
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-rm.1'

$ man git-rm.1

GIT-RM(1) Git Manual GIT-RM(1)

NAME

 git-rm - Remove files from the working tree and from the index

SYNOPSIS

 git rm [-f | --force] [-n] [-r] [--cached] [--ignore-unmatch]

 [--quiet] [--pathspec-from-file=<file> [--pathspec-file-nul]]

 [--] [<pathspec>...]

DESCRIPTION

 Remove files matching pathspec from the index, or from the working tree and the index. git

 rm will not remove a file from just your working directory. (There is no option to remove

 a file only from the working tree and yet keep it in the index; use /bin/rm if you want to

 do that.) The files being removed have to be identical to the tip of the branch, and no

 updates to their contents can be staged in the index, though that default behavior can be

 overridden with the -f option. When --cached is given, the staged content has to match

 either the tip of the branch or the file on disk, allowing the file to be removed from

 just the index. When sparse-checkouts are in use (see git-sparse-checkout(1)), git rm will

 only remove paths within the sparse-checkout patterns.

OPTIONS

 <pathspec>...

 Files to remove. A leading directory name (e.g. dir to remove dir/file1 and

 dir/file2) can be given to remove all files in the directory, and recursively all

 sub-directories, but this requires the -r option to be explicitly given.

 The command removes only the paths that are known to Git. Page 1/4

 File globbing matches across directory boundaries. Thus, given two directories d and

 d2, there is a difference between using git rm 'd*' and git rm 'd/*', as the former

 will also remove all of directory d2.

 For more details, see the pathspec entry in gitglossary(7).

 -f, --force

 Override the up-to-date check.

 -n, --dry-run

 Don?t actually remove any file(s). Instead, just show if they exist in the index and

 would otherwise be removed by the command.

 -r

 Allow recursive removal when a leading directory name is given.

 --

 This option can be used to separate command-line options from the list of files,

 (useful when filenames might be mistaken for command-line options).

 --cached

 Use this option to unstage and remove paths only from the index. Working tree files,

 whether modified or not, will be left alone.

 --ignore-unmatch

 Exit with a zero status even if no files matched.

 --sparse

 Allow updating index entries outside of the sparse-checkout cone. Normally, git rm

 refuses to update index entries whose paths do not fit within the sparse-checkout

 cone. See git-sparse-checkout(1) for more.

 -q, --quiet

 git rm normally outputs one line (in the form of an rm command) for each file removed.

 This option suppresses that output.

 --pathspec-from-file=<file>

 Pathspec is passed in <file> instead of commandline args. If <file> is exactly - then

 standard input is used. Pathspec elements are separated by LF or CR/LF. Pathspec

 elements can be quoted as explained for the configuration variable core.quotePath (see

 git-config(1)). See also --pathspec-file-nul and global --literal-pathspecs.

 --pathspec-file-nul

 Only meaningful with --pathspec-from-file. Pathspec elements are separated with NUL Page 2/4

 character and all other characters are taken literally (including newlines and

 quotes).

REMOVING FILES THAT HAVE DISAPPEARED FROM THE FILESYSTEM

 There is no option for git rm to remove from the index only the paths that have

 disappeared from the filesystem. However, depending on the use case, there are several

 ways that can be done.

 Using ?git commit -a?

 If you intend that your next commit should record all modifications of tracked files in

 the working tree and record all removals of files that have been removed from the working

 tree with rm (as opposed to git rm), use git commit -a, as it will automatically notice

 and record all removals. You can also have a similar effect without committing by using

 git add -u.

 Using ?git add -A?

 When accepting a new code drop for a vendor branch, you probably want to record both the

 removal of paths and additions of new paths as well as modifications of existing paths.

 Typically you would first remove all tracked files from the working tree using this

 command:

 git ls-files -z | xargs -0 rm -f

 and then untar the new code in the working tree. Alternately you could rsync the changes

 into the working tree.

 After that, the easiest way to record all removals, additions, and modifications in the

 working tree is:

 git add -A

 See git-add(1).

 Other ways

 If all you really want to do is to remove from the index the files that are no longer

 present in the working tree (perhaps because your working tree is dirty so that you cannot

 use git commit -a), use the following command:

 git diff --name-only --diff-filter=D -z | xargs -0 git rm --cached

SUBMODULES

 Only submodules using a gitfile (which means they were cloned with a Git version 1.7.8 or

 newer) will be removed from the work tree, as their repository lives inside the .git

 directory of the superproject. If a submodule (or one of those nested inside it) still Page 3/4

 uses a .git directory, git rm will move the submodules git directory into the

 superprojects git directory to protect the submodule?s history. If it exists the

 submodule.<name> section in the gitmodules(5) file will also be removed and that file will

 be staged (unless --cached or -n are used).

 A submodule is considered up to date when the HEAD is the same as recorded in the index,

 no tracked files are modified and no untracked files that aren?t ignored are present in

 the submodules work tree. Ignored files are deemed expendable and won?t stop a submodule?s

 work tree from being removed.

 If you only want to remove the local checkout of a submodule from your work tree without

 committing the removal, use git-submodule(1) deinit instead. Also see gitsubmodules(7) for

 details on submodule removal.

EXAMPLES

 git rm Documentation/*.txt

 Removes all *.txt files from the index that are under the Documentation directory and

 any of its subdirectories.

 Note that the asterisk * is quoted from the shell in this example; this lets Git, and

 not the shell, expand the pathnames of files and subdirectories under the

 Documentation/ directory.

 git rm -f git-*.sh

 Because this example lets the shell expand the asterisk (i.e. you are listing the

 files explicitly), it does not remove subdir/git-foo.sh.

BUGS

 Each time a superproject update removes a populated submodule (e.g. when switching between

 commits before and after the removal) a stale submodule checkout will remain in the old

 location. Removing the old directory is only safe when it uses a gitfile, as otherwise the

 history of the submodule will be deleted too. This step will be obsolete when recursive

 submodule update has been implemented.

SEE ALSO

 git-add(1)

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-RM(1)

Page 4/4

