
Rocky Enterprise Linux 9.2 Manual Pages on command 'gitmodules.5'

$ man gitmodules.5

GITMODULES(5) Git Manual GITMODULES(5)

NAME

 gitmodules - Defining submodule properties

SYNOPSIS

 $GIT_WORK_TREE/.gitmodules

DESCRIPTION

 The .gitmodules file, located in the top-level directory of a Git working tree, is a text

 file with a syntax matching the requirements of git-config(1).

 The file contains one subsection per submodule, and the subsection value is the name of

 the submodule. The name is set to the path where the submodule has been added unless it

 was customized with the --name option of git submodule add. Each submodule section also

 contains the following required keys:

 submodule.<name>.path

 Defines the path, relative to the top-level directory of the Git working tree, where

 the submodule is expected to be checked out. The path name must not end with a /. All

 submodule paths must be unique within the .gitmodules file.

 submodule.<name>.url

 Defines a URL from which the submodule repository can be cloned. This may be either an

 absolute URL ready to be passed to git-clone(1) or (if it begins with ./ or ../) a

 location relative to the superproject?s origin repository.

 In addition, there are a number of optional keys:

 submodule.<name>.update

 Defines the default update procedure for the named submodule, i.e. how the submodule Page 1/3

 is updated by the git submodule update command in the superproject. This is only used

 by git submodule init to initialize the configuration variable of the same name.

 Allowed values here are checkout, rebase, merge or none. See description of update

 command in git-submodule(1) for their meaning. For security reasons, the !command form

 is not accepted here.

 submodule.<name>.branch

 A remote branch name for tracking updates in the upstream submodule. If the option is

 not specified, it defaults to the remote HEAD. A special value of . is used to

 indicate that the name of the branch in the submodule should be the same name as the

 current branch in the current repository. See the --remote documentation in git-

 submodule(1) for details.

 submodule.<name>.fetchRecurseSubmodules

 This option can be used to control recursive fetching of this submodule. If this

 option is also present in the submodule?s entry in .git/config of the superproject,

 the setting there will override the one found in .gitmodules. Both settings can be

 overridden on the command line by using the --[no-]recurse-submodules option to git

 fetch and git pull.

 submodule.<name>.ignore

 Defines under what circumstances git status and the diff family show a submodule as

 modified. The following values are supported:

 all

 The submodule will never be considered modified (but will nonetheless show up in

 the output of status and commit when it has been staged).

 dirty

 All changes to the submodule?s work tree will be ignored, only committed

 differences between the HEAD of the submodule and its recorded state in the

 superproject are taken into account.

 untracked

 Only untracked files in submodules will be ignored. Committed differences and

 modifications to tracked files will show up.

 none

 No modifications to submodules are ignored, all of committed differences, and

 modifications to tracked and untracked files are shown. This is the default Page 2/3

 option.

 If this option is also present in the submodule?s entry in .git/config of the

 superproject, the setting there will override the one found in .gitmodules.

 Both settings can be overridden on the command line by using the --ignore-submodules

 option. The git submodule commands are not affected by this setting.

 submodule.<name>.shallow

 When set to true, a clone of this submodule will be performed as a shallow clone (with

 a history depth of 1) unless the user explicitly asks for a non-shallow clone.

NOTES

 Git does not allow the .gitmodules file within a working tree to be a symbolic link, and

 will refuse to check out such a tree entry. This keeps behavior consistent when the file

 is accessed from the index or a tree versus from the filesystem, and helps Git reliably

 enforce security checks of the file contents.

EXAMPLES

 Consider the following .gitmodules file:

 [submodule "libfoo"]

 path = include/foo

 url = git://foo.com/git/lib.git

 [submodule "libbar"]

 path = include/bar

 url = git://bar.com/git/lib.git

 This defines two submodules, libfoo and libbar. These are expected to be checked out in

 the paths include/foo and include/bar, and for both submodules a URL is specified which

 can be used for cloning the submodules.

SEE ALSO

 git-submodule(1), gitsubmodules(7), git-config(1)

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GITMODULES(5)

Page 3/3

