
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-notes.1'

$ man git-notes.1

GIT-NOTES(1) Git Manual GIT-NOTES(1)

NAME

 git-notes - Add or inspect object notes

SYNOPSIS

 git notes [list [<object>]]

 git notes add [-f] [--allow-empty] [-F <file> | -m <msg> | (-c | -C) <object>] [<object>]

 git notes copy [-f] (--stdin | <from-object> [<to-object>])

 git notes append [--allow-empty] [-F <file> | -m <msg> | (-c | -C) <object>] [<object>]

 git notes edit [--allow-empty] [<object>]

 git notes show [<object>]

 git notes merge [-v | -q] [-s <strategy>] <notes-ref>

 git notes merge --commit [-v | -q]

 git notes merge --abort [-v | -q]

 git notes remove [--ignore-missing] [--stdin] [<object>...]

 git notes prune [-n] [-v]

 git notes get-ref

DESCRIPTION

 Adds, removes, or reads notes attached to objects, without touching the objects

 themselves.

 By default, notes are saved to and read from refs/notes/commits, but this default can be

 overridden. See the OPTIONS, CONFIGURATION, and ENVIRONMENT sections below. If this ref

 does not exist, it will be quietly created when it is first needed to store a note.

 A typical use of notes is to supplement a commit message without changing the commit Page 1/8

 itself. Notes can be shown by git log along with the original commit message. To

 distinguish these notes from the message stored in the commit object, the notes are

 indented like the message, after an unindented line saying "Notes (<refname>):" (or

 "Notes:" for refs/notes/commits).

 Notes can also be added to patches prepared with git format-patch by using the --notes

 option. Such notes are added as a patch commentary after a three dash separator line.

 To change which notes are shown by git log, see the "notes.displayRef" configuration in

 git-log(1).

 See the "notes.rewrite.<command>" configuration for a way to carry notes across commands

 that rewrite commits.

SUBCOMMANDS

 list

 List the notes object for a given object. If no object is given, show a list of all

 note objects and the objects they annotate (in the format "<note object> <annotated

 object>"). This is the default subcommand if no subcommand is given.

 add

 Add notes for a given object (defaults to HEAD). Abort if the object already has notes

 (use -f to overwrite existing notes). However, if you?re using add interactively

 (using an editor to supply the notes contents), then - instead of aborting - the

 existing notes will be opened in the editor (like the edit subcommand).

 copy

 Copy the notes for the first object onto the second object (defaults to HEAD). Abort

 if the second object already has notes, or if the first object has none (use -f to

 overwrite existing notes to the second object). This subcommand is equivalent to: git

 notes add [-f] -C $(git notes list <from-object>) <to-object>

 In --stdin mode, take lines in the format

 <from-object> SP <to-object> [SP <rest>] LF

 on standard input, and copy the notes from each <from-object> to its corresponding

 <to-object>. (The optional <rest> is ignored so that the command can read the input

 given to the post-rewrite hook.)

 append

 Append to the notes of an existing object (defaults to HEAD). Creates a new notes

 object if needed. Page 2/8

 edit

 Edit the notes for a given object (defaults to HEAD).

 show

 Show the notes for a given object (defaults to HEAD).

 merge

 Merge the given notes ref into the current notes ref. This will try to merge the

 changes made by the given notes ref (called "remote") since the merge-base (if any)

 into the current notes ref (called "local").

 If conflicts arise and a strategy for automatically resolving conflicting notes (see

 the "NOTES MERGE STRATEGIES" section) is not given, the "manual" resolver is used.

 This resolver checks out the conflicting notes in a special worktree

 (.git/NOTES_MERGE_WORKTREE), and instructs the user to manually resolve the conflicts

 there. When done, the user can either finalize the merge with git notes merge

 --commit, or abort the merge with git notes merge --abort.

 remove

 Remove the notes for given objects (defaults to HEAD). When giving zero or one object

 from the command line, this is equivalent to specifying an empty note message to the

 edit subcommand.

 prune

 Remove all notes for non-existing/unreachable objects.

 get-ref

 Print the current notes ref. This provides an easy way to retrieve the current notes

 ref (e.g. from scripts).

OPTIONS

 -f, --force

 When adding notes to an object that already has notes, overwrite the existing notes

 (instead of aborting).

 -m <msg>, --message=<msg>

 Use the given note message (instead of prompting). If multiple -m options are given,

 their values are concatenated as separate paragraphs. Lines starting with # and empty

 lines other than a single line between paragraphs will be stripped out.

 -F <file>, --file=<file>

 Take the note message from the given file. Use - to read the note message from the Page 3/8

 standard input. Lines starting with # and empty lines other than a single line between

 paragraphs will be stripped out.

 -C <object>, --reuse-message=<object>

 Take the given blob object (for example, another note) as the note message. (Use git

 notes copy <object> instead to copy notes between objects.)

 -c <object>, --reedit-message=<object>

 Like -C, but with -c the editor is invoked, so that the user can further edit the note

 message.

 --allow-empty

 Allow an empty note object to be stored. The default behavior is to automatically

 remove empty notes.

 --ref <ref>

 Manipulate the notes tree in <ref>. This overrides GIT_NOTES_REF and the

 "core.notesRef" configuration. The ref specifies the full refname when it begins with

 refs/notes/; when it begins with notes/, refs/ and otherwise refs/notes/ is prefixed

 to form a full name of the ref.

 --ignore-missing

 Do not consider it an error to request removing notes from an object that does not

 have notes attached to it.

 --stdin

 Also read the object names to remove notes from the standard input (there is no reason

 you cannot combine this with object names from the command line).

 -n, --dry-run

 Do not remove anything; just report the object names whose notes would be removed.

 -s <strategy>, --strategy=<strategy>

 When merging notes, resolve notes conflicts using the given strategy. The following

 strategies are recognized: "manual" (default), "ours", "theirs", "union" and

 "cat_sort_uniq". This option overrides the "notes.mergeStrategy" configuration

 setting. See the "NOTES MERGE STRATEGIES" section below for more information on each

 notes merge strategy.

 --commit

 Finalize an in-progress git notes merge. Use this option when you have resolved the

 conflicts that git notes merge stored in .git/NOTES_MERGE_WORKTREE. This amends the Page 4/8

 partial merge commit created by git notes merge (stored in .git/NOTES_MERGE_PARTIAL)

 by adding the notes in .git/NOTES_MERGE_WORKTREE. The notes ref stored in the

 .git/NOTES_MERGE_REF symref is updated to the resulting commit.

 --abort

 Abort/reset an in-progress git notes merge, i.e. a notes merge with conflicts. This

 simply removes all files related to the notes merge.

 -q, --quiet

 When merging notes, operate quietly.

 -v, --verbose

 When merging notes, be more verbose. When pruning notes, report all object names whose

 notes are removed.

DISCUSSION

 Commit notes are blobs containing extra information about an object (usually information

 to supplement a commit?s message). These blobs are taken from notes refs. A notes ref is

 usually a branch which contains "files" whose paths are the object names for the objects

 they describe, with some directory separators included for performance reasons [1].

 Every notes change creates a new commit at the specified notes ref. You can therefore

 inspect the history of the notes by invoking, e.g., git log -p notes/commits. Currently

 the commit message only records which operation triggered the update, and the commit

 authorship is determined according to the usual rules (see git-commit(1)). These details

 may change in the future.

 It is also permitted for a notes ref to point directly to a tree object, in which case the

 history of the notes can be read with git log -p -g <refname>.

NOTES MERGE STRATEGIES

 The default notes merge strategy is "manual", which checks out conflicting notes in a

 special work tree for resolving notes conflicts (.git/NOTES_MERGE_WORKTREE), and instructs

 the user to resolve the conflicts in that work tree. When done, the user can either

 finalize the merge with git notes merge --commit, or abort the merge with git notes merge

 --abort.

 Users may select an automated merge strategy from among the following using either

 -s/--strategy option or configuring notes.mergeStrategy accordingly:

 "ours" automatically resolves conflicting notes in favor of the local version (i.e. the

 current notes ref). Page 5/8

 "theirs" automatically resolves notes conflicts in favor of the remote version (i.e. the

 given notes ref being merged into the current notes ref).

 "union" automatically resolves notes conflicts by concatenating the local and remote

 versions.

 "cat_sort_uniq" is similar to "union", but in addition to concatenating the local and

 remote versions, this strategy also sorts the resulting lines, and removes duplicate lines

 from the result. This is equivalent to applying the "cat | sort | uniq" shell pipeline to

 the local and remote versions. This strategy is useful if the notes follow a line-based

 format where one wants to avoid duplicated lines in the merge result. Note that if either

 the local or remote version contain duplicate lines prior to the merge, these will also be

 removed by this notes merge strategy.

EXAMPLES

 You can use notes to add annotations with information that was not available at the time a

 commit was written.

 $ git notes add -m 'Tested-by: Johannes Sixt <j6t@kdbg.org>' 72a144e2

 $ git show -s 72a144e

 [...]

 Signed-off-by: Junio C Hamano <gitster@pobox.com>

 Notes:

 Tested-by: Johannes Sixt <j6t@kdbg.org>

 In principle, a note is a regular Git blob, and any kind of (non-)format is accepted. You

 can binary-safely create notes from arbitrary files using git hash-object:

 $ cc *.c

 $ blob=$(git hash-object -w a.out)

 $ git notes --ref=built add --allow-empty -C "$blob" HEAD

 (You cannot simply use git notes --ref=built add -F a.out HEAD because that is not

 binary-safe.) Of course, it doesn?t make much sense to display non-text-format notes with

 git log, so if you use such notes, you?ll probably need to write some special-purpose

 tools to do something useful with them.

CONFIGURATION

 core.notesRef

 Notes ref to read and manipulate instead of refs/notes/commits. Must be an

 unabbreviated ref name. This setting can be overridden through the environment and Page 6/8

 command line.

 notes.mergeStrategy

 Which merge strategy to choose by default when resolving notes conflicts. Must be one

 of manual, ours, theirs, union, or cat_sort_uniq. Defaults to manual. See "NOTES MERGE

 STRATEGIES" section above for more information on each strategy.

 This setting can be overridden by passing the --strategy option.

 notes.<name>.mergeStrategy

 Which merge strategy to choose when doing a notes merge into refs/notes/<name>. This

 overrides the more general "notes.mergeStrategy". See the "NOTES MERGE STRATEGIES"

 section above for more information on each available strategy.

 notes.displayRef

 Which ref (or refs, if a glob or specified more than once), in addition to the default

 set by core.notesRef or GIT_NOTES_REF, to read notes from when showing commit messages

 with the git log family of commands. This setting can be overridden on the command

 line or by the GIT_NOTES_DISPLAY_REF environment variable. See git-log(1).

 notes.rewrite.<command>

 When rewriting commits with <command> (currently amend or rebase), if this variable is

 false, git will not copy notes from the original to the rewritten commit. Defaults to

 true. See also "notes.rewriteRef" below.

 This setting can be overridden by the GIT_NOTES_REWRITE_REF environment variable.

 notes.rewriteMode

 When copying notes during a rewrite, what to do if the target commit already has a

 note. Must be one of overwrite, concatenate, cat_sort_uniq, or ignore. Defaults to

 concatenate.

 This setting can be overridden with the GIT_NOTES_REWRITE_MODE environment variable.

 notes.rewriteRef

 When copying notes during a rewrite, specifies the (fully qualified) ref whose notes

 should be copied. May be a glob, in which case notes in all matching refs will be

 copied. You may also specify this configuration several times.

 Does not have a default value; you must configure this variable to enable note

 rewriting.

 Can be overridden with the GIT_NOTES_REWRITE_REF environment variable.

ENVIRONMENT Page 7/8

 GIT_NOTES_REF

 Which ref to manipulate notes from, instead of refs/notes/commits. This overrides the

 core.notesRef setting.

 GIT_NOTES_DISPLAY_REF

 Colon-delimited list of refs or globs indicating which refs, in addition to the

 default from core.notesRef or GIT_NOTES_REF, to read notes from when showing commit

 messages. This overrides the notes.displayRef setting.

 A warning will be issued for refs that do not exist, but a glob that does not match

 any refs is silently ignored.

 GIT_NOTES_REWRITE_MODE

 When copying notes during a rewrite, what to do if the target commit already has a

 note. Must be one of overwrite, concatenate, cat_sort_uniq, or ignore. This overrides

 the core.rewriteMode setting.

 GIT_NOTES_REWRITE_REF

 When rewriting commits, which notes to copy from the original to the rewritten commit.

 Must be a colon-delimited list of refs or globs.

 If not set in the environment, the list of notes to copy depends on the

 notes.rewrite.<command> and notes.rewriteRef settings.

GIT

 Part of the git(1) suite

NOTES

 1. Permitted pathnames have the form bf/fe/30/.../680d5a...: a sequence of directory

 names of two hexadecimal digits each followed by a filename with the rest of the

 object ID.

Git 2.34.1 07/07/2023 GIT-NOTES(1)

Page 8/8

