
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-reset.1'

$ man git-reset.1

GIT-RESET(1) Git Manual GIT-RESET(1)

NAME

 git-reset - Reset current HEAD to the specified state

SYNOPSIS

 git reset [-q] [<tree-ish>] [--] <pathspec>...

 git reset [-q] [--pathspec-from-file=<file> [--pathspec-file-nul]] [<tree-ish>]

 git reset (--patch | -p) [<tree-ish>] [--] [<pathspec>...]

 git reset [--soft | --mixed [-N] | --hard | --merge | --keep] [-q] [<commit>]

DESCRIPTION

 In the first three forms, copy entries from <tree-ish> to the index. In the last form, set

 the current branch head (HEAD) to <commit>, optionally modifying index and working tree to

 match. The <tree-ish>/<commit> defaults to HEAD in all forms.

 git reset [-q] [<tree-ish>] [--] <pathspec>..., git reset [-q]

 [--pathspec-from-file=<file> [--pathspec-file-nul]] [<tree-ish>]

 These forms reset the index entries for all paths that match the <pathspec> to their

 state at <tree-ish>. (It does not affect the working tree or the current branch.)

 This means that git reset <pathspec> is the opposite of git add <pathspec>. This

 command is equivalent to git restore [--source=<tree-ish>] --staged <pathspec>....

 After running git reset <pathspec> to update the index entry, you can use git-

 restore(1) to check the contents out of the index to the working tree. Alternatively,

 using git-restore(1) and specifying a commit with --source, you can copy the contents

 of a path out of a commit to the index and to the working tree in one go.

 git reset (--patch | -p) [<tree-ish>] [--] [<pathspec>...] Page 1/11

 Interactively select hunks in the difference between the index and <tree-ish>

 (defaults to HEAD). The chosen hunks are applied in reverse to the index.

 This means that git reset -p is the opposite of git add -p, i.e. you can use it to

 selectively reset hunks. See the ?Interactive Mode? section of git-add(1) to learn how

 to operate the --patch mode.

 git reset [<mode>] [<commit>]

 This form resets the current branch head to <commit> and possibly updates the index

 (resetting it to the tree of <commit>) and the working tree depending on <mode>. If

 <mode> is omitted, defaults to --mixed. The <mode> must be one of the following:

 --soft

 Does not touch the index file or the working tree at all (but resets the head to

 <commit>, just like all modes do). This leaves all your changed files "Changes to

 be committed", as git status would put it.

 --mixed

 Resets the index but not the working tree (i.e., the changed files are preserved

 but not marked for commit) and reports what has not been updated. This is the

 default action.

 If -N is specified, removed paths are marked as intent-to-add (see git-add(1)).

 --hard

 Resets the index and working tree. Any changes to tracked files in the working

 tree since <commit> are discarded. Any untracked files or directories in the way

 of writing any tracked files are simply deleted.

 --merge

 Resets the index and updates the files in the working tree that are different

 between <commit> and HEAD, but keeps those which are different between the index

 and working tree (i.e. which have changes which have not been added). If a file

 that is different between <commit> and the index has unstaged changes, reset is

 aborted.

 In other words, --merge does something like a git read-tree -u -m <commit>, but

 carries forward unmerged index entries.

 --keep

 Resets index entries and updates files in the working tree that are different

 between <commit> and HEAD. If a file that is different between <commit> and HEAD Page 2/11

 has local changes, reset is aborted.

 --[no-]recurse-submodules

 When the working tree is updated, using --recurse-submodules will also recursively

 reset the working tree of all active submodules according to the commit recorded

 in the superproject, also setting the submodules' HEAD to be detached at that

 commit.

 See "Reset, restore and revert" in git(1) for the differences between the three commands.

OPTIONS

 -q, --quiet, --no-quiet

 Be quiet, only report errors. The default behavior is set by the reset.quiet config

 option. --quiet and --no-quiet will override the default behavior.

 --pathspec-from-file=<file>

 Pathspec is passed in <file> instead of commandline args. If <file> is exactly - then

 standard input is used. Pathspec elements are separated by LF or CR/LF. Pathspec

 elements can be quoted as explained for the configuration variable core.quotePath (see

 git-config(1)). See also --pathspec-file-nul and global --literal-pathspecs.

 --pathspec-file-nul

 Only meaningful with --pathspec-from-file. Pathspec elements are separated with NUL

 character and all other characters are taken literally (including newlines and

 quotes).

 --

 Do not interpret any more arguments as options.

 <pathspec>...

 Limits the paths affected by the operation.

 For more details, see the pathspec entry in gitglossary(7).

EXAMPLES

 Undo add

 $ edit (1)

 $ git add frotz.c filfre.c

 $ mailx (2)

 $ git reset (3)

 $ git pull git://info.example.com/ nitfol (4)

 1. You are happily working on something, and find the changes in these files are in Page 3/11

 good order. You do not want to see them when you run git diff, because you plan to

 work on other files and changes with these files are distracting.

 2. Somebody asks you to pull, and the changes sound worthy of merging.

 3. However, you already dirtied the index (i.e. your index does not match the HEAD

 commit). But you know the pull you are going to make does not affect frotz.c or

 filfre.c, so you revert the index changes for these two files. Your changes in working

 tree remain there.

 4. Then you can pull and merge, leaving frotz.c and filfre.c changes still in the

 working tree.

 Undo a commit and redo

 $ git commit ...

 $ git reset --soft HEAD^ (1)

 $ edit (2)

 $ git commit -a -c ORIG_HEAD (3)

 1. This is most often done when you remembered what you just committed is incomplete,

 or you misspelled your commit message, or both. Leaves working tree as it was before

 "reset".

 2. Make corrections to working tree files.

 3. "reset" copies the old head to .git/ORIG_HEAD; redo the commit by starting with its

 log message. If you do not need to edit the message further, you can give -C option

 instead.

 See also the --amend option to git-commit(1).

 Undo a commit, making it a topic branch

 $ git branch topic/wip (1)

 $ git reset --hard HEAD~3 (2)

 $ git switch topic/wip (3)

 1. You have made some commits, but realize they were premature to be in the master

 branch. You want to continue polishing them in a topic branch, so create topic/wip

 branch off of the current HEAD.

 2. Rewind the master branch to get rid of those three commits.

 3. Switch to topic/wip branch and keep working.

 Undo commits permanently

 $ git commit ... Page 4/11

 $ git reset --hard HEAD~3 (1)

 1. The last three commits (HEAD, HEAD^, and HEAD~2) were bad and you do not want to

 ever see them again. Do not do this if you have already given these commits to

 somebody else. (See the "RECOVERING FROM UPSTREAM REBASE" section in git-rebase(1) for

 the implications of doing so.)

 Undo a merge or pull

 $ git pull (1)

 Auto-merging nitfol

 CONFLICT (content): Merge conflict in nitfol

 Automatic merge failed; fix conflicts and then commit the result.

 $ git reset --hard (2)

 $ git pull . topic/branch (3)

 Updating from 41223... to 13134...

 Fast-forward

 $ git reset --hard ORIG_HEAD (4)

 1. Try to update from the upstream resulted in a lot of conflicts; you were not ready

 to spend a lot of time merging right now, so you decide to do that later.

 2. "pull" has not made merge commit, so git reset --hard which is a synonym for git

 reset --hard HEAD clears the mess from the index file and the working tree.

 3. Merge a topic branch into the current branch, which resulted in a fast-forward.

 4. But you decided that the topic branch is not ready for public consumption yet.

 "pull" or "merge" always leaves the original tip of the current branch in ORIG_HEAD,

 so resetting hard to it brings your index file and the working tree back to that

 state, and resets the tip of the branch to that commit.

 Undo a merge or pull inside a dirty working tree

 $ git pull (1)

 Auto-merging nitfol

 Merge made by recursive.

 nitfol | 20 +++++----

 ...

 $ git reset --merge ORIG_HEAD (2)

 1. Even if you may have local modifications in your working tree, you can safely say

 git pull when you know that the change in the other branch does not overlap with them. Page 5/11

 2. After inspecting the result of the merge, you may find that the change in the other

 branch is unsatisfactory. Running git reset --hard ORIG_HEAD will let you go back to

 where you were, but it will discard your local changes, which you do not want. git

 reset --merge keeps your local changes.

 Interrupted workflow

 Suppose you are interrupted by an urgent fix request while you are in the middle of a

 large change. The files in your working tree are not in any shape to be committed yet,

 but you need to get to the other branch for a quick bugfix.

 $ git switch feature ;# you were working in "feature" branch and

 $ work work work ;# got interrupted

 $ git commit -a -m "snapshot WIP" (1)

 $ git switch master

 $ fix fix fix

 $ git commit ;# commit with real log

 $ git switch feature

 $ git reset --soft HEAD^ ;# go back to WIP state (2)

 $ git reset (3)

 1. This commit will get blown away so a throw-away log message is OK.

 2. This removes the WIP commit from the commit history, and sets your working tree to

 the state just before you made that snapshot.

 3. At this point the index file still has all the WIP changes you committed as

 snapshot WIP. This updates the index to show your WIP files as uncommitted.

 See also git-stash(1).

 Reset a single file in the index

 Suppose you have added a file to your index, but later decide you do not want to add

 it to your commit. You can remove the file from the index while keeping your changes

 with git reset.

 $ git reset -- frotz.c (1)

 $ git commit -m "Commit files in index" (2)

 $ git add frotz.c (3)

 1. This removes the file from the index while keeping it in the working directory.

 2. This commits all other changes in the index.

 3. Adds the file to the index again. Page 6/11

 Keep changes in working tree while discarding some previous commits

 Suppose you are working on something and you commit it, and then you continue working

 a bit more, but now you think that what you have in your working tree should be in

 another branch that has nothing to do with what you committed previously. You can

 start a new branch and reset it while keeping the changes in your working tree.

 $ git tag start

 $ git switch -c branch1

 $ edit

 $ git commit ... (1)

 $ edit

 $ git switch -c branch2 (2)

 $ git reset --keep start (3)

 1. This commits your first edits in branch1.

 2. In the ideal world, you could have realized that the earlier commit did not belong

 to the new topic when you created and switched to branch2 (i.e. git switch -c branch2

 start), but nobody is perfect.

 3. But you can use reset --keep to remove the unwanted commit after you switched to

 branch2.

 Split a commit apart into a sequence of commits

 Suppose that you have created lots of logically separate changes and committed them

 together. Then, later you decide that it might be better to have each logical chunk

 associated with its own commit. You can use git reset to rewind history without

 changing the contents of your local files, and then successively use git add -p to

 interactively select which hunks to include into each commit, using git commit -c to

 pre-populate the commit message.

 $ git reset -N HEAD^ (1)

 $ git add -p (2)

 $ git diff --cached (3)

 $ git commit -c HEAD@{1} (4)

 ... (5)

 $ git add ... (6)

 $ git diff --cached (7)

 $ git commit ... (8) Page 7/11

 1. First, reset the history back one commit so that we remove the original commit, but

 leave the working tree with all the changes. The -N ensures that any new files added

 with HEAD are still marked so that git add -p will find them.

 2. Next, we interactively select diff hunks to add using the git add -p facility. This

 will ask you about each diff hunk in sequence and you can use simple commands such as

 "yes, include this", "No don?t include this" or even the very powerful "edit"

 facility.

 3. Once satisfied with the hunks you want to include, you should verify what has been

 prepared for the first commit by using git diff --cached. This shows all the changes

 that have been moved into the index and are about to be committed.

 4. Next, commit the changes stored in the index. The -c option specifies to

 pre-populate the commit message from the original message that you started with in the

 first commit. This is helpful to avoid retyping it. The HEAD@{1} is a special notation

 for the commit that HEAD used to be at prior to the original reset commit (1 change

 ago). See git-reflog(1) for more details. You may also use any other valid commit

 reference.

 5. You can repeat steps 2-4 multiple times to break the original code into any number

 of commits.

 6. Now you?ve split out many of the changes into their own commits, and might no

 longer use the patch mode of git add, in order to select all remaining uncommitted

 changes.

 7. Once again, check to verify that you?ve included what you want to. You may also

 wish to verify that git diff doesn?t show any remaining changes to be committed later.

 8. And finally create the final commit.

DISCUSSION

 The tables below show what happens when running:

 git reset --option target

 to reset the HEAD to another commit (target) with the different reset options depending on

 the state of the files.

 In these tables, A, B, C and D are some different states of a file. For example, the first

 line of the first table means that if a file is in state A in the working tree, in state B

 in the index, in state C in HEAD and in state D in the target, then git reset --soft

 target will leave the file in the working tree in state A and in the index in state B. It Page 8/11

 resets (i.e. moves) the HEAD (i.e. the tip of the current branch, if you are on one) to

 target (which has the file in state D).

 working index HEAD target working index HEAD

 --

 A B C D --soft A B D

 --mixed A D D

 --hard D D D

 --merge (disallowed)

 --keep (disallowed)

 working index HEAD target working index HEAD

 --

 A B C C --soft A B C

 --mixed A C C

 --hard C C C

 --merge (disallowed)

 --keep A C C

 working index HEAD target working index HEAD

 --

 B B C D --soft B B D

 --mixed B D D

 --hard D D D

 --merge D D D

 --keep (disallowed)

 working index HEAD target working index HEAD

 --

 B B C C --soft B B C

 --mixed B C C

 --hard C C C

 --merge C C C

 --keep B C C

 working index HEAD target working index HEAD

 --

 B C C D --soft B C D Page 9/11

 --mixed B D D

 --hard D D D

 --merge (disallowed)

 --keep (disallowed)

 working index HEAD target working index HEAD

 --

 B C C C --soft B C C

 --mixed B C C

 --hard C C C

 --merge B C C

 --keep B C C

 reset --merge is meant to be used when resetting out of a conflicted merge. Any mergy

 operation guarantees that the working tree file that is involved in the merge does not

 have a local change with respect to the index before it starts, and that it writes the

 result out to the working tree. So if we see some difference between the index and the

 target and also between the index and the working tree, then it means that we are not

 resetting out from a state that a mergy operation left after failing with a conflict. That

 is why we disallow --merge option in this case.

 reset --keep is meant to be used when removing some of the last commits in the current

 branch while keeping changes in the working tree. If there could be conflicts between the

 changes in the commit we want to remove and the changes in the working tree we want to

 keep, the reset is disallowed. That?s why it is disallowed if there are both changes

 between the working tree and HEAD, and between HEAD and the target. To be safe, it is also

 disallowed when there are unmerged entries.

 The following tables show what happens when there are unmerged entries:

 working index HEAD target working index HEAD

 --

 X U A B --soft (disallowed)

 --mixed X B B

 --hard B B B

 --merge B B B

 --keep (disallowed)

 working index HEAD target working index HEAD Page 10/11

 --

 X U A A --soft (disallowed)

 --mixed X A A

 --hard A A A

 --merge A A A

 --keep (disallowed)

 X means any state and U means an unmerged index.

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-RESET(1)

Page 11/11

