
Rocky Enterprise Linux 9.2 Manual Pages on command 'gitcredentials.7'

$ man gitcredentials.7

GITCREDENTIALS(7) Git Manual GITCREDENTIALS(7)

NAME

 gitcredentials - Providing usernames and passwords to Git

SYNOPSIS

 git config credential.https://example.com.username myusername

 git config credential.helper "$helper $options"

DESCRIPTION

 Git will sometimes need credentials from the user in order to perform operations; for

 example, it may need to ask for a username and password in order to access a remote

 repository over HTTP. This manual describes the mechanisms Git uses to request these

 credentials, as well as some features to avoid inputting these credentials repeatedly.

REQUESTING CREDENTIALS

 Without any credential helpers defined, Git will try the following strategies to ask the

 user for usernames and passwords:

 1. If the GIT_ASKPASS environment variable is set, the program specified by the variable

 is invoked. A suitable prompt is provided to the program on the command line, and the

 user?s input is read from its standard output.

 2. Otherwise, if the core.askPass configuration variable is set, its value is used as

 above.

 3. Otherwise, if the SSH_ASKPASS environment variable is set, its value is used as above.

 4. Otherwise, the user is prompted on the terminal.

AVOIDING REPETITION

 It can be cumbersome to input the same credentials over and over. Git provides two methods Page 1/6

 to reduce this annoyance:

 1. Static configuration of usernames for a given authentication context.

 2. Credential helpers to cache or store passwords, or to interact with a system password

 wallet or keychain.

 The first is simple and appropriate if you do not have secure storage available for a

 password. It is generally configured by adding this to your config:

 [credential "https://example.com"]

 username = me

 Credential helpers, on the other hand, are external programs from which Git can request

 both usernames and passwords; they typically interface with secure storage provided by the

 OS or other programs.

 To use a helper, you must first select one to use. Git currently includes the following

 helpers:

 cache

 Cache credentials in memory for a short period of time. See git-credential-cache(1)

 for details.

 store

 Store credentials indefinitely on disk. See git-credential-store(1) for details.

 You may also have third-party helpers installed; search for credential-* in the output of

 git help -a, and consult the documentation of individual helpers. Once you have selected a

 helper, you can tell Git to use it by putting its name into the credential.helper

 variable.

 1. Find a helper.

 $ git help -a | grep credential-

 credential-foo

 2. Read its description.

 $ git help credential-foo

 3. Tell Git to use it.

 $ git config --global credential.helper foo

CREDENTIAL CONTEXTS

 Git considers each credential to have a context defined by a URL. This context is used to

 look up context-specific configuration, and is passed to any helpers, which may use it as

 an index into secure storage. Page 2/6

 For instance, imagine we are accessing https://example.com/foo.git. When Git looks into a

 config file to see if a section matches this context, it will consider the two a match if

 the context is a more-specific subset of the pattern in the config file. For example, if

 you have this in your config file:

 [credential "https://example.com"]

 username = foo

 then we will match: both protocols are the same, both hosts are the same, and the

 "pattern" URL does not care about the path component at all. However, this context would

 not match:

 [credential "https://kernel.org"]

 username = foo

 because the hostnames differ. Nor would it match foo.example.com; Git compares hostnames

 exactly, without considering whether two hosts are part of the same domain. Likewise, a

 config entry for http://example.com would not match: Git compares the protocols exactly.

 However, you may use wildcards in the domain name and other pattern matching techniques as

 with the http.<url>.* options.

 If the "pattern" URL does include a path component, then this too must match exactly: the

 context https://example.com/bar/baz.git will match a config entry for

 https://example.com/bar/baz.git (in addition to matching the config entry for

 https://example.com) but will not match a config entry for https://example.com/bar.

CONFIGURATION OPTIONS

 Options for a credential context can be configured either in credential.* (which applies

 to all credentials), or credential.<url>.*, where <url> matches the context as described

 above.

 The following options are available in either location:

 helper

 The name of an external credential helper, and any associated options. If the helper

 name is not an absolute path, then the string git credential- is prepended. The

 resulting string is executed by the shell (so, for example, setting this to foo

 --option=bar will execute git credential-foo --option=bar via the shell. See the

 manual of specific helpers for examples of their use.

 If there are multiple instances of the credential.helper configuration variable, each

 helper will be tried in turn, and may provide a username, password, or nothing. Once Page 3/6

 Git has acquired both a username and a password, no more helpers will be tried.

 If credential.helper is configured to the empty string, this resets the helper list to

 empty (so you may override a helper set by a lower-priority config file by configuring

 the empty-string helper, followed by whatever set of helpers you would like).

 username

 A default username, if one is not provided in the URL.

 useHttpPath

 By default, Git does not consider the "path" component of an http URL to be worth

 matching via external helpers. This means that a credential stored for

 https://example.com/foo.git will also be used for https://example.com/bar.git. If you

 do want to distinguish these cases, set this option to true.

CUSTOM HELPERS

 You can write your own custom helpers to interface with any system in which you keep

 credentials.

 Credential helpers are programs executed by Git to fetch or save credentials from and to

 long-term storage (where "long-term" is simply longer than a single Git process; e.g.,

 credentials may be stored in-memory for a few minutes, or indefinitely on disk).

 Each helper is specified by a single string in the configuration variable

 credential.helper (and others, see git-config(1)). The string is transformed by Git into a

 command to be executed using these rules:

 1. If the helper string begins with "!", it is considered a shell snippet, and everything

 after the "!" becomes the command.

 2. Otherwise, if the helper string begins with an absolute path, the verbatim helper

 string becomes the command.

 3. Otherwise, the string "git credential-" is prepended to the helper string, and the

 result becomes the command.

 The resulting command then has an "operation" argument appended to it (see below for

 details), and the result is executed by the shell.

 Here are some example specifications:

 # run "git credential-foo"

 [credential]

 helper = foo

 # same as above, but pass an argument to the helper Page 4/6

 [credential]

 helper = "foo --bar=baz"

 # the arguments are parsed by the shell, so use shell

 # quoting if necessary

 [credential]

 helper = "foo --bar='whitespace arg'"

 # you can also use an absolute path, which will not use the git wrapper

 [credential]

 helper = "/path/to/my/helper --with-arguments"

 # or you can specify your own shell snippet

 [credential "https://example.com"]

 username = your_user

 helper = "!f() { test \"$1\" = get && echo \"password=$(cat $HOME/.secret)\"; }; f"

 Generally speaking, rule (3) above is the simplest for users to specify. Authors of

 credential helpers should make an effort to assist their users by naming their program

 "git-credential-$NAME", and putting it in the $PATH or $GIT_EXEC_PATH during installation,

 which will allow a user to enable it with git config credential.helper $NAME.

 When a helper is executed, it will have one "operation" argument appended to its command

 line, which is one of:

 get

 Return a matching credential, if any exists.

 store

 Store the credential, if applicable to the helper.

 erase

 Remove a matching credential, if any, from the helper?s storage.

 The details of the credential will be provided on the helper?s stdin stream. The exact

 format is the same as the input/output format of the git credential plumbing command (see

 the section INPUT/OUTPUT FORMAT in git-credential(1) for a detailed specification).

 For a get operation, the helper should produce a list of attributes on stdout in the same

 format (see git-credential(1) for common attributes). A helper is free to produce a

 subset, or even no values at all if it has nothing useful to provide. Any provided

 attributes will overwrite those already known about by Git?s credential subsystem.

 While it is possible to override all attributes, well behaving helpers should refrain from Page 5/6

 doing so for any attribute other than username and password.

 If a helper outputs a quit attribute with a value of true or 1, no further helpers will be

 consulted, nor will the user be prompted (if no credential has been provided, the

 operation will then fail).

 Similarly, no more helpers will be consulted once both username and password had been

 provided.

 For a store or erase operation, the helper?s output is ignored.

 If a helper fails to perform the requested operation or needs to notify the user of a

 potential issue, it may write to stderr.

 If it does not support the requested operation (e.g., a read-only store), it should

 silently ignore the request.

 If a helper receives any other operation, it should silently ignore the request. This

 leaves room for future operations to be added (older helpers will just ignore the new

 requests).

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GITCREDENTIALS(7)

Page 6/6

