
Rocky Enterprise Linux 9.2 Manual Pages on command 'gitrevisions.7'

$ man gitrevisions.7

GITREVISIONS(7) Git Manual GITREVISIONS(7)

NAME

 gitrevisions - Specifying revisions and ranges for Git

SYNOPSIS

 gitrevisions

DESCRIPTION

 Many Git commands take revision parameters as arguments. Depending on the command, they

 denote a specific commit or, for commands which walk the revision graph (such as git-

 log(1)), all commits which are reachable from that commit. For commands that walk the

 revision graph one can also specify a range of revisions explicitly.

 In addition, some Git commands (such as git-show(1) and git-push(1)) can also take

 revision parameters which denote other objects than commits, e.g. blobs ("files") or trees

 ("directories of files").

SPECIFYING REVISIONS

 A revision parameter <rev> typically, but not necessarily, names a commit object. It uses

 what is called an extended SHA-1 syntax. Here are various ways to spell object names. The

 ones listed near the end of this list name trees and blobs contained in a commit.

 Note

 This document shows the "raw" syntax as seen by git. The shell and other UIs might

 require additional quoting to protect special characters and to avoid word splitting.

 <sha1>, e.g. dae86e1950b1277e545cee180551750029cfe735, dae86e

 The full SHA-1 object name (40-byte hexadecimal string), or a leading substring that

 is unique within the repository. E.g. dae86e1950b1277e545cee180551750029cfe735 and Page 1/9

 dae86e both name the same commit object if there is no other object in your repository

 whose object name starts with dae86e.

 <describeOutput>, e.g. v1.7.4.2-679-g3bee7fb

 Output from git describe; i.e. a closest tag, optionally followed by a dash and a

 number of commits, followed by a dash, a g, and an abbreviated object name.

 <refname>, e.g. master, heads/master, refs/heads/master

 A symbolic ref name. E.g. master typically means the commit object referenced by

 refs/heads/master. If you happen to have both heads/master and tags/master, you can

 explicitly say heads/master to tell Git which one you mean. When ambiguous, a

 <refname> is disambiguated by taking the first match in the following rules:

 1. If $GIT_DIR/<refname> exists, that is what you mean (this is usually useful only

 for HEAD, FETCH_HEAD, ORIG_HEAD, MERGE_HEAD and CHERRY_PICK_HEAD);

 2. otherwise, refs/<refname> if it exists;

 3. otherwise, refs/tags/<refname> if it exists;

 4. otherwise, refs/heads/<refname> if it exists;

 5. otherwise, refs/remotes/<refname> if it exists;

 6. otherwise, refs/remotes/<refname>/HEAD if it exists.

 HEAD names the commit on which you based the changes in the working tree.

 FETCH_HEAD records the branch which you fetched from a remote repository with your

 last git fetch invocation. ORIG_HEAD is created by commands that move your HEAD

 in a drastic way, to record the position of the HEAD before their operation, so

 that you can easily change the tip of the branch back to the state before you ran

 them. MERGE_HEAD records the commit(s) which you are merging into your branch

 when you run git merge. CHERRY_PICK_HEAD records the commit which you are

 cherry-picking when you run git cherry-pick.

 Note that any of the refs/* cases above may come either from the $GIT_DIR/refs

 directory or from the $GIT_DIR/packed-refs file. While the ref name encoding is

 unspecified, UTF-8 is preferred as some output processing may assume ref names in

 UTF-8.

 @

 @ alone is a shortcut for HEAD.

 [<refname>]@{<date>}, e.g. master@{yesterday}, HEAD@{5 minutes ago}

 A ref followed by the suffix @ with a date specification enclosed in a brace pair Page 2/9

 (e.g. {yesterday}, {1 month 2 weeks 3 days 1 hour 1 second ago} or {1979-02-26

 18:30:00}) specifies the value of the ref at a prior point in time. This suffix may

 only be used immediately following a ref name and the ref must have an existing log

 ($GIT_DIR/logs/<ref>). Note that this looks up the state of your local ref at a given

 time; e.g., what was in your local master branch last week. If you want to look at

 commits made during certain times, see --since and --until.

 <refname>@{<n>}, e.g. master@{1}

 A ref followed by the suffix @ with an ordinal specification enclosed in a brace pair

 (e.g. {1}, {15}) specifies the n-th prior value of that ref. For example master@{1}

 is the immediate prior value of master while master@{5} is the 5th prior value of

 master. This suffix may only be used immediately following a ref name and the ref must

 have an existing log ($GIT_DIR/logs/<refname>).

 @{<n>}, e.g. @{1}

 You can use the @ construct with an empty ref part to get at a reflog entry of the

 current branch. For example, if you are on branch blabla then @{1} means the same as

 blabla@{1}.

 @{-<n>}, e.g. @{-1}

 The construct @{-<n>} means the <n>th branch/commit checked out before the current

 one.

 [<branchname>]@{upstream}, e.g. master@{upstream}, @{u}

 The suffix @{upstream} to a branchname (short form <branchname>@{u}) refers to the

 branch that the branch specified by branchname is set to build on top of (configured

 with branch.<name>.remote and branch.<name>.merge). A missing branchname defaults to

 the current one. These suffixes are also accepted when spelled in uppercase, and they

 mean the same thing no matter the case.

 [<branchname>]@{push}, e.g. master@{push}, @{push}

 The suffix @{push} reports the branch "where we would push to" if git push were run

 while branchname was checked out (or the current HEAD if no branchname is specified).

 Since our push destination is in a remote repository, of course, we report the local

 tracking branch that corresponds to that branch (i.e., something in refs/remotes/).

 Here?s an example to make it more clear:

 $ git config push.default current

 $ git config remote.pushdefault myfork Page 3/9

 $ git switch -c mybranch origin/master

 $ git rev-parse --symbolic-full-name @{upstream}

 refs/remotes/origin/master

 $ git rev-parse --symbolic-full-name @{push}

 refs/remotes/myfork/mybranch

 Note in the example that we set up a triangular workflow, where we pull from one

 location and push to another. In a non-triangular workflow, @{push} is the same as

 @{upstream}, and there is no need for it.

 This suffix is also accepted when spelled in uppercase, and means the same thing no

 matter the case.

 <rev>^[<n>], e.g. HEAD^, v1.5.1^0

 A suffix ^ to a revision parameter means the first parent of that commit object. ^<n>

 means the <n>th parent (i.e. <rev>^ is equivalent to <rev>^1). As a special rule,

 <rev>^0 means the commit itself and is used when <rev> is the object name of a tag

 object that refers to a commit object.

 <rev>~[<n>], e.g. HEAD~, master~3

 A suffix ~ to a revision parameter means the first parent of that commit object. A

 suffix ~<n> to a revision parameter means the commit object that is the <n>th

 generation ancestor of the named commit object, following only the first parents. I.e.

 <rev>~3 is equivalent to <rev>^^^ which is equivalent to <rev>^1^1^1. See below for an

 illustration of the usage of this form.

 <rev>^{<type>}, e.g. v0.99.8^{commit}

 A suffix ^ followed by an object type name enclosed in brace pair means dereference

 the object at <rev> recursively until an object of type <type> is found or the object

 cannot be dereferenced anymore (in which case, barf). For example, if <rev> is a

 commit-ish, <rev>^{commit} describes the corresponding commit object. Similarly, if

 <rev> is a tree-ish, <rev>^{tree} describes the corresponding tree object. <rev>^0 is

 a short-hand for <rev>^{commit}.

 <rev>^{object} can be used to make sure <rev> names an object that exists, without

 requiring <rev> to be a tag, and without dereferencing <rev>; because a tag is already

 an object, it does not have to be dereferenced even once to get to an object.

 <rev>^{tag} can be used to ensure that <rev> identifies an existing tag object.

 <rev>^{}, e.g. v0.99.8^{} Page 4/9

 A suffix ^ followed by an empty brace pair means the object could be a tag, and

 dereference the tag recursively until a non-tag object is found.

 <rev>^{/<text>}, e.g. HEAD^{/fix nasty bug}

 A suffix ^ to a revision parameter, followed by a brace pair that contains a text led

 by a slash, is the same as the :/fix nasty bug syntax below except that it returns the

 youngest matching commit which is reachable from the <rev> before ^.

 :/<text>, e.g. :/fix nasty bug

 A colon, followed by a slash, followed by a text, names a commit whose commit message

 matches the specified regular expression. This name returns the youngest matching

 commit which is reachable from any ref, including HEAD. The regular expression can

 match any part of the commit message. To match messages starting with a string, one

 can use e.g. :/^foo. The special sequence :/! is reserved for modifiers to what is

 matched. :/!-foo performs a negative match, while :/!!foo matches a literal !

 character, followed by foo. Any other sequence beginning with :/! is reserved for

 now. Depending on the given text, the shell?s word splitting rules might require

 additional quoting.

 <rev>:<path>, e.g. HEAD:README, master:./README

 A suffix : followed by a path names the blob or tree at the given path in the tree-ish

 object named by the part before the colon. A path starting with ./ or ../ is relative

 to the current working directory. The given path will be converted to be relative to

 the working tree?s root directory. This is most useful to address a blob or tree from

 a commit or tree that has the same tree structure as the working tree.

 :[<n>:]<path>, e.g. :0:README, :README

 A colon, optionally followed by a stage number (0 to 3) and a colon, followed by a

 path, names a blob object in the index at the given path. A missing stage number (and

 the colon that follows it) names a stage 0 entry. During a merge, stage 1 is the

 common ancestor, stage 2 is the target branch?s version (typically the current

 branch), and stage 3 is the version from the branch which is being merged.

 Here is an illustration, by Jon Loeliger. Both commit nodes B and C are parents of commit

 node A. Parent commits are ordered left-to-right.

 G H I J

 \ / \ /

 D E F Page 5/9

 \ | / \

 \ | / |

 \|/ |

 B C

 \ /

 \ /

 A

 A = = A^0

 B = A^ = A^1 = A~1

 C = = A^2

 D = A^^ = A^1^1 = A~2

 E = B^2 = A^^2

 F = B^3 = A^^3

 G = A^^^ = A^1^1^1 = A~3

 H = D^2 = B^^2 = A^^^2 = A~2^2

 I = F^ = B^3^ = A^^3^

 J = F^2 = B^3^2 = A^^3^2

SPECIFYING RANGES

 History traversing commands such as git log operate on a set of commits, not just a single

 commit.

 For these commands, specifying a single revision, using the notation described in the

 previous section, means the set of commits reachable from the given commit.

 Specifying several revisions means the set of commits reachable from any of the given

 commits.

 A commit?s reachable set is the commit itself and the commits in its ancestry chain.

 There are several notations to specify a set of connected commits (called a "revision

 range"), illustrated below.

 Commit Exclusions

 ^<rev> (caret) Notation

 To exclude commits reachable from a commit, a prefix ^ notation is used. E.g. ^r1 r2

 means commits reachable from r2 but exclude the ones reachable from r1 (i.e. r1 and

 its ancestors).

 Dotted Range Notations Page 6/9

 The .. (two-dot) Range Notation

 The ^r1 r2 set operation appears so often that there is a shorthand for it. When you

 have two commits r1 and r2 (named according to the syntax explained in SPECIFYING

 REVISIONS above), you can ask for commits that are reachable from r2 excluding those

 that are reachable from r1 by ^r1 r2 and it can be written as r1..r2.

 The ... (three-dot) Symmetric Difference Notation

 A similar notation r1...r2 is called symmetric difference of r1 and r2 and is defined

 as r1 r2 --not $(git merge-base --all r1 r2). It is the set of commits that are

 reachable from either one of r1 (left side) or r2 (right side) but not from both.

 In these two shorthand notations, you can omit one end and let it default to HEAD. For

 example, origin.. is a shorthand for origin..HEAD and asks "What did I do since I forked

 from the origin branch?" Similarly, ..origin is a shorthand for HEAD..origin and asks

 "What did the origin do since I forked from them?" Note that .. would mean HEAD..HEAD

 which is an empty range that is both reachable and unreachable from HEAD.

 Commands that are specifically designed to take two distinct ranges (e.g. "git range-diff

 R1 R2" to compare two ranges) do exist, but they are exceptions. Unless otherwise noted,

 all "git" commands that operate on a set of commits work on a single revision range. In

 other words, writing two "two-dot range notation" next to each other, e.g.

 $ git log A..B C..D

 does not specify two revision ranges for most commands. Instead it will name a single

 connected set of commits, i.e. those that are reachable from either B or D but are

 reachable from neither A or C. In a linear history like this:

 ---A---B---o---o---C---D

 because A and B are reachable from C, the revision range specified by these two dotted

 ranges is a single commit D.

 Other <rev>^ Parent Shorthand Notations

 Three other shorthands exist, particularly useful for merge commits, for naming a set that

 is formed by a commit and its parent commits.

 The r1^@ notation means all parents of r1.

 The r1^! notation includes commit r1 but excludes all of its parents. By itself, this

 notation denotes the single commit r1.

 The <rev>^-[<n>] notation includes <rev> but excludes the <n>th parent (i.e. a shorthand

 for <rev>^<n>..<rev>), with <n> = 1 if not given. This is typically useful for merge Page 7/9

 commits where you can just pass <commit>^- to get all the commits in the branch that was

 merged in merge commit <commit> (including <commit> itself).

 While <rev>^<n> was about specifying a single commit parent, these three notations also

 consider its parents. For example you can say HEAD^2^@, however you cannot say HEAD^@^2.

REVISION RANGE SUMMARY

 <rev>

 Include commits that are reachable from <rev> (i.e. <rev> and its ancestors).

 ^<rev>

 Exclude commits that are reachable from <rev> (i.e. <rev> and its ancestors).

 <rev1>..<rev2>

 Include commits that are reachable from <rev2> but exclude those that are reachable

 from <rev1>. When either <rev1> or <rev2> is omitted, it defaults to HEAD.

 <rev1>...<rev2>

 Include commits that are reachable from either <rev1> or <rev2> but exclude those that

 are reachable from both. When either <rev1> or <rev2> is omitted, it defaults to HEAD.

 <rev>^@, e.g. HEAD^@

 A suffix ^ followed by an at sign is the same as listing all parents of <rev>

 (meaning, include anything reachable from its parents, but not the commit itself).

 <rev>^!, e.g. HEAD^!

 A suffix ^ followed by an exclamation mark is the same as giving commit <rev> and then

 all its parents prefixed with ^ to exclude them (and their ancestors).

 <rev>^-<n>, e.g. HEAD^-, HEAD^-2

 Equivalent to <rev>^<n>..<rev>, with <n> = 1 if not given.

 Here are a handful of examples using the Loeliger illustration above, with each step in

 the notation?s expansion and selection carefully spelt out:

 Args Expanded arguments Selected commits

 D G H D

 D F G H I J D F

 ^G D H D

 ^D B E I J F B

 ^D B C E I J F B C

 C I J F C

 B..C = ^B C C Page 8/9

 B...C = B ^F C G H D E B C

 B^- = B^..B

 = ^B^1 B E I J F B

 C^@ = C^1

 = F I J F

 B^@ = B^1 B^2 B^3

 = D E F D G H E F I J

 C^! = C ^C^@

 = C ^C^1

 = C ^F C

 B^! = B ^B^@

 = B ^B^1 ^B^2 ^B^3

 = B ^D ^E ^F B

 F^! D = F ^I ^J D G H D F

SEE ALSO

 git-rev-parse(1)

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GITREVISIONS(7)

Page 9/9

