
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-status.1'

$ man git-status.1

GIT-STATUS(1) Git Manual GIT-STATUS(1)

NAME

 git-status - Show the working tree status

SYNOPSIS

 git status [<options>...] [--] [<pathspec>...]

DESCRIPTION

 Displays paths that have differences between the index file and the current HEAD commit,

 paths that have differences between the working tree and the index file, and paths in the

 working tree that are not tracked by Git (and are not ignored by gitignore(5)). The first

 are what you would commit by running git commit; the second and third are what you could

 commit by running git add before running git commit.

OPTIONS

 -s, --short

 Give the output in the short-format.

 -b, --branch

 Show the branch and tracking info even in short-format.

 --show-stash

 Show the number of entries currently stashed away.

 --porcelain[=<version>]

 Give the output in an easy-to-parse format for scripts. This is similar to the short

 output, but will remain stable across Git versions and regardless of user

 configuration. See below for details.

 The version parameter is used to specify the format version. This is optional and Page 1/10

 defaults to the original version v1 format.

 --long

 Give the output in the long-format. This is the default.

 -v, --verbose

 In addition to the names of files that have been changed, also show the textual

 changes that are staged to be committed (i.e., like the output of git diff --cached).

 If -v is specified twice, then also show the changes in the working tree that have not

 yet been staged (i.e., like the output of git diff).

 -u[<mode>], --untracked-files[=<mode>]

 Show untracked files.

 The mode parameter is used to specify the handling of untracked files. It is optional:

 it defaults to all, and if specified, it must be stuck to the option (e.g. -uno, but

 not -u no).

 The possible options are:

 ? no - Show no untracked files.

 ? normal - Shows untracked files and directories.

 ? all - Also shows individual files in untracked directories.

 When -u option is not used, untracked files and directories are shown (i.e. the same

 as specifying normal), to help you avoid forgetting to add newly created files.

 Because it takes extra work to find untracked files in the filesystem, this mode may

 take some time in a large working tree. Consider enabling untracked cache and split

 index if supported (see git update-index --untracked-cache and git update-index

 --split-index), Otherwise you can use no to have git status return more quickly

 without showing untracked files.

 The default can be changed using the status.showUntrackedFiles configuration variable

 documented in git-config(1).

 --ignore-submodules[=<when>]

 Ignore changes to submodules when looking for changes. <when> can be either "none",

 "untracked", "dirty" or "all", which is the default. Using "none" will consider the

 submodule modified when it either contains untracked or modified files or its HEAD

 differs from the commit recorded in the superproject and can be used to override any

 settings of the ignore option in git-config(1) or gitmodules(5). When "untracked" is

 used submodules are not considered dirty when they only contain untracked content (but Page 2/10

 they are still scanned for modified content). Using "dirty" ignores all changes to the

 work tree of submodules, only changes to the commits stored in the superproject are

 shown (this was the behavior before 1.7.0). Using "all" hides all changes to

 submodules (and suppresses the output of submodule summaries when the config option

 status.submoduleSummary is set).

 --ignored[=<mode>]

 Show ignored files as well.

 The mode parameter is used to specify the handling of ignored files. It is optional:

 it defaults to traditional.

 The possible options are:

 ? traditional - Shows ignored files and directories, unless --untracked-files=all is

 specified, in which case individual files in ignored directories are displayed.

 ? no - Show no ignored files.

 ? matching - Shows ignored files and directories matching an ignore pattern.

 When matching mode is specified, paths that explicitly match an ignored pattern are

 shown. If a directory matches an ignore pattern, then it is shown, but not paths

 contained in the ignored directory. If a directory does not match an ignore pattern,

 but all contents are ignored, then the directory is not shown, but all contents are

 shown.

 -z

 Terminate entries with NUL, instead of LF. This implies the --porcelain=v1 output

 format if no other format is given.

 --column[=<options>], --no-column

 Display untracked files in columns. See configuration variable column.status for

 option syntax. --column and --no-column without options are equivalent to always and

 never respectively.

 --ahead-behind, --no-ahead-behind

 Display or do not display detailed ahead/behind counts for the branch relative to its

 upstream branch. Defaults to true.

 --renames, --no-renames

 Turn on/off rename detection regardless of user configuration. See also git-diff(1)

 --no-renames.

 --find-renames[=<n>] Page 3/10

 Turn on rename detection, optionally setting the similarity threshold. See also git-

 diff(1) --find-renames.

 <pathspec>...

 See the pathspec entry in gitglossary(7).

OUTPUT

 The output from this command is designed to be used as a commit template comment. The

 default, long format, is designed to be human readable, verbose and descriptive. Its

 contents and format are subject to change at any time.

 The paths mentioned in the output, unlike many other Git commands, are made relative to

 the current directory if you are working in a subdirectory (this is on purpose, to help

 cutting and pasting). See the status.relativePaths config option below.

 Short Format

 In the short-format, the status of each path is shown as one of these forms

 XY PATH

 XY ORIG_PATH -> PATH

 where ORIG_PATH is where the renamed/copied contents came from. ORIG_PATH is only shown

 when the entry is renamed or copied. The XY is a two-letter status code.

 The fields (including the ->) are separated from each other by a single space. If a

 filename contains whitespace or other nonprintable characters, that field will be quoted

 in the manner of a C string literal: surrounded by ASCII double quote (34) characters, and

 with interior special characters backslash-escaped.

 There are three different types of states that are shown using this format, and each one

 uses the XY syntax differently:

 ? When a merge is occurring and the merge was successful, or outside of a merge

 situation, X shows the status of the index and Y shows the status of the working tree.

 ? When a merge conflict has occurred and has not yet been resolved, X and Y show the

 state introduced by each head of the merge, relative to the common ancestor. These

 paths are said to be unmerged.

 ? When a path is untracked, X and Y are always the same, since they are unknown to the

 index. ?? is used for untracked paths. Ignored files are not listed unless --ignored

 is used; if it is, ignored files are indicated by !!.

 Note that the term merge here also includes rebases using the default --merge strategy,

 cherry-picks, and anything else using the merge machinery. Page 4/10

 In the following table, these three classes are shown in separate sections, and these

 characters are used for X and Y fields for the first two sections that show tracked paths:

 ? ' ' = unmodified

 ? M = modified

 ? T = file type changed (regular file, symbolic link or submodule)

 ? A = added

 ? D = deleted

 ? R = renamed

 ? C = copied (if config option status.renames is set to "copies")

 ? U = updated but unmerged

 X Y Meaning

 [AMD] not updated

 M [MTD] updated in index

 T [MTD] type changed in index

 A [MTD] added to index

 D deleted from index

 R [MTD] renamed in index

 C [MTD] copied in index

 [MTARC] index and work tree matches

 [MTARC] M work tree changed since index

 [MTARC] T type changed in work tree since index

 [MTARC] D deleted in work tree

 R renamed in work tree

 C copied in work tree

 D D unmerged, both deleted

 A U unmerged, added by us

 U D unmerged, deleted by them

 U A unmerged, added by them

 D U unmerged, deleted by us

 A A unmerged, both added

 U U unmerged, both modified Page 5/10

 ? ? untracked

 ! ! ignored

 Submodules have more state and instead report M the submodule has a different HEAD than

 recorded in the index m the submodule has modified content ? the submodule has untracked

 files since modified content or untracked files in a submodule cannot be added via git add

 in the superproject to prepare a commit.

 m and ? are applied recursively. For example if a nested submodule in a submodule contains

 an untracked file, this is reported as ? as well.

 If -b is used the short-format status is preceded by a line

 ## branchname tracking info

 Porcelain Format Version 1

 Version 1 porcelain format is similar to the short format, but is guaranteed not to change

 in a backwards-incompatible way between Git versions or based on user configuration. This

 makes it ideal for parsing by scripts. The description of the short format above also

 describes the porcelain format, with a few exceptions:

 1. The user?s color.status configuration is not respected; color will always be off.

 2. The user?s status.relativePaths configuration is not respected; paths shown will

 always be relative to the repository root.

 There is also an alternate -z format recommended for machine parsing. In that format, the

 status field is the same, but some other things change. First, the -> is omitted from

 rename entries and the field order is reversed (e.g from -> to becomes to from). Second, a

 NUL (ASCII 0) follows each filename, replacing space as a field separator and the

 terminating newline (but a space still separates the status field from the first

 filename). Third, filenames containing special characters are not specially formatted; no

 quoting or backslash-escaping is performed.

 Any submodule changes are reported as modified M instead of m or single ?.

 Porcelain Format Version 2

 Version 2 format adds more detailed information about the state of the worktree and

 changed items. Version 2 also defines an extensible set of easy to parse optional headers.

 Header lines start with "#" and are added in response to specific command line arguments.

 Parsers should ignore headers they don?t recognize. Page 6/10

 Branch Headers

 If --branch is given, a series of header lines are printed with information about the

 current branch.

 Line Notes

 --

 # branch.oid <commit> | (initial) Current commit.

 # branch.head <branch> | (detached) Current branch.

 # branch.upstream <upstream_branch> If upstream is set.

 # branch.ab +<ahead> -<behind> If upstream is set and

 the commit is present.

 --

 Changed Tracked Entries

 Following the headers, a series of lines are printed for tracked entries. One of three

 different line formats may be used to describe an entry depending on the type of

 change. Tracked entries are printed in an undefined order; parsers should allow for a

 mixture of the 3 line types in any order.

 Ordinary changed entries have the following format:

 1 <XY> <sub> <mH> <mI> <mW> <hH> <hI> <path>

 Renamed or copied entries have the following format:

 2 <XY> <sub> <mH> <mI> <mW> <hH> <hI> <X><score> <path><sep><origPath>

 Field Meaning

 --

 <XY> A 2 character field containing the staged and

 unstaged XY values described in the short format,

 with unchanged indicated by a "." rather than

 a space.

 <sub> A 4 character field describing the submodule state.

 "N..." when the entry is not a submodule.

 "S<c><m><u>" when the entry is a submodule.

 <c> is "C" if the commit changed; otherwise ".".

 <m> is "M" if it has tracked changes; otherwise ".".

 <u> is "U" if there are untracked changes; otherwise ".".

 <mH> The octal file mode in HEAD. Page 7/10

 <mI> The octal file mode in the index.

 <mW> The octal file mode in the worktree.

 <hH> The object name in HEAD.

 <hI> The object name in the index.

 <X><score> The rename or copy score (denoting the percentage

 of similarity between the source and target of the

 move or copy). For example "R100" or "C75".

 <path> The pathname. In a renamed/copied entry, this

 is the target path.

 <sep> When the `-z` option is used, the 2 pathnames are separated

 with a NUL (ASCII 0x00) byte; otherwise, a tab (ASCII 0x09)

 byte separates them.

 <origPath> The pathname in the commit at HEAD or in the index.

 This is only present in a renamed/copied entry, and

 tells where the renamed/copied contents came from.

 --

 Unmerged entries have the following format; the first character is a "u" to

 distinguish from ordinary changed entries.

 u <XY> <sub> <m1> <m2> <m3> <mW> <h1> <h2> <h3> <path>

 Field Meaning

 --

 <XY> A 2 character field describing the conflict type

 as described in the short format.

 <sub> A 4 character field describing the submodule state

 as described above.

 <m1> The octal file mode in stage 1.

 <m2> The octal file mode in stage 2.

 <m3> The octal file mode in stage 3.

 <mW> The octal file mode in the worktree.

 <h1> The object name in stage 1.

 <h2> The object name in stage 2.

 <h3> The object name in stage 3.

 <path> The pathname. Page 8/10

 --

 Other Items

 Following the tracked entries (and if requested), a series of lines will be printed

 for untracked and then ignored items found in the worktree.

 Untracked items have the following format:

 ? <path>

 Ignored items have the following format:

 ! <path>

 Pathname Format Notes and -z

 When the -z option is given, pathnames are printed as is and without any quoting and

 lines are terminated with a NUL (ASCII 0x00) byte.

 Without the -z option, pathnames with "unusual" characters are quoted as explained for

 the configuration variable core.quotePath (see git-config(1)).

CONFIGURATION

 The command honors color.status (or status.color ? they mean the same thing and the latter

 is kept for backward compatibility) and color.status.<slot> configuration variables to

 colorize its output.

 If the config variable status.relativePaths is set to false, then all paths shown are

 relative to the repository root, not to the current directory.

 If status.submoduleSummary is set to a non zero number or true (identical to -1 or an

 unlimited number), the submodule summary will be enabled for the long format and a summary

 of commits for modified submodules will be shown (see --summary-limit option of git-

 submodule(1)). Please note that the summary output from the status command will be

 suppressed for all submodules when diff.ignoreSubmodules is set to all or only for those

 submodules where submodule.<name>.ignore=all. To also view the summary for ignored

 submodules you can either use the --ignore-submodules=dirty command line option or the git

 submodule summary command, which shows a similar output but does not honor these settings.

BACKGROUND REFRESH

 By default, git status will automatically refresh the index, updating the cached stat

 information from the working tree and writing out the result. Writing out the updated

 index is an optimization that isn?t strictly necessary (status computes the values for

 itself, but writing them out is just to save subsequent programs from repeating our

 computation). When status is run in the background, the lock held during the write may Page 9/10

 conflict with other simultaneous processes, causing them to fail. Scripts running status

 in the background should consider using git --no-optional-locks status (see git(1) for

 details).

SEE ALSO

 gitignore(5)

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-STATUS(1)

Page 10/10

