
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-remote.1'

$ man git-remote.1

GIT-REMOTE(1) Git Manual GIT-REMOTE(1)

NAME

 git-remote - Manage set of tracked repositories

SYNOPSIS

 git remote [-v | --verbose]

 git remote add [-t <branch>] [-m <master>] [-f] [--[no-]tags] [--mirror=(fetch|push)] <name> <url>

 git remote rename <old> <new>

 git remote remove <name>

 git remote set-head <name> (-a | --auto | -d | --delete | <branch>)

 git remote set-branches [--add] <name> <branch>...

 git remote get-url [--push] [--all] <name>

 git remote set-url [--push] <name> <newurl> [<oldurl>]

 git remote set-url --add [--push] <name> <newurl>

 git remote set-url --delete [--push] <name> <url>

 git remote [-v | --verbose] show [-n] <name>...

 git remote prune [-n | --dry-run] <name>...

 git remote [-v | --verbose] update [-p | --prune] [(<group> | <remote>)...]

DESCRIPTION

 Manage the set of repositories ("remotes") whose branches you track.

OPTIONS

 -v, --verbose

 Be a little more verbose and show remote url after name. NOTE: This must be placed

 between remote and subcommand. Page 1/6

COMMANDS

 With no arguments, shows a list of existing remotes. Several subcommands are available to

 perform operations on the remotes.

 add

 Add a remote named <name> for the repository at <url>. The command git fetch <name>

 can then be used to create and update remote-tracking branches <name>/<branch>.

 With -f option, git fetch <name> is run immediately after the remote information is

 set up.

 With --tags option, git fetch <name> imports every tag from the remote repository.

 With --no-tags option, git fetch <name> does not import tags from the remote

 repository.

 By default, only tags on fetched branches are imported (see git-fetch(1)).

 With -t <branch> option, instead of the default glob refspec for the remote to track

 all branches under the refs/remotes/<name>/ namespace, a refspec to track only

 <branch> is created. You can give more than one -t <branch> to track multiple branches

 without grabbing all branches.

 With -m <master> option, a symbolic-ref refs/remotes/<name>/HEAD is set up to point at

 remote?s <master> branch. See also the set-head command.

 When a fetch mirror is created with --mirror=fetch, the refs will not be stored in the

 refs/remotes/ namespace, but rather everything in refs/ on the remote will be directly

 mirrored into refs/ in the local repository. This option only makes sense in bare

 repositories, because a fetch would overwrite any local commits.

 When a push mirror is created with --mirror=push, then git push will always behave as

 if --mirror was passed.

 rename

 Rename the remote named <old> to <new>. All remote-tracking branches and configuration

 settings for the remote are updated.

 In case <old> and <new> are the same, and <old> is a file under $GIT_DIR/remotes or

 $GIT_DIR/branches, the remote is converted to the configuration file format.

 remove, rm

 Remove the remote named <name>. All remote-tracking branches and configuration

 settings for the remote are removed.

 set-head Page 2/6

 Sets or deletes the default branch (i.e. the target of the symbolic-ref

 refs/remotes/<name>/HEAD) for the named remote. Having a default branch for a remote

 is not required, but allows the name of the remote to be specified in lieu of a

 specific branch. For example, if the default branch for origin is set to master, then

 origin may be specified wherever you would normally specify origin/master.

 With -d or --delete, the symbolic ref refs/remotes/<name>/HEAD is deleted.

 With -a or --auto, the remote is queried to determine its HEAD, then the symbolic-ref

 refs/remotes/<name>/HEAD is set to the same branch. e.g., if the remote HEAD is

 pointed at next, git remote set-head origin -a will set the symbolic-ref

 refs/remotes/origin/HEAD to refs/remotes/origin/next. This will only work if

 refs/remotes/origin/next already exists; if not it must be fetched first.

 Use <branch> to set the symbolic-ref refs/remotes/<name>/HEAD explicitly. e.g., git

 remote set-head origin master will set the symbolic-ref refs/remotes/origin/HEAD to

 refs/remotes/origin/master. This will only work if refs/remotes/origin/master already

 exists; if not it must be fetched first.

 set-branches

 Changes the list of branches tracked by the named remote. This can be used to track a

 subset of the available remote branches after the initial setup for a remote.

 The named branches will be interpreted as if specified with the -t option on the git

 remote add command line.

 With --add, instead of replacing the list of currently tracked branches, adds to that

 list.

 get-url

 Retrieves the URLs for a remote. Configurations for insteadOf and pushInsteadOf are

 expanded here. By default, only the first URL is listed.

 With --push, push URLs are queried rather than fetch URLs.

 With --all, all URLs for the remote will be listed.

 set-url

 Changes URLs for the remote. Sets first URL for remote <name> that matches regex

 <oldurl> (first URL if no <oldurl> is given) to <newurl>. If <oldurl> doesn?t match

 any URL, an error occurs and nothing is changed.

 With --push, push URLs are manipulated instead of fetch URLs.

 With --add, instead of changing existing URLs, new URL is added. Page 3/6

 With --delete, instead of changing existing URLs, all URLs matching regex <url> are

 deleted for remote <name>. Trying to delete all non-push URLs is an error.

 Note that the push URL and the fetch URL, even though they can be set differently,

 must still refer to the same place. What you pushed to the push URL should be what you

 would see if you immediately fetched from the fetch URL. If you are trying to fetch

 from one place (e.g. your upstream) and push to another (e.g. your publishing

 repository), use two separate remotes.

 show

 Gives some information about the remote <name>.

 With -n option, the remote heads are not queried first with git ls-remote <name>;

 cached information is used instead.

 prune

 Deletes stale references associated with <name>. By default, stale remote-tracking

 branches under <name> are deleted, but depending on global configuration and the

 configuration of the remote we might even prune local tags that haven?t been pushed

 there. Equivalent to git fetch --prune <name>, except that no new references will be

 fetched.

 See the PRUNING section of git-fetch(1) for what it?ll prune depending on various

 configuration.

 With --dry-run option, report what branches would be pruned, but do not actually prune

 them.

 update

 Fetch updates for remotes or remote groups in the repository as defined by

 remotes.<group>. If neither group nor remote is specified on the command line, the

 configuration parameter remotes.default will be used; if remotes.default is not

 defined, all remotes which do not have the configuration parameter

 remote.<name>.skipDefaultUpdate set to true will be updated. (See git-config(1)).

 With --prune option, run pruning against all the remotes that are updated.

DISCUSSION

 The remote configuration is achieved using the remote.origin.url and remote.origin.fetch

 configuration variables. (See git-config(1)).

EXIT STATUS

 On success, the exit status is 0. Page 4/6

 When subcommands such as add, rename, and remove can?t find the remote in question, the

 exit status is 2. When the remote already exists, the exit status is 3.

 On any other error, the exit status may be any other non-zero value.

EXAMPLES

 ? Add a new remote, fetch, and check out a branch from it

 $ git remote

 origin

 $ git branch -r

 origin/HEAD -> origin/master

 origin/master

 $ git remote add staging git://git.kernel.org/.../gregkh/staging.git

 $ git remote

 origin

 staging

 $ git fetch staging

 ...

 From git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging

 * [new branch] master -> staging/master

 * [new branch] staging-linus -> staging/staging-linus

 * [new branch] staging-next -> staging/staging-next

 $ git branch -r

 origin/HEAD -> origin/master

 origin/master

 staging/master

 staging/staging-linus

 staging/staging-next

 $ git switch -c staging staging/master

 ...

 ? Imitate git clone but track only selected branches

 $ mkdir project.git

 $ cd project.git

 $ git init

 $ git remote add -f -t master -m master origin git://example.com/git.git/ Page 5/6

 $ git merge origin

SEE ALSO

 git-fetch(1) git-branch(1) git-config(1)

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-REMOTE(1)

Page 6/6

