
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-pack-objects.1'

$ man git-pack-objects.1

GIT-PACK-OBJECTS(1)                         Git Manual                        GIT-PACK-OBJECTS(1)

NAME

       git-pack-objects - Create a packed archive of objects

SYNOPSIS

       git pack-objects [-q | --progress | --all-progress] [--all-progress-implied]

               [--no-reuse-delta] [--delta-base-offset] [--non-empty]

               [--local] [--incremental] [--window=<n>] [--depth=<n>]

               [--revs [--unpacked | --all]] [--keep-pack=<pack-name>]

               [--stdout [--filter=<filter-spec>] | base-name]

               [--shallow] [--keep-true-parents] [--[no-]sparse] < object-list

DESCRIPTION

       Reads list of objects from the standard input, and writes either one or more packed

       archives with the specified base-name to disk, or a packed archive to the standard output.

       A packed archive is an efficient way to transfer a set of objects between two repositories

       as well as an access efficient archival format. In a packed archive, an object is either

       stored as a compressed whole or as a difference from some other object. The latter is

       often called a delta.

       The packed archive format (.pack) is designed to be self-contained so that it can be

       unpacked without any further information. Therefore, each object that a delta depends upon

       must be present within the pack.

       A pack index file (.idx) is generated for fast, random access to the objects in the pack.

       Placing both the index file (.idx) and the packed archive (.pack) in the pack/

       subdirectory of $GIT_OBJECT_DIRECTORY (or any of the directories on Page 1/9



       $GIT_ALTERNATE_OBJECT_DIRECTORIES) enables Git to read from the pack archive.

       The git unpack-objects command can read the packed archive and expand the objects

       contained in the pack into "one-file one-object" format; this is typically done by the

       smart-pull commands when a pack is created on-the-fly for efficient network transport by

       their peers.

OPTIONS

       base-name

           Write into pairs of files (.pack and .idx), using <base-name> to determine the name of

           the created file. When this option is used, the two files in a pair are written in

           <base-name>-<SHA-1>.{pack,idx} files. <SHA-1> is a hash based on the pack content and

           is written to the standard output of the command.

       --stdout

           Write the pack contents (what would have been written to .pack file) out to the

           standard output.

       --revs

           Read the revision arguments from the standard input, instead of individual object

           names. The revision arguments are processed the same way as git rev-list with the

           --objects flag uses its commit arguments to build the list of objects it outputs. The

           objects on the resulting list are packed. Besides revisions, --not or --shallow

           <SHA-1> lines are also accepted.

       --unpacked

           This implies --revs. When processing the list of revision arguments read from the

           standard input, limit the objects packed to those that are not already packed.

       --all

           This implies --revs. In addition to the list of revision arguments read from the

           standard input, pretend as if all refs under refs/ are specified to be included.

       --include-tag

           Include unasked-for annotated tags if the object they reference was included in the

           resulting packfile. This can be useful to send new tags to native Git clients.

       --stdin-packs

           Read the basenames of packfiles (e.g., pack-1234abcd.pack) from the standard input,

           instead of object names or revision arguments. The resulting pack contains all objects

           listed in the included packs (those not beginning with ^), excluding any objects Page 2/9



           listed in the excluded packs (beginning with ^).

           Incompatible with --revs, or options that imply --revs (such as --all), with the

           exception of --unpacked, which is compatible.

       --window=<n>, --depth=<n>

           These two options affect how the objects contained in the pack are stored using delta

           compression. The objects are first internally sorted by type, size and optionally

           names and compared against the other objects within --window to see if using delta

           compression saves space. --depth limits the maximum delta depth; making it too deep

           affects the performance on the unpacker side, because delta data needs to be applied

           that many times to get to the necessary object.

           The default value for --window is 10 and --depth is 50. The maximum depth is 4095.

       --window-memory=<n>

           This option provides an additional limit on top of --window; the window size will

           dynamically scale down so as to not take up more than <n> bytes in memory. This is

           useful in repositories with a mix of large and small objects to not run out of memory

           with a large window, but still be able to take advantage of the large window for the

           smaller objects. The size can be suffixed with "k", "m", or "g".  --window-memory=0

           makes memory usage unlimited. The default is taken from the pack.windowMemory

           configuration variable.

       --max-pack-size=<n>

           In unusual scenarios, you may not be able to create files larger than a certain size

           on your filesystem, and this option can be used to tell the command to split the

           output packfile into multiple independent packfiles, each not larger than the given

           size. The size can be suffixed with "k", "m", or "g". The minimum size allowed is

           limited to 1 MiB. The default is unlimited, unless the config variable

           pack.packSizeLimit is set. Note that this option may result in a larger and slower

           repository; see the discussion in pack.packSizeLimit.

       --honor-pack-keep

           This flag causes an object already in a local pack that has a .keep file to be

           ignored, even if it would have otherwise been packed.

       --keep-pack=<pack-name>

           This flag causes an object already in the given pack to be ignored, even if it would

           have otherwise been packed.  <pack-name> is the pack file name without leading Page 3/9



           directory (e.g.  pack-123.pack). The option could be specified multiple times to keep

           multiple packs.

       --incremental

           This flag causes an object already in a pack to be ignored even if it would have

           otherwise been packed.

       --local

           This flag causes an object that is borrowed from an alternate object store to be

           ignored even if it would have otherwise been packed.

       --non-empty

           Only create a packed archive if it would contain at least one object.

       --progress

           Progress status is reported on the standard error stream by default when it is

           attached to a terminal, unless -q is specified. This flag forces progress status even

           if the standard error stream is not directed to a terminal.

       --all-progress

           When --stdout is specified then progress report is displayed during the object count

           and compression phases but inhibited during the write-out phase. The reason is that in

           some cases the output stream is directly linked to another command which may wish to

           display progress status of its own as it processes incoming pack data. This flag is

           like --progress except that it forces progress report for the write-out phase as well

           even if --stdout is used.

       --all-progress-implied

           This is used to imply --all-progress whenever progress display is activated. Unlike

           --all-progress this flag doesn?t actually force any progress display by itself.

       -q

           This flag makes the command not to report its progress on the standard error stream.

       --no-reuse-delta

           When creating a packed archive in a repository that has existing packs, the command

           reuses existing deltas. This sometimes results in a slightly suboptimal pack. This

           flag tells the command not to reuse existing deltas but compute them from scratch.

       --no-reuse-object

           This flag tells the command not to reuse existing object data at all, including non

           deltified object, forcing recompression of everything. This implies --no-reuse-delta. Page 4/9



           Useful only in the obscure case where wholesale enforcement of a different compression

           level on the packed data is desired.

       --compression=<n>

           Specifies compression level for newly-compressed data in the generated pack. If not

           specified, pack compression level is determined first by pack.compression, then by

           core.compression, and defaults to -1, the zlib default, if neither is set. Add

           --no-reuse-object if you want to force a uniform compression level on all data no

           matter the source.

       --[no-]sparse

           Toggle the "sparse" algorithm to determine which objects to include in the pack, when

           combined with the "--revs" option. This algorithm only walks trees that appear in

           paths that introduce new objects. This can have significant performance benefits when

           computing a pack to send a small change. However, it is possible that extra objects

           are added to the pack-file if the included commits contain certain types of direct

           renames. If this option is not included, it defaults to the value of pack.useSparse,

           which is true unless otherwise specified.

       --thin

           Create a "thin" pack by omitting the common objects between a sender and a receiver in

           order to reduce network transfer. This option only makes sense in conjunction with

           --stdout.

           Note: A thin pack violates the packed archive format by omitting required objects and

           is thus unusable by Git without making it self-contained. Use git index-pack

           --fix-thin (see git-index-pack(1)) to restore the self-contained property.

       --shallow

           Optimize a pack that will be provided to a client with a shallow repository. This

           option, combined with --thin, can result in a smaller pack at the cost of speed.

       --delta-base-offset

           A packed archive can express the base object of a delta as either a 20-byte object

           name or as an offset in the stream, but ancient versions of Git don?t understand the

           latter. By default, git pack-objects only uses the former format for better

           compatibility. This option allows the command to use the latter format for

           compactness. Depending on the average delta chain length, this option typically

           shrinks the resulting packfile by 3-5 per-cent. Page 5/9



           Note: Porcelain commands such as git gc (see git-gc(1)), git repack (see git-

           repack(1)) pass this option by default in modern Git when they put objects in your

           repository into pack files. So does git bundle (see git-bundle(1)) when it creates a

           bundle.

       --threads=<n>

           Specifies the number of threads to spawn when searching for best delta matches. This

           requires that pack-objects be compiled with pthreads otherwise this option is ignored

           with a warning. This is meant to reduce packing time on multiprocessor machines. The

           required amount of memory for the delta search window is however multiplied by the

           number of threads. Specifying 0 will cause Git to auto-detect the number of CPU?s and

           set the number of threads accordingly.

       --index-version=<version>[,<offset>]

           This is intended to be used by the test suite only. It allows to force the version for

           the generated pack index, and to force 64-bit index entries on objects located above

           the given offset.

       --keep-true-parents

           With this option, parents that are hidden by grafts are packed nevertheless.

       --filter=<filter-spec>

           Requires --stdout. Omits certain objects (usually blobs) from the resulting packfile.

           See git-rev-list(1) for valid <filter-spec> forms.

       --no-filter

           Turns off any previous --filter= argument.

       --missing=<missing-action>

           A debug option to help with future "partial clone" development. This option specifies

           how missing objects are handled.

           The form --missing=error requests that pack-objects stop with an error if a missing

           object is encountered. If the repository is a partial clone, an attempt to fetch

           missing objects will be made before declaring them missing. This is the default

           action.

           The form --missing=allow-any will allow object traversal to continue if a missing

           object is encountered. No fetch of a missing object will occur. Missing objects will

           silently be omitted from the results.

           The form --missing=allow-promisor is like allow-any, but will only allow object Page 6/9



           traversal to continue for EXPECTED promisor missing objects. No fetch of a missing

           object will occur. An unexpected missing object will raise an error.

       --exclude-promisor-objects

           Omit objects that are known to be in the promisor remote. (This option has the purpose

           of operating only on locally created objects, so that when we repack, we still

           maintain a distinction between locally created objects [without .promisor] and objects

           from the promisor remote [with .promisor].) This is used with partial clone.

       --keep-unreachable

           Objects unreachable from the refs in packs named with --unpacked= option are added to

           the resulting pack, in addition to the reachable objects that are not in packs marked

           with *.keep files. This implies --revs.

       --pack-loose-unreachable

           Pack unreachable loose objects (and their loose counterparts removed). This implies

           --revs.

       --unpack-unreachable

           Keep unreachable objects in loose form. This implies --revs.

       --delta-islands

           Restrict delta matches based on "islands". See DELTA ISLANDS below.

DELTA ISLANDS

       When possible, pack-objects tries to reuse existing on-disk deltas to avoid having to

       search for new ones on the fly. This is an important optimization for serving fetches,

       because it means the server can avoid inflating most objects at all and just send the

       bytes directly from disk. This optimization can?t work when an object is stored as a delta

       against a base which the receiver does not have (and which we are not already sending). In

       that case the server "breaks" the delta and has to find a new one, which has a high CPU

       cost. Therefore it?s important for performance that the set of objects in on-disk delta

       relationships match what a client would fetch.

       In a normal repository, this tends to work automatically. The objects are mostly reachable

       from the branches and tags, and that?s what clients fetch. Any deltas we find on the

       server are likely to be between objects the client has or will have.

       But in some repository setups, you may have several related but separate groups of ref

       tips, with clients tending to fetch those groups independently. For example, imagine that

       you are hosting several "forks" of a repository in a single shared object store, and Page 7/9



       letting clients view them as separate repositories through GIT_NAMESPACE or separate repos

       using the alternates mechanism. A naive repack may find that the optimal delta for an

       object is against a base that is only found in another fork. But when a client fetches,

       they will not have the base object, and we?ll have to find a new delta on the fly.

       A similar situation may exist if you have many refs outside of refs/heads/ and refs/tags/

       that point to related objects (e.g., refs/pull or refs/changes used by some hosting

       providers). By default, clients fetch only heads and tags, and deltas against objects

       found only in those other groups cannot be sent as-is.

       Delta islands solve this problem by allowing you to group your refs into distinct

       "islands". Pack-objects computes which objects are reachable from which islands, and

       refuses to make a delta from an object A against a base which is not present in all of A's

       islands. This results in slightly larger packs (because we miss some delta opportunities),

       but guarantees that a fetch of one island will not have to recompute deltas on the fly due

       to crossing island boundaries.

       When repacking with delta islands the delta window tends to get clogged with candidates

       that are forbidden by the config. Repacking with a big --window helps (and doesn?t take as

       long as it otherwise might because we can reject some object pairs based on islands before

       doing any computation on the content).

       Islands are configured via the pack.island option, which can be specified multiple times.

       Each value is a left-anchored regular expressions matching refnames. For example:

           [pack]

           island = refs/heads/

           island = refs/tags/

       puts heads and tags into an island (whose name is the empty string; see below for more on

       naming). Any refs which do not match those regular expressions (e.g., refs/pull/123) is

       not in any island. Any object which is reachable only from refs/pull/ (but not heads or

       tags) is therefore not a candidate to be used as a base for refs/heads/.

       Refs are grouped into islands based on their "names", and two regexes that produce the

       same name are considered to be in the same island. The names are computed from the regexes

       by concatenating any capture groups from the regex, with a - dash in between. (And if

       there are no capture groups, then the name is the empty string, as in the above example.)

       This allows you to create arbitrary numbers of islands. Only up to 14 such capture groups

       are supported though. Page 8/9



       For example, imagine you store the refs for each fork in refs/virtual/ID, where ID is a

       numeric identifier. You might then configure:

           [pack]

           island = refs/virtual/([0-9]+)/heads/

           island = refs/virtual/([0-9]+)/tags/

           island = refs/virtual/([0-9]+)/(pull)/

       That puts the heads and tags for each fork in their own island (named "1234" or similar),

       and the pull refs for each go into their own "1234-pull".

       Note that we pick a single island for each regex to go into, using "last one wins"

       ordering (which allows repo-specific config to take precedence over user-wide config, and

       so forth).

CONFIGURATION

       Various configuration variables affect packing, see git-config(1) (search for "pack" and

       "delta").

       Notably, delta compression is not used on objects larger than the core.bigFileThreshold

       configuration variable and on files with the attribute delta set to false.

SEE ALSO

       git-rev-list(1) git-repack(1) git-prune-packed(1)

GIT

       Part of the git(1) suite

Git 2.34.1                                  07/07/2023                        GIT-PACK-OBJECTS(1)

Page 9/9


