
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-submodule.1'

$ man git-submodule.1

GIT-SUBMODULE(1) Git Manual GIT-SUBMODULE(1)

NAME

 git-submodule - Initialize, update or inspect submodules

SYNOPSIS

 git submodule [--quiet] [--cached]

 git submodule [--quiet] add [<options>] [--] <repository> [<path>]

 git submodule [--quiet] status [--cached] [--recursive] [--] [<path>...]

 git submodule [--quiet] init [--] [<path>...]

 git submodule [--quiet] deinit [-f|--force] (--all|[--] <path>...)

 git submodule [--quiet] update [<options>] [--] [<path>...]

 git submodule [--quiet] set-branch [<options>] [--] <path>

 git submodule [--quiet] set-url [--] <path> <newurl>

 git submodule [--quiet] summary [<options>] [--] [<path>...]

 git submodule [--quiet] foreach [--recursive] <command>

 git submodule [--quiet] sync [--recursive] [--] [<path>...]

 git submodule [--quiet] absorbgitdirs [--] [<path>...]

DESCRIPTION

 Inspects, updates and manages submodules.

 For more information about submodules, see gitsubmodules(7).

COMMANDS

 With no arguments, shows the status of existing submodules. Several subcommands are

 available to perform operations on the submodules.

 add [-b <branch>] [-f|--force] [--name <name>] [--reference <repository>] [--depth Page 1/10

 <depth>] [--] <repository> [<path>]

 Add the given repository as a submodule at the given path to the changeset to be

 committed next to the current project: the current project is termed the

 "superproject".

 <repository> is the URL of the new submodule?s origin repository. This may be either

 an absolute URL, or (if it begins with ./ or ../), the location relative to the

 superproject?s default remote repository (Please note that to specify a repository

 foo.git which is located right next to a superproject bar.git, you?ll have to use

 ../foo.git instead of ./foo.git - as one might expect when following the rules for

 relative URLs - because the evaluation of relative URLs in Git is identical to that of

 relative directories).

 The default remote is the remote of the remote-tracking branch of the current branch.

 If no such remote-tracking branch exists or the HEAD is detached, "origin" is assumed

 to be the default remote. If the superproject doesn?t have a default remote configured

 the superproject is its own authoritative upstream and the current working directory

 is used instead.

 The optional argument <path> is the relative location for the cloned submodule to

 exist in the superproject. If <path> is not given, the canonical part of the source

 repository is used ("repo" for "/path/to/repo.git" and "foo" for "host.xz:foo/.git").

 If <path> exists and is already a valid Git repository, then it is staged for commit

 without cloning. The <path> is also used as the submodule?s logical name in its

 configuration entries unless --name is used to specify a logical name.

 The given URL is recorded into .gitmodules for use by subsequent users cloning the

 superproject. If the URL is given relative to the superproject?s repository, the

 presumption is the superproject and submodule repositories will be kept together in

 the same relative location, and only the superproject?s URL needs to be provided.

 git-submodule will correctly locate the submodule using the relative URL in

 .gitmodules.

 status [--cached] [--recursive] [--] [<path>...]

 Show the status of the submodules. This will print the SHA-1 of the currently checked

 out commit for each submodule, along with the submodule path and the output of git

 describe for the SHA-1. Each SHA-1 will possibly be prefixed with - if the submodule

 is not initialized, + if the currently checked out submodule commit does not match the Page 2/10

 SHA-1 found in the index of the containing repository and U if the submodule has merge

 conflicts.

 If --cached is specified, this command will instead print the SHA-1 recorded in the

 superproject for each submodule.

 If --recursive is specified, this command will recurse into nested submodules, and

 show their status as well.

 If you are only interested in changes of the currently initialized submodules with

 respect to the commit recorded in the index or the HEAD, git-status(1) and git-diff(1)

 will provide that information too (and can also report changes to a submodule?s work

 tree).

 init [--] [<path>...]

 Initialize the submodules recorded in the index (which were added and committed

 elsewhere) by setting submodule.$name.url in .git/config. It uses the same setting

 from .gitmodules as a template. If the URL is relative, it will be resolved using the

 default remote. If there is no default remote, the current repository will be assumed

 to be upstream.

 Optional <path> arguments limit which submodules will be initialized. If no path is

 specified and submodule.active has been configured, submodules configured to be active

 will be initialized, otherwise all submodules are initialized.

 When present, it will also copy the value of submodule.$name.update. This command does

 not alter existing information in .git/config. You can then customize the submodule

 clone URLs in .git/config for your local setup and proceed to git submodule update;

 you can also just use git submodule update --init without the explicit init step if

 you do not intend to customize any submodule locations.

 See the add subcommand for the definition of default remote.

 deinit [-f|--force] (--all|[--] <path>...)

 Unregister the given submodules, i.e. remove the whole submodule.$name section from

 .git/config together with their work tree. Further calls to git submodule update, git

 submodule foreach and git submodule sync will skip any unregistered submodules until

 they are initialized again, so use this command if you don?t want to have a local

 checkout of the submodule in your working tree anymore.

 When the command is run without pathspec, it errors out, instead of deinit-ing

 everything, to prevent mistakes. Page 3/10

 If --force is specified, the submodule?s working tree will be removed even if it

 contains local modifications.

 If you really want to remove a submodule from the repository and commit that use git-

 rm(1) instead. See gitsubmodules(7) for removal options.

 update [--init] [--remote] [-N|--no-fetch] [--[no-]recommend-shallow] [-f|--force]

 [--checkout|--rebase|--merge] [--reference <repository>] [--depth <depth>] [--recursive]

 [--jobs <n>] [--[no-]single-branch] [--] [<path>...]

 Update the registered submodules to match what the superproject expects by cloning

 missing submodules, fetching missing commits in submodules and updating the working

 tree of the submodules. The "updating" can be done in several ways depending on

 command line options and the value of submodule.<name>.update configuration variable.

 The command line option takes precedence over the configuration variable. If neither

 is given, a checkout is performed. The update procedures supported both from the

 command line as well as through the submodule.<name>.update configuration are:

 checkout

 the commit recorded in the superproject will be checked out in the submodule on a

 detached HEAD.

 If --force is specified, the submodule will be checked out (using git checkout

 --force), even if the commit specified in the index of the containing repository

 already matches the commit checked out in the submodule.

 rebase

 the current branch of the submodule will be rebased onto the commit recorded in

 the superproject.

 merge

 the commit recorded in the superproject will be merged into the current branch in

 the submodule.

 The following update procedures are only available via the submodule.<name>.update

 configuration variable:

 custom command

 arbitrary shell command that takes a single argument (the sha1 of the commit

 recorded in the superproject) is executed. When submodule.<name>.update is set to

 !command, the remainder after the exclamation mark is the custom command.

 none Page 4/10

 the submodule is not updated.

 If the submodule is not yet initialized, and you just want to use the setting as

 stored in .gitmodules, you can automatically initialize the submodule with the --init

 option.

 If --recursive is specified, this command will recurse into the registered submodules,

 and update any nested submodules within.

 set-branch (-b|--branch) <branch> [--] <path>, set-branch (-d|--default) [--] <path>

 Sets the default remote tracking branch for the submodule. The --branch option allows

 the remote branch to be specified. The --default option removes the

 submodule.<name>.branch configuration key, which causes the tracking branch to default

 to the remote HEAD.

 set-url [--] <path> <newurl>

 Sets the URL of the specified submodule to <newurl>. Then, it will automatically

 synchronize the submodule?s new remote URL configuration.

 summary [--cached|--files] [(-n|--summary-limit) <n>] [commit] [--] [<path>...]

 Show commit summary between the given commit (defaults to HEAD) and working

 tree/index. For a submodule in question, a series of commits in the submodule between

 the given super project commit and the index or working tree (switched by --cached)

 are shown. If the option --files is given, show the series of commits in the submodule

 between the index of the super project and the working tree of the submodule (this

 option doesn?t allow to use the --cached option or to provide an explicit commit).

 Using the --submodule=log option with git-diff(1) will provide that information too.

 foreach [--recursive] <command>

 Evaluates an arbitrary shell command in each checked out submodule. The command has

 access to the variables $name, $sm_path, $displaypath, $sha1 and $toplevel: $name is

 the name of the relevant submodule section in .gitmodules, $sm_path is the path of the

 submodule as recorded in the immediate superproject, $displaypath contains the

 relative path from the current working directory to the submodules root directory,

 $sha1 is the commit as recorded in the immediate superproject, and $toplevel is the

 absolute path to the top-level of the immediate superproject. Note that to avoid

 conflicts with $PATH on Windows, the $path variable is now a deprecated synonym of

 $sm_path variable. Any submodules defined in the superproject but not checked out are

 ignored by this command. Unless given --quiet, foreach prints the name of each Page 5/10

 submodule before evaluating the command. If --recursive is given, submodules are

 traversed recursively (i.e. the given shell command is evaluated in nested submodules

 as well). A non-zero return from the command in any submodule causes the processing to

 terminate. This can be overridden by adding || : to the end of the command.

 As an example, the command below will show the path and currently checked out commit

 for each submodule:

 git submodule foreach 'echo $sm_path `git rev-parse HEAD`'

 sync [--recursive] [--] [<path>...]

 Synchronizes submodules' remote URL configuration setting to the value specified in

 .gitmodules. It will only affect those submodules which already have a URL entry in

 .git/config (that is the case when they are initialized or freshly added). This is

 useful when submodule URLs change upstream and you need to update your local

 repositories accordingly.

 git submodule sync synchronizes all submodules while git submodule sync -- A

 synchronizes submodule "A" only.

 If --recursive is specified, this command will recurse into the registered submodules,

 and sync any nested submodules within.

 absorbgitdirs

 If a git directory of a submodule is inside the submodule, move the git directory of

 the submodule into its superproject?s $GIT_DIR/modules path and then connect the git

 directory and its working directory by setting the core.worktree and adding a .git

 file pointing to the git directory embedded in the superprojects git directory.

 A repository that was cloned independently and later added as a submodule or old

 setups have the submodules git directory inside the submodule instead of embedded into

 the superprojects git directory.

 This command is recursive by default.

OPTIONS

 -q, --quiet

 Only print error messages.

 --progress

 This option is only valid for add and update commands. Progress status is reported on

 the standard error stream by default when it is attached to a terminal, unless -q is

 specified. This flag forces progress status even if the standard error stream is not Page 6/10

 directed to a terminal.

 --all

 This option is only valid for the deinit command. Unregister all submodules in the

 working tree.

 -b <branch>, --branch <branch>

 Branch of repository to add as submodule. The name of the branch is recorded as

 submodule.<name>.branch in .gitmodules for update --remote. A special value of . is

 used to indicate that the name of the branch in the submodule should be the same name

 as the current branch in the current repository. If the option is not specified, it

 defaults to the remote HEAD.

 -f, --force

 This option is only valid for add, deinit and update commands. When running add, allow

 adding an otherwise ignored submodule path. When running deinit the submodule working

 trees will be removed even if they contain local changes. When running update (only

 effective with the checkout procedure), throw away local changes in submodules when

 switching to a different commit; and always run a checkout operation in the submodule,

 even if the commit listed in the index of the containing repository matches the commit

 checked out in the submodule.

 --cached

 This option is only valid for status and summary commands. These commands typically

 use the commit found in the submodule HEAD, but with this option, the commit stored in

 the index is used instead.

 --files

 This option is only valid for the summary command. This command compares the commit in

 the index with that in the submodule HEAD when this option is used.

 -n, --summary-limit

 This option is only valid for the summary command. Limit the summary size (number of

 commits shown in total). Giving 0 will disable the summary; a negative number means

 unlimited (the default). This limit only applies to modified submodules. The size is

 always limited to 1 for added/deleted/typechanged submodules.

 --remote

 This option is only valid for the update command. Instead of using the superproject?s

 recorded SHA-1 to update the submodule, use the status of the submodule?s Page 7/10

 remote-tracking branch. The remote used is branch?s remote (branch.<name>.remote),

 defaulting to origin. The remote branch used defaults to the remote HEAD, but the

 branch name may be overridden by setting the submodule.<name>.branch option in either

 .gitmodules or .git/config (with .git/config taking precedence).

 This works for any of the supported update procedures (--checkout, --rebase, etc.).

 The only change is the source of the target SHA-1. For example, submodule update

 --remote --merge will merge upstream submodule changes into the submodules, while

 submodule update --merge will merge superproject gitlink changes into the submodules.

 In order to ensure a current tracking branch state, update --remote fetches the

 submodule?s remote repository before calculating the SHA-1. If you don?t want to

 fetch, you should use submodule update --remote --no-fetch.

 Use this option to integrate changes from the upstream subproject with your

 submodule?s current HEAD. Alternatively, you can run git pull from the submodule,

 which is equivalent except for the remote branch name: update --remote uses the

 default upstream repository and submodule.<name>.branch, while git pull uses the

 submodule?s branch.<name>.merge. Prefer submodule.<name>.branch if you want to

 distribute the default upstream branch with the superproject and branch.<name>.merge

 if you want a more native feel while working in the submodule itself.

 -N, --no-fetch

 This option is only valid for the update command. Don?t fetch new objects from the

 remote site.

 --checkout

 This option is only valid for the update command. Checkout the commit recorded in the

 superproject on a detached HEAD in the submodule. This is the default behavior, the

 main use of this option is to override submodule.$name.update when set to a value

 other than checkout. If the key submodule.$name.update is either not explicitly set or

 set to checkout, this option is implicit.

 --merge

 This option is only valid for the update command. Merge the commit recorded in the

 superproject into the current branch of the submodule. If this option is given, the

 submodule?s HEAD will not be detached. If a merge failure prevents this process, you

 will have to resolve the resulting conflicts within the submodule with the usual

 conflict resolution tools. If the key submodule.$name.update is set to merge, this Page 8/10

 option is implicit.

 --rebase

 This option is only valid for the update command. Rebase the current branch onto the

 commit recorded in the superproject. If this option is given, the submodule?s HEAD

 will not be detached. If a merge failure prevents this process, you will have to

 resolve these failures with git-rebase(1). If the key submodule.$name.update is set to

 rebase, this option is implicit.

 --init

 This option is only valid for the update command. Initialize all submodules for which

 "git submodule init" has not been called so far before updating.

 --name

 This option is only valid for the add command. It sets the submodule?s name to the

 given string instead of defaulting to its path. The name must be valid as a directory

 name and may not end with a /.

 --reference <repository>

 This option is only valid for add and update commands. These commands sometimes need

 to clone a remote repository. In this case, this option will be passed to the git-

 clone(1) command.

 NOTE: Do not use this option unless you have read the note for git-clone(1)'s

 --reference, --shared, and --dissociate options carefully.

 --dissociate

 This option is only valid for add and update commands. These commands sometimes need

 to clone a remote repository. In this case, this option will be passed to the git-

 clone(1) command.

 NOTE: see the NOTE for the --reference option.

 --recursive

 This option is only valid for foreach, update, status and sync commands. Traverse

 submodules recursively. The operation is performed not only in the submodules of the

 current repo, but also in any nested submodules inside those submodules (and so on).

 --depth

 This option is valid for add and update commands. Create a shallow clone with a

 history truncated to the specified number of revisions. See git-clone(1)

 --[no-]recommend-shallow Page 9/10

 This option is only valid for the update command. The initial clone of a submodule

 will use the recommended submodule.<name>.shallow as provided by the .gitmodules file

 by default. To ignore the suggestions use --no-recommend-shallow.

 -j <n>, --jobs <n>

 This option is only valid for the update command. Clone new submodules in parallel

 with as many jobs. Defaults to the submodule.fetchJobs option.

 --[no-]single-branch

 This option is only valid for the update command. Clone only one branch during update:

 HEAD or one specified by --branch.

 <path>...

 Paths to submodule(s). When specified this will restrict the command to only operate

 on the submodules found at the specified paths. (This argument is required with add).

FILES

 When initializing submodules, a .gitmodules file in the top-level directory of the

 containing repository is used to find the url of each submodule. This file should be

 formatted in the same way as $GIT_DIR/config. The key to each submodule url is

 "submodule.$name.url". See gitmodules(5) for details.

SEE ALSO

 gitsubmodules(7), gitmodules(5).

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-SUBMODULE(1)

Page 10/10

