
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-sh-setup.1'

$ man git-sh-setup.1

GIT-SH-SETUP(1) Git Manual GIT-SH-SETUP(1)

NAME

 git-sh-setup - Common Git shell script setup code

SYNOPSIS

 . "$(git --exec-path)/git-sh-setup"

DESCRIPTION

 This is not a command the end user would want to run. Ever. This documentation is meant

 for people who are studying the Porcelain-ish scripts and/or are writing new ones.

 The git sh-setup scriptlet is designed to be sourced (using .) by other shell scripts to

 set up some variables pointing at the normal Git directories and a few helper shell

 functions.

 Before sourcing it, your script should set up a few variables; USAGE (and LONG_USAGE, if

 any) is used to define message given by usage() shell function. SUBDIRECTORY_OK can be set

 if the script can run from a subdirectory of the working tree (some commands do not).

 The scriptlet sets GIT_DIR and GIT_OBJECT_DIRECTORY shell variables, but does not export

 them to the environment.

FUNCTIONS

 die

 exit after emitting the supplied error message to the standard error stream.

 usage

 die with the usage message.

 set_reflog_action

 Set GIT_REFLOG_ACTION environment to a given string (typically the name of the Page 1/2

 program) unless it is already set. Whenever the script runs a git command that updates

 refs, a reflog entry is created using the value of this string to leave the record of

 what command updated the ref.

 git_editor

 runs an editor of user?s choice (GIT_EDITOR, core.editor, VISUAL or EDITOR) on a given

 file, but error out if no editor is specified and the terminal is dumb.

 is_bare_repository

 outputs true or false to the standard output stream to indicate if the repository is a

 bare repository (i.e. without an associated working tree).

 cd_to_toplevel

 runs chdir to the toplevel of the working tree.

 require_work_tree

 checks if the current directory is within the working tree of the repository, and

 otherwise dies.

 require_work_tree_exists

 checks if the working tree associated with the repository exists, and otherwise dies.

 Often done before calling cd_to_toplevel, which is impossible to do if there is no

 working tree.

 require_clean_work_tree <action> [<hint>]

 checks that the working tree and index associated with the repository have no

 uncommitted changes to tracked files. Otherwise it emits an error message of the form

 Cannot <action>: <reason>. <hint>, and dies. Example:

 require_clean_work_tree rebase "Please commit or stash them."

 get_author_ident_from_commit

 outputs code for use with eval to set the GIT_AUTHOR_NAME, GIT_AUTHOR_EMAIL and

 GIT_AUTHOR_DATE variables for a given commit.

 create_virtual_base

 modifies the first file so only lines in common with the second file remain. If there

 is insufficient common material, then the first file is left empty. The result is

 suitable as a virtual base input for a 3-way merge.

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-SH-SETUP(1) Page 2/2

