sort" in the previous ex?

 amples).

 The Dir, Target, Shlib, Root, ConflictDir, and Export file paths are all absolute paths.

 By default, the lists GoFiles, CgoFiles, and so on hold names of files in Dir (that is,

 paths relative to Dir, not absolute paths). The generated files added when using the

 -compiled and -test flags are absolute paths referring to cached copies of generated Go

 source files. Although they are Go source files, the paths may not end in ".go".

 -m The -m flag causes list to list modules instead of packages.

 When listing modules, the -f flag still specifies a format template applied to a Go

 struct, but now a Module struct: Page 5/8

 type Module struct {

 Path string // module path

 Version string // module version

 Versions []string // available module versions (with -versions)

 Replace *Module // replaced by this module

 Time *time.Time // time version was created

 Update *Module // available update, if any (with -u)

 Main bool // is this the main module?

 Indirect bool // is this module only an indirect dependency of main module?

 Dir string // directory holding files for this module, if any

 GoMod string // path to go.mod file used when loading this module, if any

 GoVersion string // go version used in module

 Error *ModuleError // error loading module

 }

 type ModuleError struct {

 Err string // the error itself

 }

 The file GoMod refers to may be outside the module directory if the module is in

 the module cache or if the -modfile flag is used.

 The default output is to print the module path and then information about the ver?

 sion and replacement if any. For example, 'go list -m all' might print:

 my/main/module

 golang.org/x/text v0.3.0 => /tmp/text

 rsc.io/pdf v0.1.1

 The Module struct has a String method that formats this line of output, so that the

 default format is equivalent to -f '{{.String}}'.

 Note that when a module has been replaced, its Replace field describes the replace?

 ment module, and its Dir field is set to the replacement's source code, if present.

 (That is, if Replace is non-nil, then Dir is set to Replace.Dir, with no access to

 the replaced source code.)

 -u The -u flag adds information about available upgrades. When the latest version of

 a given module is newer than the current one, list -u sets the Module's Update

 field to information about the newer module. list -u will also set the module's Re? Page 6/8

 tracted field if the current version is retracted. The Module's String method in?

 dicates an available upgrade by formatting the newer version in brackets after the

 current version. If a version is retracted, the string "(retracted)" will follow

 it. For example, 'go list -m -u all' might print:

 my/main/module

 golang.org/x/text v0.3.0 [v0.4.0] => /tmp/text

 rsc.io/pdf v0.1.1 (retracted) [v0.1.2]

 (For tools, 'go list -m -u -json all' may be more convenient to parse.)

 -versions

 The -versions flag causes list to set the Module's Versions field to a list of all

 known versions of that module, ordered according to semantic versioning, earliest

 to latest. The flag also changes the default output format to display the module

 path followed by the space-separated version list.

 -retracted

 The -retracted flag causes list to report information about retracted module ver?

 sions. When -retracted is used with -f or -json, the Retracted field will be set to

 a string explaining why the version was retracted. The string is taken from com?

 ments on the retract directive in the module's go.mod file. When -retracted is used

 with -versions, retracted versions are listed together with unretracted versions.

 The -retracted flag may be used with or without -m.

 The arguments to list -m are interpreted as a list of modules, not packages. The main

 module is the module containing the current directory. The active modules are the main

 module and its dependencies. With no arguments, list -m shows the main module. With ar?

 guments, list -m shows the modules specified by the arguments. Any of the active modules

 can be specified by its module path. The special pattern "all" specifies all the active

 modules, first the main module and then dependencies sorted by module path. A pattern

 containing "..." specifies the active modules whose module paths match the pattern. A

 query of the form path@version specifies the result of that query, which is not limited to

 active modules. See 'go help modules' for more about module queries.

 The template function "module" takes a single string argument that must be a module path

 or query and returns the specified module as a Module struct. If an error occurs, the re?

 sult will be a Module struct with a non-nil Error field.

 For more about build flags, see go-build(1) or 'go help build'. Page 7/8

 For more about specifying packages, see go-packages(7) or 'go help packages'.

 For more about modules, see https://golang.org/ref/mod.

AUTHOR

 This manual page was written by Michael Stapelberg <stapelberg@debian.org> and is main?

 tained by the Debian Go Compiler Team <team+go-compiler@tracker.debian.org> based on the

 output of 'go help list' for the Debian project (and may be used by others).

 2021-10-15 GO-LIST(1)

Page 8/8

