
Rocky Enterprise Linux 9.2 Manual Pages on command 'gmake.1'

$ man gmake.1

MAKE(1) User Commands MAKE(1)

NAME

 make - GNU make utility to maintain groups of programs

SYNOPSIS

 make [OPTION]... [TARGET]...

DESCRIPTION

 The make utility will determine automatically which pieces of a large program need to be

 recompiled, and issue the commands to recompile them. The manual describes the GNU imple?

 mentation of make, which was written by Richard Stallman and Roland McGrath, and is cur?

 rently maintained by Paul Smith. Our examples show C programs, since they are very com?

 mon, but you can use make with any programming language whose compiler can be run with a

 shell command. In fact, make is not limited to programs. You can use it to describe any

 task where some files must be updated automatically from others whenever the others

 change.

 To prepare to use make, you must write a file called the makefile that describes the rela?

 tionships among files in your program, and the states the commands for updating each file.

 In a program, typically the executable file is updated from object files, which are in

 turn made by compiling source files.

 Once a suitable makefile exists, each time you change some source files, this simple shell

 command:

 make

 suffices to perform all necessary recompilations. The make program uses the makefile de?

 scription and the last-modification times of the files to decide which of the files need Page 1/7

 to be updated. For each of those files, it issues the commands recorded in the makefile.

 make executes commands in the makefile to update one or more target names, where name is

 typically a program. If no -f option is present, make will look for the makefiles GNU?

 makefile, makefile, and Makefile, in that order.

 Normally you should call your makefile either makefile or Makefile. (We recommend Make?

 file because it appears prominently near the beginning of a directory listing, right near

 other important files such as README.) The first name checked, GNUmakefile, is not recom?

 mended for most makefiles. You should use this name if you have a makefile that is spe?

 cific to GNU make, and will not be understood by other versions of make. If makefile is

 '-', the standard input is read.

 make updates a target if it depends on prerequisite files that have been modified since

 the target was last modified, or if the target does not exist.

OPTIONS

 -b, -m

 These options are ignored for compatibility with other versions of make.

 -B, --always-make

 Unconditionally make all targets.

 -C dir, --directory=dir

 Change to directory dir before reading the makefiles or doing anything else. If mul?

 tiple -C options are specified, each is interpreted relative to the previous one: -C

 / -C etc is equivalent to -C /etc. This is typically used with recursive invocations

 of make.

 -d Print debugging information in addition to normal processing. The debugging informa?

 tion says which files are being considered for remaking, which file-times are being

 compared and with what results, which files actually need to be remade, which im?

 plicit rules are considered and which are applied---everything interesting about how

 make decides what to do.

 --debug[=FLAGS]

 Print debugging information in addition to normal processing. If the FLAGS are omit?

 ted, then the behavior is the same as if -d was specified. FLAGS may be a for all

 debugging output (same as using -d), b for basic debugging, v for more verbose basic

 debugging, i for showing implicit rules, j for details on invocation of commands, and

 m for debugging while remaking makefiles. Use n to disable all previous debugging Page 2/7

 flags.

 -e, --environment-overrides

 Give variables taken from the environment precedence over variables from makefiles.

 -f file, --file=file, --makefile=FILE

 Use file as a makefile.

 -i, --ignore-errors

 Ignore all errors in commands executed to remake files.

 -I dir, --include-dir=dir

 Specifies a directory dir to search for included makefiles. If several -I options

 are used to specify several directories, the directories are searched in the order

 specified. Unlike the arguments to other flags of make, directories given with -I

 flags may come directly after the flag: -Idir is allowed, as well as -I dir. This

 syntax is allowed for compatibility with the C preprocessor's -I flag.

 -j [jobs], --jobs[=jobs]

 Specifies the number of jobs (commands) to run simultaneously. If there is more than

 one -j option, the last one is effective. If the -j option is given without an argu?

 ment, make will not limit the number of jobs that can run simultaneously. When make

 invokes a sub-make, all instances of make will coordinate to run the specified number

 of jobs at a time; see the section PARALLEL MAKE AND THE JOBSERVER for details.

 --jobserver-fds [R,W]

 Internal option make uses to pass the jobserver pipe read and write file descriptor

 numbers to sub-makes; see the section PARALLEL MAKE AND THE JOBSERVER for details

 -k, --keep-going

 Continue as much as possible after an error. While the target that failed, and those

 that depend on it, cannot be remade, the other dependencies of these targets can be

 processed all the same.

 -l [load], --load-average[=load]

 Specifies that no new jobs (commands) should be started if there are others jobs run?

 ning and the load average is at least load (a floating-point number). With no argu?

 ment, removes a previous load limit.

 -L, --check-symlink-times

 Use the latest mtime between symlinks and target.

 -n, --just-print, --dry-run, --recon Page 3/7

 Print the commands that would be executed, but do not execute them (except in certain

 circumstances).

 -o file, --old-file=file, --assume-old=file

 Do not remake the file file even if it is older than its dependencies, and do not re?

 make anything on account of changes in file. Essentially the file is treated as very

 old and its rules are ignored.

 -O[type], --output-sync[=type]

 When running multiple jobs in parallel with -j, ensure the output of each job is col?

 lected together rather than interspersed with output from other jobs. If type is not

 specified or is target the output from the entire recipe for each target is grouped

 together. If type is line the output from each command line within a recipe is

 grouped together. If type is recurse output from an entire recursive make is grouped

 together. If type is none output synchronization is disabled.

 -p, --print-data-base

 Print the data base (rules and variable values) that results from reading the make?

 files; then execute as usual or as otherwise specified. This also prints the version

 information given by the -v switch (see below). To print the data base without try?

 ing to remake any files, use make -p -f/dev/null.

 -q, --question

 ``Question mode''. Do not run any commands, or print anything; just return an exit

 status that is zero if the specified targets are already up to date, nonzero other?

 wise.

 -r, --no-builtin-rules

 Eliminate use of the built-in implicit rules. Also clear out the default list of

 suffixes for suffix rules.

 -R, --no-builtin-variables

 Don't define any built-in variables.

 -s, --silent, --quiet

 Silent operation; do not print the commands as they are executed.

 -S, --no-keep-going, --stop

 Cancel the effect of the -k option. This is never necessary except in a recursive

 make where -k might be inherited from the top-level make via MAKEFLAGS or if you set

 -k in MAKEFLAGS in your environment. Page 4/7

 -t, --touch

 Touch files (mark them up to date without really changing them) instead of running

 their commands. This is used to pretend that the commands were done, in order to

 fool future invocations of make.

 --trace

 Information about the disposition of each target is printed (why the target is being

 rebuilt and what commands are run to rebuild it).

 -v, --version

 Print the version of the make program plus a copyright, a list of authors and a no?

 tice that there is no warranty.

 -w, --print-directory

 Print a message containing the working directory before and after other processing.

 This may be useful for tracking down errors from complicated nests of recursive make

 commands.

 --no-print-directory

 Turn off -w, even if it was turned on implicitly.

 -W file, --what-if=file, --new-file=file, --assume-new=file

 Pretend that the target file has just been modified. When used with the -n flag,

 this shows you what would happen if you were to modify that file. Without -n, it is

 almost the same as running a touch command on the given file before running make, ex?

 cept that the modification time is changed only in the imagination of make.

 --warn-undefined-variables

 Warn when an undefined variable is referenced.

EXIT STATUS

 GNU make exits with a status of zero if all makefiles were successfully parsed and no tar?

 gets that were built failed. A status of one will be returned if the -q flag was used and

 make determines that a target needs to be rebuilt. A status of two will be returned if

 any errors were encountered.

SEE ALSO

 The full documentation for make is maintained as a Texinfo manual. If the info and make

 programs are properly installed at your site, the command

 info make

 should give you access to the complete manual. Additionally, the manual is also available Page 5/7

 online at https://www.gnu.org/software/make/manual/html_node/index.html

PARALLEL MAKE AND THE JOBSERVER

 Using the -j option, the user can instruct make to execute tasks in parallel. By specify?

 ing a numeric argument to -j the user may specify an upper limit of the number of parallel

 tasks to be run.

 When the build environment is such that a top level make invokes sub-makes (for instance,

 a style in which each sub-directory contains its own Makefile), no individual instance of

 make knows how many tasks are running in parallel, so keeping the number of tasks under

 the upper limit would be impossible without communication between all the make instances

 running. While solutions like having the top level make serve as a central controller are

 feasible, or using other synchronization mechanisms like shared memory or sockets can be

 created, the current implementation uses a simple shared pipe.

 This pipe is created by the top-level make process, and passed on to all the sub-makes.

 The top level makeprocesswrites N-1 one-byte tokens into the pipe (The top level make is

 assumed to reserve one token for itself). Whenever any of the make processes (including

 the top-level make) needs to run a new task, it reads a byte from the shared pipe. If

 there are no tokens left, it must wait for a token to be written back to the pipe. Once

 the task is completed, the make process writes a token back to the pipe (and thus, if the

 tokens had been exhausted, unblocking the first make process that was waiting to read a

 token). Since only N-1 tokens were written into the pipe, no more than N tasks can be

 running at any given time.

 If the job to be run is not a sub-make then make will close the jobserver pipe file de?

 scriptors before invoking the commands, so that the command can not interfere with the

 jobserver, and the command does not find any unusual file descriptors.

BUGS

 See the chapter ``Problems and Bugs'' in The GNU Make Manual.

AUTHOR

 This manual page contributed by Dennis Morse of Stanford University. Further updates con?

 tributed by Mike Frysinger. It has been reworked by Roland McGrath. Maintained by Paul

 Smith.

COPYRIGHT

 Copyright ? 1992-1993, 1996-2016 Free Software Foundation, Inc. This file is part of GNU

 make. Page 6/7

 GNU Make is free software; you can redistribute it and/or modify it under the terms of the

 GNU General Public License as published by the Free Software Foundation; either version 3

 of the License, or (at your option) any later version.

 GNU Make is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

 without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

 See the GNU General Public License for more details.

 You should have received a copy of the GNU General Public License along with this program.

 If not, see http://www.gnu.org/licenses/.

GNU 28 February 2016 MAKE(1)

Page 7/7

