
Rocky Enterprise Linux 9.2 Manual Pages on command 'gitcli.7'

$ man gitcli.7

GITCLI(7)                                   Git Manual                                  GITCLI(7)

NAME

       gitcli - Git command-line interface and conventions

SYNOPSIS

       gitcli

DESCRIPTION

       This manual describes the convention used throughout Git CLI.

       Many commands take revisions (most often "commits", but sometimes "tree-ish", depending on

       the context and command) and paths as their arguments. Here are the rules:

       ?   Revisions come first and then paths. E.g. in git diff v1.0 v2.0 arch/x86

           include/asm-x86, v1.0 and v2.0 are revisions and arch/x86 and include/asm-x86 are

           paths.

       ?   When an argument can be misunderstood as either a revision or a path, they can be

           disambiguated by placing -- between them. E.g.  git diff -- HEAD is, "I have a file

           called HEAD in my work tree. Please show changes between the version I staged in the

           index and what I have in the work tree for that file", not "show difference between

           the HEAD commit and the work tree as a whole". You can say git diff HEAD -- to ask for

           the latter.

       ?   Without disambiguating --, Git makes a reasonable guess, but errors out and asking you

           to disambiguate when ambiguous. E.g. if you have a file called HEAD in your work tree,

           git diff HEAD is ambiguous, and you have to say either git diff HEAD -- or git diff --

           HEAD to disambiguate.

       ?   Because -- disambiguates revisions and paths in some commands, it cannot be used for Page 1/5



           those commands to separate options and revisions. You can use --end-of-options for

           this (it also works for commands that do not distinguish between revisions in paths,

           in which case it is simply an alias for --).

           When writing a script that is expected to handle random user-input, it is a good

           practice to make it explicit which arguments are which by placing disambiguating -- at

           appropriate places.

       ?   Many commands allow wildcards in paths, but you need to protect them from getting

           globbed by the shell. These two mean different things:

               $ git restore *.c

               $ git restore \*.c

           The former lets your shell expand the fileglob, and you are asking the dot-C files in

           your working tree to be overwritten with the version in the index. The latter passes

           the *.c to Git, and you are asking the paths in the index that match the pattern to be

           checked out to your working tree. After running git add hello.c; rm hello.c, you will

           not see hello.c in your working tree with the former, but with the latter you will.

       ?   Just as the filesystem .  (period) refers to the current directory, using a .  as a

           repository name in Git (a dot-repository) is a relative path and means your current

           repository.

       Here are the rules regarding the "flags" that you should follow when you are scripting

       Git:

       ?   it?s preferred to use the non-dashed form of Git commands, which means that you should

           prefer git foo to git-foo.

       ?   splitting short options to separate words (prefer git foo -a -b to git foo -ab, the

           latter may not even work).

       ?   when a command-line option takes an argument, use the stuck form. In other words,

           write git foo -oArg instead of git foo -o Arg for short options, and git foo

           --long-opt=Arg instead of git foo --long-opt Arg for long options. An option that

           takes optional option-argument must be written in the stuck form.

       ?   when you give a revision parameter to a command, make sure the parameter is not

           ambiguous with a name of a file in the work tree. E.g. do not write git log -1 HEAD

           but write git log -1 HEAD --; the former will not work if you happen to have a file

           called HEAD in the work tree.

       ?   many commands allow a long option --option to be abbreviated only to their unique Page 2/5



           prefix (e.g. if there is no other option whose name begins with opt, you may be able

           to spell --opt to invoke the --option flag), but you should fully spell them out when

           writing your scripts; later versions of Git may introduce a new option whose name

           shares the same prefix, e.g.  --optimize, to make a short prefix that used to be

           unique no longer unique.

ENHANCED OPTION PARSER

       From the Git 1.5.4 series and further, many Git commands (not all of them at the time of

       the writing though) come with an enhanced option parser.

       Here is a list of the facilities provided by this option parser.

   Magic Options

       Commands which have the enhanced option parser activated all understand a couple of magic

       command-line options:

       -h

           gives a pretty printed usage of the command.

               $ git describe -h

               usage: git describe [<options>] <commit-ish>*

                  or: git describe [<options>] --dirty

                   --contains            find the tag that comes after the commit

                   --debug               debug search strategy on stderr

                   --all                 use any ref

                   --tags                use any tag, even unannotated

                   --long                always use long format

                   --abbrev[=<n>]        use <n> digits to display SHA-1s

           Note that some subcommand (e.g.  git grep) may behave differently when there are

           things on the command line other than -h, but git subcmd -h without anything else on

           the command line is meant to consistently give the usage.

       --help-all

           Some Git commands take options that are only used for plumbing or that are deprecated,

           and such options are hidden from the default usage. This option gives the full list of

           options.

   Negating options

       Options with long option names can be negated by prefixing --no-. For example, git branch

       has the option --track which is on by default. You can use --no-track to override that Page 3/5



       behaviour. The same goes for --color and --no-color.

   Aggregating short options

       Commands that support the enhanced option parser allow you to aggregate short options.

       This means that you can for example use git rm -rf or git clean -fdx.

   Abbreviating long options

       Commands that support the enhanced option parser accepts unique prefix of a long option as

       if it is fully spelled out, but use this with a caution. For example, git commit --amen

       behaves as if you typed git commit --amend, but that is true only until a later version of

       Git introduces another option that shares the same prefix, e.g. git commit --amenity

       option.

   Separating argument from the option

       You can write the mandatory option parameter to an option as a separate word on the

       command line. That means that all the following uses work:

           $ git foo --long-opt=Arg

           $ git foo --long-opt Arg

           $ git foo -oArg

           $ git foo -o Arg

       However, this is NOT allowed for switches with an optional value, where the stuck form

       must be used:

           $ git describe --abbrev HEAD     # correct

           $ git describe --abbrev=10 HEAD  # correct

           $ git describe --abbrev 10 HEAD  # NOT WHAT YOU MEANT

NOTES ON FREQUENTLY CONFUSED OPTIONS

       Many commands that can work on files in the working tree and/or in the index can take

       --cached and/or --index options. Sometimes people incorrectly think that, because the

       index was originally called cache, these two are synonyms. They are not ? these two

       options mean very different things.

       ?   The --cached option is used to ask a command that usually works on files in the

           working tree to only work with the index. For example, git grep, when used without a

           commit to specify from which commit to look for strings in, usually works on files in

           the working tree, but with the --cached option, it looks for strings in the index.

       ?   The --index option is used to ask a command that usually works on files in the working

           tree to also affect the index. For example, git stash apply usually merges changes Page 4/5



           recorded in a stash entry to the working tree, but with the --index option, it also

           merges changes to the index as well.

       git apply command can be used with --cached and --index (but not at the same time).

       Usually the command only affects the files in the working tree, but with --index, it

       patches both the files and their index entries, and with --cached, it modifies only the

       index entries.

       See also https://lore.kernel.org/git/7v64clg5u9.fsf@assigned-by-dhcp.cox.net/ and

       https://lore.kernel.org/git/7vy7ej9g38.fsf@gitster.siamese.dyndns.org/ for further

       information.

       Some other commands that also work on files in the working tree and/or in the index can

       take --staged and/or --worktree.

       ?   --staged is exactly like --cached, which is used to ask a command to only work on the

           index, not the working tree.

       ?   --worktree is the opposite, to ask a command to work on the working tree only, not the

           index.

       ?   The two options can be specified together to ask a command to work on both the index

           and the working tree.

GIT

       Part of the git(1) suite

Git 2.34.1                                  07/07/2023                                  GITCLI(7)

Page 5/5


