
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-ls-files.1'

$ man git-ls-files.1

GIT-LS-FILES(1) Git Manual GIT-LS-FILES(1)

NAME

 git-ls-files - Show information about files in the index and the working tree

SYNOPSIS

 git ls-files [-z] [-t] [-v] [-f]

 (--[cached|deleted|others|ignored|stage|unmerged|killed|modified])*

 (-[c|d|o|i|s|u|k|m])*

 [--eol]

 [--deduplicate]

 [-x <pattern>|--exclude=<pattern>]

 [-X <file>|--exclude-from=<file>]

 [--exclude-per-directory=<file>]

 [--exclude-standard]

 [--error-unmatch] [--with-tree=<tree-ish>]

 [--full-name] [--recurse-submodules]

 [--abbrev[=<n>]] [--] [<file>...]

DESCRIPTION

 This merges the file listing in the index with the actual working directory list, and

 shows different combinations of the two.

 One or more of the options below may be used to determine the files shown:

OPTIONS

 -c, --cached

 Show cached files in the output (default) Page 1/6

 -d, --deleted

 Show deleted files in the output

 -m, --modified

 Show modified files in the output

 -o, --others

 Show other (i.e. untracked) files in the output

 -i, --ignored

 Show only ignored files in the output. When showing files in the index, print only

 those matched by an exclude pattern. When showing "other" files, show only those

 matched by an exclude pattern. Standard ignore rules are not automatically activated,

 therefore at least one of the --exclude* options is required.

 -s, --stage

 Show staged contents' mode bits, object name and stage number in the output.

 --directory

 If a whole directory is classified as "other", show just its name (with a trailing

 slash) and not its whole contents.

 --no-empty-directory

 Do not list empty directories. Has no effect without --directory.

 -u, --unmerged

 Show unmerged files in the output (forces --stage)

 -k, --killed

 Show files on the filesystem that need to be removed due to file/directory conflicts

 for checkout-index to succeed.

 -z

 \0 line termination on output and do not quote filenames. See OUTPUT below for more

 information.

 --deduplicate

 When only filenames are shown, suppress duplicates that may come from having multiple

 stages during a merge, or giving --deleted and --modified option at the same time.

 When any of the -t, --unmerged, or --stage option is in use, this option has no

 effect.

 -x <pattern>, --exclude=<pattern>

 Skip untracked files matching pattern. Note that pattern is a shell wildcard pattern. Page 2/6

 See EXCLUDE PATTERNS below for more information.

 -X <file>, --exclude-from=<file>

 Read exclude patterns from <file>; 1 per line.

 --exclude-per-directory=<file>

 Read additional exclude patterns that apply only to the directory and its

 subdirectories in <file>.

 --exclude-standard

 Add the standard Git exclusions: .git/info/exclude, .gitignore in each directory, and

 the user?s global exclusion file.

 --error-unmatch

 If any <file> does not appear in the index, treat this as an error (return 1).

 --with-tree=<tree-ish>

 When using --error-unmatch to expand the user supplied <file> (i.e. path pattern)

 arguments to paths, pretend that paths which were removed in the index since the named

 <tree-ish> are still present. Using this option with -s or -u options does not make

 any sense.

 -t

 This feature is semi-deprecated. For scripting purpose, git-status(1) --porcelain and

 git-diff-files(1) --name-status are almost always superior alternatives, and users

 should look at git-status(1) --short or git-diff(1) --name-status for more

 user-friendly alternatives.

 This option identifies the file status with the following tags (followed by a space)

 at the start of each line:

 H

 cached

 S

 skip-worktree

 M

 unmerged

 R

 removed/deleted

 C

 modified/changed Page 3/6

 K

 to be killed

 ?

 other

 -v

 Similar to -t, but use lowercase letters for files that are marked as assume unchanged

 (see git-update-index(1)).

 -f

 Similar to -t, but use lowercase letters for files that are marked as fsmonitor valid

 (see git-update-index(1)).

 --full-name

 When run from a subdirectory, the command usually outputs paths relative to the

 current directory. This option forces paths to be output relative to the project top

 directory.

 --recurse-submodules

 Recursively calls ls-files on each active submodule in the repository. Currently there

 is only support for the --cached mode.

 --abbrev[=<n>]

 Instead of showing the full 40-byte hexadecimal object lines, show the shortest prefix

 that is at least <n> hexdigits long that uniquely refers the object. Non default

 number of digits can be specified with --abbrev=<n>.

 --debug

 After each line that describes a file, add more data about its cache entry. This is

 intended to show as much information as possible for manual inspection; the exact

 format may change at any time.

 --eol

 Show <eolinfo> and <eolattr> of files. <eolinfo> is the file content identification

 used by Git when the "text" attribute is "auto" (or not set and core.autocrlf is not

 false). <eolinfo> is either "-text", "none", "lf", "crlf", "mixed" or "".

 "" means the file is not a regular file, it is not in the index or not accessible in

 the working tree.

 <eolattr> is the attribute that is used when checking out or committing, it is either

 "", "-text", "text", "text=auto", "text eol=lf", "text eol=crlf". Since Git 2.10 Page 4/6

 "text=auto eol=lf" and "text=auto eol=crlf" are supported.

 Both the <eolinfo> in the index ("i/<eolinfo>") and in the working tree

 ("w/<eolinfo>") are shown for regular files, followed by the ("attr/<eolattr>").

 --

 Do not interpret any more arguments as options.

 <file>

 Files to show. If no files are given all files which match the other specified

 criteria are shown.

OUTPUT

 git ls-files just outputs the filenames unless --stage is specified in which case it

 outputs:

 [<tag>]<mode> <object> <stage> <file>

 git ls-files --eol will show

 i/<eolinfo><SPACES>w/<eolinfo><SPACES>attr/<eolattr><SPACE*><TAB><file>

 git ls-files --unmerged and git ls-files --stage can be used to examine detailed

 information on unmerged paths.

 For an unmerged path, instead of recording a single mode/SHA-1 pair, the index records up

 to three such pairs; one from tree O in stage 1, A in stage 2, and B in stage 3. This

 information can be used by the user (or the porcelain) to see what should eventually be

 recorded at the path. (see git-read-tree(1) for more information on state)

 Without the -z option, pathnames with "unusual" characters are quoted as explained for the

 configuration variable core.quotePath (see git-config(1)). Using -z the filename is output

 verbatim and the line is terminated by a NUL byte.

EXCLUDE PATTERNS

 git ls-files can use a list of "exclude patterns" when traversing the directory tree and

 finding files to show when the flags --others or --ignored are specified. gitignore(5)

 specifies the format of exclude patterns.

 These exclude patterns come from these places, in order:

 1. The command-line flag --exclude=<pattern> specifies a single pattern. Patterns are

 ordered in the same order they appear in the command line.

 2. The command-line flag --exclude-from=<file> specifies a file containing a list of

 patterns. Patterns are ordered in the same order they appear in the file.

 3. The command-line flag --exclude-per-directory=<name> specifies a name of the file in Page 5/6

 each directory git ls-files examines, normally .gitignore. Files in deeper directories

 take precedence. Patterns are ordered in the same order they appear in the files.

 A pattern specified on the command line with --exclude or read from the file specified

 with --exclude-from is relative to the top of the directory tree. A pattern read from a

 file specified by --exclude-per-directory is relative to the directory that the pattern

 file appears in.

SEE ALSO

 git-read-tree(1), gitignore(5)

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-LS-FILES(1)

Page 6/6

