
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-log.1'

$ man git-log.1

GIT-LOG(1) Git Manual GIT-LOG(1)

NAME

 git-log - Show commit logs

SYNOPSIS

 git log [<options>] [<revision range>] [[--] <path>...]

DESCRIPTION

 Shows the commit logs.

 List commits that are reachable by following the parent links from the given commit(s),

 but exclude commits that are reachable from the one(s) given with a ^ in front of them.

 The output is given in reverse chronological order by default.

 You can think of this as a set operation. Commits reachable from any of the commits given

 on the command line form a set, and then commits reachable from any of the ones given with

 ^ in front are subtracted from that set. The remaining commits are what comes out in the

 command?s output. Various other options and paths parameters can be used to further limit

 the result.

 Thus, the following command:

 $ git log foo bar ^baz

 means "list all the commits which are reachable from foo or bar, but not from baz".

 A special notation "<commit1>..<commit2>" can be used as a short-hand for "^<commit1>

 <commit2>". For example, either of the following may be used interchangeably:

 $ git log origin..HEAD

 $ git log HEAD ^origin

 Another special notation is "<commit1>...<commit2>" which is useful for merges. The Page 1/54

 resulting set of commits is the symmetric difference between the two operands. The

 following two commands are equivalent:

 $ git log A B --not $(git merge-base --all A B)

 $ git log A...B

 The command takes options applicable to the git-rev-list(1) command to control what is

 shown and how, and options applicable to the git-diff(1) command to control how the

 changes each commit introduces are shown.

OPTIONS

 --follow

 Continue listing the history of a file beyond renames (works only for a single file).

 --no-decorate, --decorate[=short|full|auto|no]

 Print out the ref names of any commits that are shown. If short is specified, the ref

 name prefixes refs/heads/, refs/tags/ and refs/remotes/ will not be printed. If full

 is specified, the full ref name (including prefix) will be printed. If auto is

 specified, then if the output is going to a terminal, the ref names are shown as if

 short were given, otherwise no ref names are shown. The option --decorate is

 short-hand for --decorate=short. Default to configuration value of log.decorate if

 configured, otherwise, auto.

 --decorate-refs=<pattern>, --decorate-refs-exclude=<pattern>

 If no --decorate-refs is given, pretend as if all refs were included. For each

 candidate, do not use it for decoration if it matches any patterns given to

 --decorate-refs-exclude or if it doesn?t match any of the patterns given to

 --decorate-refs. The log.excludeDecoration config option allows excluding refs from

 the decorations, but an explicit --decorate-refs pattern will override a match in

 log.excludeDecoration.

 --source

 Print out the ref name given on the command line by which each commit was reached.

 --[no-]mailmap, --[no-]use-mailmap

 Use mailmap file to map author and committer names and email addresses to canonical

 real names and email addresses. See git-shortlog(1).

 --full-diff

 Without this flag, git log -p <path>... shows commits that touch the specified paths,

 and diffs about the same specified paths. With this, the full diff is shown for Page 2/54

 commits that touch the specified paths; this means that "<path>..." limits only

 commits, and doesn?t limit diff for those commits.

 Note that this affects all diff-based output types, e.g. those produced by --stat,

 etc.

 --log-size

 Include a line ?log size <number>? in the output for each commit, where <number> is

 the length of that commit?s message in bytes. Intended to speed up tools that read log

 messages from git log output by allowing them to allocate space in advance.

 -L<start>,<end>:<file>, -L:<funcname>:<file>

 Trace the evolution of the line range given by <start>,<end>, or by the function name

 regex <funcname>, within the <file>. You may not give any pathspec limiters. This is

 currently limited to a walk starting from a single revision, i.e., you may only give

 zero or one positive revision arguments, and <start> and <end> (or <funcname>) must

 exist in the starting revision. You can specify this option more than once. Implies

 --patch. Patch output can be suppressed using --no-patch, but other diff formats

 (namely --raw, --numstat, --shortstat, --dirstat, --summary, --name-only,

 --name-status, --check) are not currently implemented.

 <start> and <end> can take one of these forms:

 ? number

 If <start> or <end> is a number, it specifies an absolute line number (lines count

 from 1).

 ? /regex/

 This form will use the first line matching the given POSIX regex. If <start> is a

 regex, it will search from the end of the previous -L range, if any, otherwise

 from the start of file. If <start> is ^/regex/, it will search from the start of

 file. If <end> is a regex, it will search starting at the line given by <start>.

 ? +offset or -offset

 This is only valid for <end> and will specify a number of lines before or after

 the line given by <start>.

 If :<funcname> is given in place of <start> and <end>, it is a regular expression that

 denotes the range from the first funcname line that matches <funcname>, up to the next

 funcname line. :<funcname> searches from the end of the previous -L range, if any,

 otherwise from the start of file. ^:<funcname> searches from the start of file. The Page 3/54

 function names are determined in the same way as git diff works out patch hunk headers

 (see Defining a custom hunk-header in gitattributes(5)).

 <revision range>

 Show only commits in the specified revision range. When no <revision range> is

 specified, it defaults to HEAD (i.e. the whole history leading to the current commit).

 origin..HEAD specifies all the commits reachable from the current commit (i.e. HEAD),

 but not from origin. For a complete list of ways to spell <revision range>, see the

 Specifying Ranges section of gitrevisions(7).

 [--] <path>...

 Show only commits that are enough to explain how the files that match the specified

 paths came to be. See History Simplification below for details and other

 simplification modes.

 Paths may need to be prefixed with -- to separate them from options or the revision

 range, when confusion arises.

 Commit Limiting

 Besides specifying a range of commits that should be listed using the special notations

 explained in the description, additional commit limiting may be applied.

 Using more options generally further limits the output (e.g. --since=<date1> limits to

 commits newer than <date1>, and using it with --grep=<pattern> further limits to commits

 whose log message has a line that matches <pattern>), unless otherwise noted.

 Note that these are applied before commit ordering and formatting options, such as

 --reverse.

 -<number>, -n <number>, --max-count=<number>

 Limit the number of commits to output.

 --skip=<number>

 Skip number commits before starting to show the commit output.

 --since=<date>, --after=<date>

 Show commits more recent than a specific date.

 --until=<date>, --before=<date>

 Show commits older than a specific date.

 --author=<pattern>, --committer=<pattern>

 Limit the commits output to ones with author/committer header lines that match the

 specified pattern (regular expression). With more than one --author=<pattern>, commits Page 4/54

 whose author matches any of the given patterns are chosen (similarly for multiple

 --committer=<pattern>).

 --grep-reflog=<pattern>

 Limit the commits output to ones with reflog entries that match the specified pattern

 (regular expression). With more than one --grep-reflog, commits whose reflog message

 matches any of the given patterns are chosen. It is an error to use this option unless

 --walk-reflogs is in use.

 --grep=<pattern>

 Limit the commits output to ones with log message that matches the specified pattern

 (regular expression). With more than one --grep=<pattern>, commits whose message

 matches any of the given patterns are chosen (but see --all-match).

 When --notes is in effect, the message from the notes is matched as if it were part of

 the log message.

 --all-match

 Limit the commits output to ones that match all given --grep, instead of ones that

 match at least one.

 --invert-grep

 Limit the commits output to ones with log message that do not match the pattern

 specified with --grep=<pattern>.

 -i, --regexp-ignore-case

 Match the regular expression limiting patterns without regard to letter case.

 --basic-regexp

 Consider the limiting patterns to be basic regular expressions; this is the default.

 -E, --extended-regexp

 Consider the limiting patterns to be extended regular expressions instead of the

 default basic regular expressions.

 -F, --fixed-strings

 Consider the limiting patterns to be fixed strings (don?t interpret pattern as a

 regular expression).

 -P, --perl-regexp

 Consider the limiting patterns to be Perl-compatible regular expressions.

 Support for these types of regular expressions is an optional compile-time dependency.

 If Git wasn?t compiled with support for them providing this option will cause it to Page 5/54

 die.

 --remove-empty

 Stop when a given path disappears from the tree.

 --merges

 Print only merge commits. This is exactly the same as --min-parents=2.

 --no-merges

 Do not print commits with more than one parent. This is exactly the same as

 --max-parents=1.

 --min-parents=<number>, --max-parents=<number>, --no-min-parents, --no-max-parents

 Show only commits which have at least (or at most) that many parent commits. In

 particular, --max-parents=1 is the same as --no-merges, --min-parents=2 is the same as

 --merges. --max-parents=0 gives all root commits and --min-parents=3 all octopus

 merges.

 --no-min-parents and --no-max-parents reset these limits (to no limit) again.

 Equivalent forms are --min-parents=0 (any commit has 0 or more parents) and

 --max-parents=-1 (negative numbers denote no upper limit).

 --first-parent

 Follow only the first parent commit upon seeing a merge commit. This option can give a

 better overview when viewing the evolution of a particular topic branch, because

 merges into a topic branch tend to be only about adjusting to updated upstream from

 time to time, and this option allows you to ignore the individual commits brought in

 to your history by such a merge.

 This option also changes default diff format for merge commits to first-parent, see

 --diff-merges=first-parent for details.

 --not

 Reverses the meaning of the ^ prefix (or lack thereof) for all following revision

 specifiers, up to the next --not.

 --all

 Pretend as if all the refs in refs/, along with HEAD, are listed on the command line

 as <commit>.

 --branches[=<pattern>]

 Pretend as if all the refs in refs/heads are listed on the command line as <commit>.

 If <pattern> is given, limit branches to ones matching given shell glob. If pattern Page 6/54

 lacks ?, *, or [, /* at the end is implied.

 --tags[=<pattern>]

 Pretend as if all the refs in refs/tags are listed on the command line as <commit>. If

 <pattern> is given, limit tags to ones matching given shell glob. If pattern lacks ?,

 , or [, / at the end is implied.

 --remotes[=<pattern>]

 Pretend as if all the refs in refs/remotes are listed on the command line as <commit>.

 If <pattern> is given, limit remote-tracking branches to ones matching given shell

 glob. If pattern lacks ?, *, or [, /* at the end is implied.

 --glob=<glob-pattern>

 Pretend as if all the refs matching shell glob <glob-pattern> are listed on the

 command line as <commit>. Leading refs/, is automatically prepended if missing. If

 pattern lacks ?, *, or [, /* at the end is implied.

 --exclude=<glob-pattern>

 Do not include refs matching <glob-pattern> that the next --all, --branches, --tags,

 --remotes, or --glob would otherwise consider. Repetitions of this option accumulate

 exclusion patterns up to the next --all, --branches, --tags, --remotes, or --glob

 option (other options or arguments do not clear accumulated patterns).

 The patterns given should not begin with refs/heads, refs/tags, or refs/remotes when

 applied to --branches, --tags, or --remotes, respectively, and they must begin with

 refs/ when applied to --glob or --all. If a trailing /* is intended, it must be given

 explicitly.

 --reflog

 Pretend as if all objects mentioned by reflogs are listed on the command line as

 <commit>.

 --alternate-refs

 Pretend as if all objects mentioned as ref tips of alternate repositories were listed

 on the command line. An alternate repository is any repository whose object directory

 is specified in objects/info/alternates. The set of included objects may be modified

 by core.alternateRefsCommand, etc. See git-config(1).

 --single-worktree

 By default, all working trees will be examined by the following options when there are

 more than one (see git-worktree(1)): --all, --reflog and --indexed-objects. This Page 7/54

 option forces them to examine the current working tree only.

 --ignore-missing

 Upon seeing an invalid object name in the input, pretend as if the bad input was not

 given.

 --bisect

 Pretend as if the bad bisection ref refs/bisect/bad was listed and as if it was

 followed by --not and the good bisection refs refs/bisect/good-* on the command line.

 --stdin

 In addition to the <commit> listed on the command line, read them from the standard

 input. If a -- separator is seen, stop reading commits and start reading paths to

 limit the result.

 --cherry-mark

 Like --cherry-pick (see below) but mark equivalent commits with = rather than omitting

 them, and inequivalent ones with +.

 --cherry-pick

 Omit any commit that introduces the same change as another commit on the ?other side?

 when the set of commits are limited with symmetric difference.

 For example, if you have two branches, A and B, a usual way to list all commits on

 only one side of them is with --left-right (see the example below in the description

 of the --left-right option). However, it shows the commits that were cherry-picked

 from the other branch (for example, ?3rd on b? may be cherry-picked from branch A).

 With this option, such pairs of commits are excluded from the output.

 --left-only, --right-only

 List only commits on the respective side of a symmetric difference, i.e. only those

 which would be marked < resp. > by --left-right.

 For example, --cherry-pick --right-only A...B omits those commits from B which are in

 A or are patch-equivalent to a commit in A. In other words, this lists the + commits

 from git cherry A B. More precisely, --cherry-pick --right-only --no-merges gives the

 exact list.

 --cherry

 A synonym for --right-only --cherry-mark --no-merges; useful to limit the output to

 the commits on our side and mark those that have been applied to the other side of a

 forked history with git log --cherry upstream...mybranch, similar to git cherry Page 8/54

 upstream mybranch.

 -g, --walk-reflogs

 Instead of walking the commit ancestry chain, walk reflog entries from the most recent

 one to older ones. When this option is used you cannot specify commits to exclude

 (that is, ^commit, commit1..commit2, and commit1...commit2 notations cannot be used).

 With --pretty format other than oneline and reference (for obvious reasons), this

 causes the output to have two extra lines of information taken from the reflog. The

 reflog designator in the output may be shown as ref@{Nth} (where Nth is the

 reverse-chronological index in the reflog) or as ref@{timestamp} (with the timestamp

 for that entry), depending on a few rules:

 1. If the starting point is specified as ref@{Nth}, show the index format.

 2. If the starting point was specified as ref@{now}, show the timestamp format.

 3. If neither was used, but --date was given on the command line, show the timestamp

 in the format requested by --date.

 4. Otherwise, show the index format.

 Under --pretty=oneline, the commit message is prefixed with this information on the

 same line. This option cannot be combined with --reverse. See also git-reflog(1).

 Under --pretty=reference, this information will not be shown at all.

 --merge

 After a failed merge, show refs that touch files having a conflict and don?t exist on

 all heads to merge.

 --boundary

 Output excluded boundary commits. Boundary commits are prefixed with -.

 History Simplification

 Sometimes you are only interested in parts of the history, for example the commits

 modifying a particular <path>. But there are two parts of History Simplification, one part

 is selecting the commits and the other is how to do it, as there are various strategies to

 simplify the history.

 The following options select the commits to be shown:

 <paths>

 Commits modifying the given <paths> are selected.

 --simplify-by-decoration

 Commits that are referred by some branch or tag are selected. Page 9/54

 Note that extra commits can be shown to give a meaningful history.

 The following options affect the way the simplification is performed:

 Default mode

 Simplifies the history to the simplest history explaining the final state of the tree.

 Simplest because it prunes some side branches if the end result is the same (i.e.

 merging branches with the same content)

 --show-pulls

 Include all commits from the default mode, but also any merge commits that are not

 TREESAME to the first parent but are TREESAME to a later parent. This mode is helpful

 for showing the merge commits that "first introduced" a change to a branch.

 --full-history

 Same as the default mode, but does not prune some history.

 --dense

 Only the selected commits are shown, plus some to have a meaningful history.

 --sparse

 All commits in the simplified history are shown.

 --simplify-merges

 Additional option to --full-history to remove some needless merges from the resulting

 history, as there are no selected commits contributing to this merge.

 --ancestry-path

 When given a range of commits to display (e.g. commit1..commit2 or commit2 ^commit1),

 only display commits that exist directly on the ancestry chain between the commit1 and

 commit2, i.e. commits that are both descendants of commit1, and ancestors of commit2.

 A more detailed explanation follows.

 Suppose you specified foo as the <paths>. We shall call commits that modify foo !TREESAME,

 and the rest TREESAME. (In a diff filtered for foo, they look different and equal,

 respectively.)

 In the following, we will always refer to the same example history to illustrate the

 differences between simplification settings. We assume that you are filtering for a file

 foo in this commit graph:

 .-A---M---N---O---P---Q

 / / / / / /

 I B C D E Y Page 10/54

 \ / / / / /

 `-------------' X

 The horizontal line of history A---Q is taken to be the first parent of each merge. The

 commits are:

 ? I is the initial commit, in which foo exists with contents ?asdf?, and a file quux

 exists with contents ?quux?. Initial commits are compared to an empty tree, so I is

 !TREESAME.

 ? In A, foo contains just ?foo?.

 ? B contains the same change as A. Its merge M is trivial and hence TREESAME to all

 parents.

 ? C does not change foo, but its merge N changes it to ?foobar?, so it is not TREESAME

 to any parent.

 ? D sets foo to ?baz?. Its merge O combines the strings from N and D to ?foobarbaz?;

 i.e., it is not TREESAME to any parent.

 ? E changes quux to ?xyzzy?, and its merge P combines the strings to ?quux xyzzy?. P is

 TREESAME to O, but not to E.

 ? X is an independent root commit that added a new file side, and Y modified it. Y is

 TREESAME to X. Its merge Q added side to P, and Q is TREESAME to P, but not to Y.

 rev-list walks backwards through history, including or excluding commits based on whether

 --full-history and/or parent rewriting (via --parents or --children) are used. The

 following settings are available.

 Default mode

 Commits are included if they are not TREESAME to any parent (though this can be

 changed, see --sparse below). If the commit was a merge, and it was TREESAME to one

 parent, follow only that parent. (Even if there are several TREESAME parents, follow

 only one of them.) Otherwise, follow all parents.

 This results in:

 .-A---N---O

 / / /

 I---------D

 Note how the rule to only follow the TREESAME parent, if one is available, removed B

 from consideration entirely. C was considered via N, but is TREESAME. Root commits

 are compared to an empty tree, so I is !TREESAME. Page 11/54

 Parent/child relations are only visible with --parents, but that does not affect the

 commits selected in default mode, so we have shown the parent lines.

 --full-history without parent rewriting

 This mode differs from the default in one point: always follow all parents of a merge,

 even if it is TREESAME to one of them. Even if more than one side of the merge has

 commits that are included, this does not imply that the merge itself is! In the

 example, we get

 I A B N D O P Q

 M was excluded because it is TREESAME to both parents. E, C and B were all walked,

 but only B was !TREESAME, so the others do not appear.

 Note that without parent rewriting, it is not really possible to talk about the

 parent/child relationships between the commits, so we show them disconnected.

 --full-history with parent rewriting

 Ordinary commits are only included if they are !TREESAME (though this can be changed,

 see --sparse below).

 Merges are always included. However, their parent list is rewritten: Along each

 parent, prune away commits that are not included themselves. This results in

 .-A---M---N---O---P---Q

 / / / / /

 I B / D /

 \ / / / /

 `-------------'

 Compare to --full-history without rewriting above. Note that E was pruned away because

 it is TREESAME, but the parent list of P was rewritten to contain E's parent I. The

 same happened for C and N, and X, Y and Q.

 In addition to the above settings, you can change whether TREESAME affects inclusion:

 --dense

 Commits that are walked are included if they are not TREESAME to any parent.

 --sparse

 All commits that are walked are included.

 Note that without --full-history, this still simplifies merges: if one of the parents

 is TREESAME, we follow only that one, so the other sides of the merge are never

 walked. Page 12/54

 --simplify-merges

 First, build a history graph in the same way that --full-history with parent rewriting

 does (see above).

 Then simplify each commit C to its replacement C' in the final history according to

 the following rules:

 ? Set C' to C.

 ? Replace each parent P of C' with its simplification P'. In the process, drop

 parents that are ancestors of other parents or that are root commits TREESAME to

 an empty tree, and remove duplicates, but take care to never drop all parents that

 we are TREESAME to.

 ? If after this parent rewriting, C' is a root or merge commit (has zero or >1

 parents), a boundary commit, or !TREESAME, it remains. Otherwise, it is replaced

 with its only parent.

 The effect of this is best shown by way of comparing to --full-history with parent

 rewriting. The example turns into:

 .-A---M---N---O

 / / /

 I B D

 \ / /

 `---------'

 Note the major differences in N, P, and Q over --full-history:

 ? N's parent list had I removed, because it is an ancestor of the other parent M.

 Still, N remained because it is !TREESAME.

 ? P's parent list similarly had I removed. P was then removed completely, because

 it had one parent and is TREESAME.

 ? Q's parent list had Y simplified to X. X was then removed, because it was a

 TREESAME root. Q was then removed completely, because it had one parent and is

 TREESAME.

 There is another simplification mode available:

 --ancestry-path

 Limit the displayed commits to those directly on the ancestry chain between the ?from?

 and ?to? commits in the given commit range. I.e. only display commits that are

 ancestor of the ?to? commit and descendants of the ?from? commit. Page 13/54

 As an example use case, consider the following commit history:

 D---E-------F

 / \ \

 B---C---G---H---I---J

 / \

 A-------K---------------L--M

 A regular D..M computes the set of commits that are ancestors of M, but excludes the

 ones that are ancestors of D. This is useful to see what happened to the history

 leading to M since D, in the sense that ?what does M have that did not exist in D?.

 The result in this example would be all the commits, except A and B (and D itself, of

 course).

 When we want to find out what commits in M are contaminated with the bug introduced by

 D and need fixing, however, we might want to view only the subset of D..M that are

 actually descendants of D, i.e. excluding C and K. This is exactly what the

 --ancestry-path option does. Applied to the D..M range, it results in:

 E-------F

 \ \

 G---H---I---J

 \

 L--M

 Before discussing another option, --show-pulls, we need to create a new example history.

 A common problem users face when looking at simplified history is that a commit they know

 changed a file somehow does not appear in the file?s simplified history. Let?s demonstrate

 a new example and show how options such as --full-history and --simplify-merges works in

 that case:

 .-A---M-----C--N---O---P

 / / \ \ \/ / /

 I B \ R-'`-Z' /

 \ / \/ /

 \ / /\ /

 `---X--' `---Y--'

 For this example, suppose I created file.txt which was modified by A, B, and X in

 different ways. The single-parent commits C, Z, and Y do not change file.txt. The merge Page 14/54

 commit M was created by resolving the merge conflict to include both changes from A and B

 and hence is not TREESAME to either. The merge commit R, however, was created by ignoring

 the contents of file.txt at M and taking only the contents of file.txt at X. Hence, R is

 TREESAME to X but not M. Finally, the natural merge resolution to create N is to take the

 contents of file.txt at R, so N is TREESAME to R but not C. The merge commits O and P are

 TREESAME to their first parents, but not to their second parents, Z and Y respectively.

 When using the default mode, N and R both have a TREESAME parent, so those edges are

 walked and the others are ignored. The resulting history graph is:

 I---X

 When using --full-history, Git walks every edge. This will discover the commits A and B

 and the merge M, but also will reveal the merge commits O and P. With parent rewriting,

 the resulting graph is:

 .-A---M--------N---O---P

 / / \ \ \/ / /

 I B \ R-'`--' /

 \ / \/ /

 \ / /\ /

 `---X--' `------'

 Here, the merge commits O and P contribute extra noise, as they did not actually

 contribute a change to file.txt. They only merged a topic that was based on an older

 version of file.txt. This is a common issue in repositories using a workflow where many

 contributors work in parallel and merge their topic branches along a single trunk: manu

 unrelated merges appear in the --full-history results.

 When using the --simplify-merges option, the commits O and P disappear from the results.

 This is because the rewritten second parents of O and P are reachable from their first

 parents. Those edges are removed and then the commits look like single-parent commits that

 are TREESAME to their parent. This also happens to the commit N, resulting in a history

 view as follows:

 .-A---M--.

 / / \

 I B R

 \ / /

 \ / / Page 15/54

 `---X--'

 In this view, we see all of the important single-parent changes from A, B, and X. We also

 see the carefully-resolved merge M and the not-so-carefully-resolved merge R. This is

 usually enough information to determine why the commits A and B "disappeared" from history

 in the default view. However, there are a few issues with this approach.

 The first issue is performance. Unlike any previous option, the --simplify-merges option

 requires walking the entire commit history before returning a single result. This can make

 the option difficult to use for very large repositories.

 The second issue is one of auditing. When many contributors are working on the same

 repository, it is important which merge commits introduced a change into an important

 branch. The problematic merge R above is not likely to be the merge commit that was used

 to merge into an important branch. Instead, the merge N was used to merge R and X into the

 important branch. This commit may have information about why the change X came to override

 the changes from A and B in its commit message.

 --show-pulls

 In addition to the commits shown in the default history, show each merge commit that

 is not TREESAME to its first parent but is TREESAME to a later parent.

 When a merge commit is included by --show-pulls, the merge is treated as if it

 "pulled" the change from another branch. When using --show-pulls on this example (and

 no other options) the resulting graph is:

 I---X---R---N

 Here, the merge commits R and N are included because they pulled the commits X and R

 into the base branch, respectively. These merges are the reason the commits A and B do

 not appear in the default history.

 When --show-pulls is paired with --simplify-merges, the graph includes all of the

 necessary information:

 .-A---M--. N

 / / \ /

 I B R

 \ / /

 \ / /

 `---X--'

 Notice that since M is reachable from R, the edge from N to M was simplified away. Page 16/54

 However, N still appears in the history as an important commit because it "pulled" the

 change R into the main branch.

 The --simplify-by-decoration option allows you to view only the big picture of the

 topology of the history, by omitting commits that are not referenced by tags. Commits are

 marked as !TREESAME (in other words, kept after history simplification rules described

 above) if (1) they are referenced by tags, or (2) they change the contents of the paths

 given on the command line. All other commits are marked as TREESAME (subject to be

 simplified away).

 Commit Ordering

 By default, the commits are shown in reverse chronological order.

 --date-order

 Show no parents before all of its children are shown, but otherwise show commits in

 the commit timestamp order.

 --author-date-order

 Show no parents before all of its children are shown, but otherwise show commits in

 the author timestamp order.

 --topo-order

 Show no parents before all of its children are shown, and avoid showing commits on

 multiple lines of history intermixed.

 For example, in a commit history like this:

 ---1----2----4----7

 \ \

 3----5----6----8---

 where the numbers denote the order of commit timestamps, git rev-list and friends with

 --date-order show the commits in the timestamp order: 8 7 6 5 4 3 2 1.

 With --topo-order, they would show 8 6 5 3 7 4 2 1 (or 8 7 4 2 6 5 3 1); some older

 commits are shown before newer ones in order to avoid showing the commits from two

 parallel development track mixed together.

 --reverse

 Output the commits chosen to be shown (see Commit Limiting section above) in reverse

 order. Cannot be combined with --walk-reflogs.

 Object Traversal

 These options are mostly targeted for packing of Git repositories. Page 17/54

 --no-walk[=(sorted|unsorted)]

 Only show the given commits, but do not traverse their ancestors. This has no effect

 if a range is specified. If the argument unsorted is given, the commits are shown in

 the order they were given on the command line. Otherwise (if sorted or no argument was

 given), the commits are shown in reverse chronological order by commit time. Cannot be

 combined with --graph.

 --do-walk

 Overrides a previous --no-walk.

 Commit Formatting

 --pretty[=<format>], --format=<format>

 Pretty-print the contents of the commit logs in a given format, where <format> can be

 one of oneline, short, medium, full, fuller, reference, email, raw, format:<string>

 and tformat:<string>. When <format> is none of the above, and has %placeholder in it,

 it acts as if --pretty=tformat:<format> were given.

 See the "PRETTY FORMATS" section for some additional details for each format. When

 =<format> part is omitted, it defaults to medium.

 Note: you can specify the default pretty format in the repository configuration (see

 git-config(1)).

 --abbrev-commit

 Instead of showing the full 40-byte hexadecimal commit object name, show a prefix that

 names the object uniquely. "--abbrev=<n>" (which also modifies diff output, if it is

 displayed) option can be used to specify the minimum length of the prefix.

 This should make "--pretty=oneline" a whole lot more readable for people using

 80-column terminals.

 --no-abbrev-commit

 Show the full 40-byte hexadecimal commit object name. This negates --abbrev-commit,

 either explicit or implied by other options such as "--oneline". It also overrides the

 log.abbrevCommit variable.

 --oneline

 This is a shorthand for "--pretty=oneline --abbrev-commit" used together.

 --encoding=<encoding>

 Commit objects record the character encoding used for the log message in their

 encoding header; this option can be used to tell the command to re-code the commit log Page 18/54

 message in the encoding preferred by the user. For non plumbing commands this defaults

 to UTF-8. Note that if an object claims to be encoded in X and we are outputting in X,

 we will output the object verbatim; this means that invalid sequences in the original

 commit may be copied to the output. Likewise, if iconv(3) fails to convert the commit,

 we will quietly output the original object verbatim.

 --expand-tabs=<n>, --expand-tabs, --no-expand-tabs

 Perform a tab expansion (replace each tab with enough spaces to fill to the next

 display column that is multiple of <n>) in the log message before showing it in the

 output. --expand-tabs is a short-hand for --expand-tabs=8, and --no-expand-tabs is a

 short-hand for --expand-tabs=0, which disables tab expansion.

 By default, tabs are expanded in pretty formats that indent the log message by 4

 spaces (i.e. medium, which is the default, full, and fuller).

 --notes[=<ref>]

 Show the notes (see git-notes(1)) that annotate the commit, when showing the commit

 log message. This is the default for git log, git show and git whatchanged commands

 when there is no --pretty, --format, or --oneline option given on the command line.

 By default, the notes shown are from the notes refs listed in the core.notesRef and

 notes.displayRef variables (or corresponding environment overrides). See git-config(1)

 for more details.

 With an optional <ref> argument, use the ref to find the notes to display. The ref can

 specify the full refname when it begins with refs/notes/; when it begins with notes/,

 refs/ and otherwise refs/notes/ is prefixed to form a full name of the ref.

 Multiple --notes options can be combined to control which notes are being displayed.

 Examples: "--notes=foo" will show only notes from "refs/notes/foo"; "--notes=foo

 --notes" will show both notes from "refs/notes/foo" and from the default notes ref(s).

 --no-notes

 Do not show notes. This negates the above --notes option, by resetting the list of

 notes refs from which notes are shown. Options are parsed in the order given on the

 command line, so e.g. "--notes --notes=foo --no-notes --notes=bar" will only show

 notes from "refs/notes/bar".

 --show-notes[=<ref>], --[no-]standard-notes

 These options are deprecated. Use the above --notes/--no-notes options instead.

 --show-signature Page 19/54

 Check the validity of a signed commit object by passing the signature to gpg --verify

 and show the output.

 --relative-date

 Synonym for --date=relative.

 --date=<format>

 Only takes effect for dates shown in human-readable format, such as when using

 --pretty. log.date config variable sets a default value for the log command?s --date

 option. By default, dates are shown in the original time zone (either committer?s or

 author?s). If -local is appended to the format (e.g., iso-local), the user?s local

 time zone is used instead.

 --date=relative shows dates relative to the current time, e.g. ?2 hours ago?. The

 -local option has no effect for --date=relative.

 --date=local is an alias for --date=default-local.

 --date=iso (or --date=iso8601) shows timestamps in a ISO 8601-like format. The

 differences to the strict ISO 8601 format are:

 ? a space instead of the T date/time delimiter

 ? a space between time and time zone

 ? no colon between hours and minutes of the time zone

 --date=iso-strict (or --date=iso8601-strict) shows timestamps in strict ISO 8601

 format.

 --date=rfc (or --date=rfc2822) shows timestamps in RFC 2822 format, often found in

 email messages.

 --date=short shows only the date, but not the time, in YYYY-MM-DD format.

 --date=raw shows the date as seconds since the epoch (1970-01-01 00:00:00 UTC),

 followed by a space, and then the timezone as an offset from UTC (a + or - with four

 digits; the first two are hours, and the second two are minutes). I.e., as if the

 timestamp were formatted with strftime("%s %z")). Note that the -local option does not

 affect the seconds-since-epoch value (which is always measured in UTC), but does

 switch the accompanying timezone value.

 --date=human shows the timezone if the timezone does not match the current time-zone,

 and doesn?t print the whole date if that matches (ie skip printing year for dates that

 are "this year", but also skip the whole date itself if it?s in the last few days and

 we can just say what weekday it was). For older dates the hour and minute is also Page 20/54

 omitted.

 --date=unix shows the date as a Unix epoch timestamp (seconds since 1970). As with

 --raw, this is always in UTC and therefore -local has no effect.

 --date=format:... feeds the format ... to your system strftime, except for %z and

 %Z, which are handled internally. Use --date=format:%c to show the date in your system

 locale?s preferred format. See the strftime manual for a complete list of format

 placeholders. When using -local, the correct syntax is --date=format-local:....

 --date=default is the default format, and is similar to --date=rfc2822, with a few

 exceptions:

 ? there is no comma after the day-of-week

 ? the time zone is omitted when the local time zone is used

 --parents

 Print also the parents of the commit (in the form "commit parent..."). Also enables

 parent rewriting, see History Simplification above.

 --children

 Print also the children of the commit (in the form "commit child..."). Also enables

 parent rewriting, see History Simplification above.

 --left-right

 Mark which side of a symmetric difference a commit is reachable from. Commits from the

 left side are prefixed with < and those from the right with >. If combined with

 --boundary, those commits are prefixed with -.

 For example, if you have this topology:

 y---b---b branch B

 / \ /

 / .

 / / \

 o---x---a---a branch A

 you would get an output like this:

 $ git rev-list --left-right --boundary --pretty=oneline A...B

 >bbbbbbb... 3rd on b

 >bbbbbbb... 2nd on b

 <aaaaaaa... 3rd on a

 <aaaaaaa... 2nd on a Page 21/54

 -yyyyyyy... 1st on b

 -xxxxxxx... 1st on a

 --graph

 Draw a text-based graphical representation of the commit history on the left hand side

 of the output. This may cause extra lines to be printed in between commits, in order

 for the graph history to be drawn properly. Cannot be combined with --no-walk.

 This enables parent rewriting, see History Simplification above.

 This implies the --topo-order option by default, but the --date-order option may also

 be specified.

 --show-linear-break[=<barrier>]

 When --graph is not used, all history branches are flattened which can make it hard to

 see that the two consecutive commits do not belong to a linear branch. This option

 puts a barrier in between them in that case. If <barrier> is specified, it is the

 string that will be shown instead of the default one.

PRETTY FORMATS

 If the commit is a merge, and if the pretty-format is not oneline, email or raw, an

 additional line is inserted before the Author: line. This line begins with "Merge: " and

 the hashes of ancestral commits are printed, separated by spaces. Note that the listed

 commits may not necessarily be the list of the direct parent commits if you have limited

 your view of history: for example, if you are only interested in changes related to a

 certain directory or file.

 There are several built-in formats, and you can define additional formats by setting a

 pretty.<name> config option to either another format name, or a format: string, as

 described below (see git-config(1)). Here are the details of the built-in formats:

 ? oneline

 <hash> <title line>

 This is designed to be as compact as possible.

 ? short

 commit <hash>

 Author: <author>

 <title line>

 ? medium

 commit <hash> Page 22/54

 Author: <author>

 Date: <author date>

 <title line>

 <full commit message>

 ? full

 commit <hash>

 Author: <author>

 Commit: <committer>

 <title line>

 <full commit message>

 ? fuller

 commit <hash>

 Author: <author>

 AuthorDate: <author date>

 Commit: <committer>

 CommitDate: <committer date>

 <title line>

 <full commit message>

 ? reference

 <abbrev hash> (<title line>, <short author date>)

 This format is used to refer to another commit in a commit message and is the same as

 --pretty='format:%C(auto)%h (%s, %ad)'. By default, the date is formatted with

 --date=short unless another --date option is explicitly specified. As with any format:

 with format placeholders, its output is not affected by other options like --decorate

 and --walk-reflogs.

 ? email

 From <hash> <date>

 From: <author>

 Date: <author date>

 Subject: [PATCH] <title line>

 <full commit message>

 ? mboxrd

 Like email, but lines in the commit message starting with "From " (preceded by zero or Page 23/54

 more ">") are quoted with ">" so they aren?t confused as starting a new commit.

 ? raw

 The raw format shows the entire commit exactly as stored in the commit object.

 Notably, the hashes are displayed in full, regardless of whether --abbrev or

 --no-abbrev are used, and parents information show the true parent commits, without

 taking grafts or history simplification into account. Note that this format affects

 the way commits are displayed, but not the way the diff is shown e.g. with git log

 --raw. To get full object names in a raw diff format, use --no-abbrev.

 ? format:<string>

 The format:<string> format allows you to specify which information you want to show.

 It works a little bit like printf format, with the notable exception that you get a

 newline with %n instead of \n.

 E.g, format:"The author of %h was %an, %ar%nThe title was >>%s<<%n" would show

 something like this:

 The author of fe6e0ee was Junio C Hamano, 23 hours ago

 The title was >>t4119: test autocomputing -p<n> for traditional diff input.<<

 The placeholders are:

 ? Placeholders that expand to a single literal character:

 %n

 newline

 %%

 a raw %

 %x00

 print a byte from a hex code

 ? Placeholders that affect formatting of later placeholders:

 %Cred

 switch color to red

 %Cgreen

 switch color to green

 %Cblue

 switch color to blue

 %Creset

 reset color Page 24/54

 %C(...)

 color specification, as described under Values in the "CONFIGURATION FILE"

 section of git-config(1). By default, colors are shown only when enabled for

 log output (by color.diff, color.ui, or --color, and respecting the auto

 settings of the former if we are going to a terminal). %C(auto,...) is

 accepted as a historical synonym for the default (e.g., %C(auto,red)).

 Specifying %C(always,...) will show the colors even when color is not

 otherwise enabled (though consider just using --color=always to enable color

 for the whole output, including this format and anything else git might

 color). auto alone (i.e. %C(auto)) will turn on auto coloring on the next

 placeholders until the color is switched again.

 %m

 left (<), right (>) or boundary (-) mark

 %w([<w>[,<i1>[,<i2>]]])

 switch line wrapping, like the -w option of git-shortlog(1).

 %<(<N>[,trunc|ltrunc|mtrunc])

 make the next placeholder take at least N columns, padding spaces on the right

 if necessary. Optionally truncate at the beginning (ltrunc), the middle

 (mtrunc) or the end (trunc) if the output is longer than N columns. Note that

 truncating only works correctly with N >= 2.

 %<|(<N>)

 make the next placeholder take at least until Nth columns, padding spaces on

 the right if necessary

 %>(<N>), %>|(<N>)

 similar to %<(<N>), %<|(<N>) respectively, but padding spaces on the left

 %>>(<N>), %>>|(<N>)

 similar to %>(<N>), %>|(<N>) respectively, except that if the next placeholder

 takes more spaces than given and there are spaces on its left, use those

 spaces

 %><(<N>), %><|(<N>)

 similar to %<(<N>), %<|(<N>) respectively, but padding both sides (i.e. the

 text is centered)

 ? Placeholders that expand to information extracted from the commit: Page 25/54

 %H

 commit hash

 %h

 abbreviated commit hash

 %T

 tree hash

 %t

 abbreviated tree hash

 %P

 parent hashes

 %p

 abbreviated parent hashes

 %an

 author name

 %aN

 author name (respecting .mailmap, see git-shortlog(1) or git-blame(1))

 %ae

 author email

 %aE

 author email (respecting .mailmap, see git-shortlog(1) or git-blame(1))

 %al

 author email local-part (the part before the @ sign)

 %aL

 author local-part (see %al) respecting .mailmap, see git-shortlog(1) or git-

 blame(1))

 %ad

 author date (format respects --date= option)

 %aD

 author date, RFC2822 style

 %ar

 author date, relative

 %at

 author date, UNIX timestamp Page 26/54

 %ai

 author date, ISO 8601-like format

 %aI

 author date, strict ISO 8601 format

 %as

 author date, short format (YYYY-MM-DD)

 %ah

 author date, human style (like the --date=human option of git-rev-list(1))

 %cn

 committer name

 %cN

 committer name (respecting .mailmap, see git-shortlog(1) or git-blame(1))

 %ce

 committer email

 %cE

 committer email (respecting .mailmap, see git-shortlog(1) or git-blame(1))

 %cl

 committer email local-part (the part before the @ sign)

 %cL

 committer local-part (see %cl) respecting .mailmap, see git-shortlog(1) or

 git-blame(1))

 %cd

 committer date (format respects --date= option)

 %cD

 committer date, RFC2822 style

 %cr

 committer date, relative

 %ct

 committer date, UNIX timestamp

 %ci

 committer date, ISO 8601-like format

 %cI

 committer date, strict ISO 8601 format Page 27/54

 %cs

 committer date, short format (YYYY-MM-DD)

 %ch

 committer date, human style (like the --date=human option of git-rev-list(1))

 %d

 ref names, like the --decorate option of git-log(1)

 %D

 ref names without the " (", ")" wrapping.

 %(describe[:options])

 human-readable name, like git-describe(1); empty string for undescribable

 commits. The describe string may be followed by a colon and zero or more

 comma-separated options. Descriptions can be inconsistent when tags are added

 or removed at the same time.

 ? match=<pattern>: Only consider tags matching the given glob(7) pattern,

 excluding the "refs/tags/" prefix.

 ? exclude=<pattern>: Do not consider tags matching the given glob(7)

 pattern, excluding the "refs/tags/" prefix.

 %S

 ref name given on the command line by which the commit was reached (like git

 log --source), only works with git log

 %e

 encoding

 %s

 subject

 %f

 sanitized subject line, suitable for a filename

 %b

 body

 %B

 raw body (unwrapped subject and body)

 %N

 commit notes

 %GG Page 28/54

 raw verification message from GPG for a signed commit

 %G?

 show "G" for a good (valid) signature, "B" for a bad signature, "U" for a good

 signature with unknown validity, "X" for a good signature that has expired,

 "Y" for a good signature made by an expired key, "R" for a good signature made

 by a revoked key, "E" if the signature cannot be checked (e.g. missing key)

 and "N" for no signature

 %GS

 show the name of the signer for a signed commit

 %GK

 show the key used to sign a signed commit

 %GF

 show the fingerprint of the key used to sign a signed commit

 %GP

 show the fingerprint of the primary key whose subkey was used to sign a signed

 commit

 %GT

 show the trust level for the key used to sign a signed commit

 %gD

 reflog selector, e.g., refs/stash@{1} or refs/stash@{2 minutes ago}; the

 format follows the rules described for the -g option. The portion before the @

 is the refname as given on the command line (so git log -g refs/heads/master

 would yield refs/heads/master@{0}).

 %gd

 shortened reflog selector; same as %gD, but the refname portion is shortened

 for human readability (so refs/heads/master becomes just master).

 %gn

 reflog identity name

 %gN

 reflog identity name (respecting .mailmap, see git-shortlog(1) or git-

 blame(1))

 %ge

 reflog identity email Page 29/54

 %gE

 reflog identity email (respecting .mailmap, see git-shortlog(1) or git-

 blame(1))

 %gs

 reflog subject

 %(trailers[:options])

 display the trailers of the body as interpreted by git-interpret-trailers(1).

 The trailers string may be followed by a colon and zero or more

 comma-separated options. If any option is provided multiple times the last

 occurrence wins.

 The boolean options accept an optional value [=<BOOL>]. The values true,

 false, on, off etc. are all accepted. See the "boolean" sub-section in

 "EXAMPLES" in git-config(1). If a boolean option is given with no value, it?s

 enabled.

 ? key=<K>: only show trailers with specified key. Matching is done

 case-insensitively and trailing colon is optional. If option is given

 multiple times trailer lines matching any of the keys are shown. This

 option automatically enables the only option so that non-trailer lines in

 the trailer block are hidden. If that is not desired it can be disabled

 with only=false. E.g., %(trailers:key=Reviewed-by) shows trailer lines

 with key Reviewed-by.

 ? only[=<BOOL>]: select whether non-trailer lines from the trailer block

 should be included.

 ? separator=<SEP>: specify a separator inserted between trailer lines. When

 this option is not given each trailer line is terminated with a line feed

 character. The string SEP may contain the literal formatting codes

 described above. To use comma as separator one must use %x2C as it would

 otherwise be parsed as next option. E.g.,

 %(trailers:key=Ticket,separator=%x2C) shows all trailer lines whose key

 is "Ticket" separated by a comma and a space.

 ? unfold[=<BOOL>]: make it behave as if interpret-trailer?s --unfold option

 was given. E.g., %(trailers:only,unfold=true) unfolds and shows all

 trailer lines. Page 30/54

 ? keyonly[=<BOOL>]: only show the key part of the trailer.

 ? valueonly[=<BOOL>]: only show the value part of the trailer.

 ? key_value_separator=<SEP>: specify a separator inserted between trailer

 lines. When this option is not given each trailer key-value pair is

 separated by ": ". Otherwise it shares the same semantics as

 separator=<SEP> above.

 Note

 Some placeholders may depend on other options given to the revision traversal engine.

 For example, the %g* reflog options will insert an empty string unless we are

 traversing reflog entries (e.g., by git log -g). The %d and %D placeholders will use

 the "short" decoration format if --decorate was not already provided on the command

 line.

 If you add a + (plus sign) after % of a placeholder, a line-feed is inserted immediately

 before the expansion if and only if the placeholder expands to a non-empty string.

 If you add a - (minus sign) after % of a placeholder, all consecutive line-feeds

 immediately preceding the expansion are deleted if and only if the placeholder expands to

 an empty string.

 If you add a ` ` (space) after % of a placeholder, a space is inserted immediately before

 the expansion if and only if the placeholder expands to a non-empty string.

 ? tformat:

 The tformat: format works exactly like format:, except that it provides "terminator"

 semantics instead of "separator" semantics. In other words, each commit has the

 message terminator character (usually a newline) appended, rather than a separator

 placed between entries. This means that the final entry of a single-line format will

 be properly terminated with a new line, just as the "oneline" format does. For

 example:

 $ git log -2 --pretty=format:%h 4da45bef \

 | perl -pe '$_ .= " -- NO NEWLINE\n" unless /\n/'

 4da45be

 7134973 -- NO NEWLINE

 $ git log -2 --pretty=tformat:%h 4da45bef \

 | perl -pe '$_ .= " -- NO NEWLINE\n" unless /\n/'

 4da45be Page 31/54

 7134973

 In addition, any unrecognized string that has a % in it is interpreted as if it has

 tformat: in front of it. For example, these two are equivalent:

 $ git log -2 --pretty=tformat:%h 4da45bef

 $ git log -2 --pretty=%h 4da45bef

DIFF FORMATTING

 By default, git log does not generate any diff output. The options below can be used to

 show the changes made by each commit.

 Note that unless one of --diff-merges variants (including short -m, -c, and --cc options)

 is explicitly given, merge commits will not show a diff, even if a diff format like

 --patch is selected, nor will they match search options like -S. The exception is when

 --first-parent is in use, in which case first-parent is the default format.

 -p, -u, --patch

 Generate patch (see section on generating patches).

 -s, --no-patch

 Suppress diff output. Useful for commands like git show that show the patch by

 default, or to cancel the effect of --patch.

 --diff-merges=(off|none|on|first-parent|1|separate|m|combined|c|dense-combined|cc),

 --no-diff-merges

 Specify diff format to be used for merge commits. Default is off unless --first-parent

 is in use, in which case first-parent is the default.

 --diff-merges=(off|none), --no-diff-merges

 Disable output of diffs for merge commits. Useful to override implied value.

 --diff-merges=on, --diff-merges=m, -m

 This option makes diff output for merge commits to be shown in the default format.

 -m will produce the output only if -p is given as well. The default format could

 be changed using log.diffMerges configuration parameter, which default value is

 separate.

 --diff-merges=first-parent, --diff-merges=1

 This option makes merge commits show the full diff with respect to the first

 parent only.

 --diff-merges=separate

 This makes merge commits show the full diff with respect to each of the parents. Page 32/54

 Separate log entry and diff is generated for each parent.

 --diff-merges=combined, --diff-merges=c, -c

 With this option, diff output for a merge commit shows the differences from each

 of the parents to the merge result simultaneously instead of showing pairwise diff

 between a parent and the result one at a time. Furthermore, it lists only files

 which were modified from all parents. -c implies -p.

 --diff-merges=dense-combined, --diff-merges=cc, --cc

 With this option the output produced by --diff-merges=combined is further

 compressed by omitting uninteresting hunks whose contents in the parents have only

 two variants and the merge result picks one of them without modification. --cc

 implies -p.

 --combined-all-paths

 This flag causes combined diffs (used for merge commits) to list the name of the file

 from all parents. It thus only has effect when --diff-merges=[dense-]combined is in

 use, and is likely only useful if filename changes are detected (i.e. when either

 rename or copy detection have been requested).

 -U<n>, --unified=<n>

 Generate diffs with <n> lines of context instead of the usual three. Implies --patch.

 --output=<file>

 Output to a specific file instead of stdout.

 --output-indicator-new=<char>, --output-indicator-old=<char>,

 --output-indicator-context=<char>

 Specify the character used to indicate new, old or context lines in the generated

 patch. Normally they are +, - and ' ' respectively.

 --raw

 For each commit, show a summary of changes using the raw diff format. See the "RAW

 OUTPUT FORMAT" section of git-diff(1). This is different from showing the log itself

 in raw format, which you can achieve with --format=raw.

 --patch-with-raw

 Synonym for -p --raw.

 -t

 Show the tree objects in the diff output.

 --indent-heuristic Page 33/54

 Enable the heuristic that shifts diff hunk boundaries to make patches easier to read.

 This is the default.

 --no-indent-heuristic

 Disable the indent heuristic.

 --minimal

 Spend extra time to make sure the smallest possible diff is produced.

 --patience

 Generate a diff using the "patience diff" algorithm.

 --histogram

 Generate a diff using the "histogram diff" algorithm.

 --anchored=<text>

 Generate a diff using the "anchored diff" algorithm.

 This option may be specified more than once.

 If a line exists in both the source and destination, exists only once, and starts with

 this text, this algorithm attempts to prevent it from appearing as a deletion or

 addition in the output. It uses the "patience diff" algorithm internally.

 --diff-algorithm={patience|minimal|histogram|myers}

 Choose a diff algorithm. The variants are as follows:

 default, myers

 The basic greedy diff algorithm. Currently, this is the default.

 minimal

 Spend extra time to make sure the smallest possible diff is produced.

 patience

 Use "patience diff" algorithm when generating patches.

 histogram

 This algorithm extends the patience algorithm to "support low-occurrence common

 elements".

 For instance, if you configured the diff.algorithm variable to a non-default value and

 want to use the default one, then you have to use --diff-algorithm=default option.

 --stat[=<width>[,<name-width>[,<count>]]]

 Generate a diffstat. By default, as much space as necessary will be used for the

 filename part, and the rest for the graph part. Maximum width defaults to terminal

 width, or 80 columns if not connected to a terminal, and can be overridden by <width>. Page 34/54

 The width of the filename part can be limited by giving another width <name-width>

 after a comma. The width of the graph part can be limited by using

 --stat-graph-width=<width> (affects all commands generating a stat graph) or by

 setting diff.statGraphWidth=<width> (does not affect git format-patch). By giving a

 third parameter <count>, you can limit the output to the first <count> lines, followed

 by ... if there are more.

 These parameters can also be set individually with --stat-width=<width>,

 --stat-name-width=<name-width> and --stat-count=<count>.

 --compact-summary

 Output a condensed summary of extended header information such as file creations or

 deletions ("new" or "gone", optionally "+l" if it?s a symlink) and mode changes ("+x"

 or "-x" for adding or removing executable bit respectively) in diffstat. The

 information is put between the filename part and the graph part. Implies --stat.

 --numstat

 Similar to --stat, but shows number of added and deleted lines in decimal notation and

 pathname without abbreviation, to make it more machine friendly. For binary files,

 outputs two - instead of saying 0 0.

 --shortstat

 Output only the last line of the --stat format containing total number of modified

 files, as well as number of added and deleted lines.

 -X[<param1,param2,...>], --dirstat[=<param1,param2,...>]

 Output the distribution of relative amount of changes for each sub-directory. The

 behavior of --dirstat can be customized by passing it a comma separated list of

 parameters. The defaults are controlled by the diff.dirstat configuration variable

 (see git-config(1)). The following parameters are available:

 changes

 Compute the dirstat numbers by counting the lines that have been removed from the

 source, or added to the destination. This ignores the amount of pure code

 movements within a file. In other words, rearranging lines in a file is not

 counted as much as other changes. This is the default behavior when no parameter

 is given.

 lines

 Compute the dirstat numbers by doing the regular line-based diff analysis, and Page 35/54

 summing the removed/added line counts. (For binary files, count 64-byte chunks

 instead, since binary files have no natural concept of lines). This is a more

 expensive --dirstat behavior than the changes behavior, but it does count

 rearranged lines within a file as much as other changes. The resulting output is

 consistent with what you get from the other --*stat options.

 files

 Compute the dirstat numbers by counting the number of files changed. Each changed

 file counts equally in the dirstat analysis. This is the computationally cheapest

 --dirstat behavior, since it does not have to look at the file contents at all.

 cumulative

 Count changes in a child directory for the parent directory as well. Note that

 when using cumulative, the sum of the percentages reported may exceed 100%. The

 default (non-cumulative) behavior can be specified with the noncumulative

 parameter.

 <limit>

 An integer parameter specifies a cut-off percent (3% by default). Directories

 contributing less than this percentage of the changes are not shown in the output.

 Example: The following will count changed files, while ignoring directories with less

 than 10% of the total amount of changed files, and accumulating child directory counts

 in the parent directories: --dirstat=files,10,cumulative.

 --cumulative

 Synonym for --dirstat=cumulative

 --dirstat-by-file[=<param1,param2>...]

 Synonym for --dirstat=files,param1,param2...

 --summary

 Output a condensed summary of extended header information such as creations, renames

 and mode changes.

 --patch-with-stat

 Synonym for -p --stat.

 -z

 Separate the commits with NULs instead of with new newlines.

 Also, when --raw or --numstat has been given, do not munge pathnames and use NULs as

 output field terminators. Page 36/54

 Without this option, pathnames with "unusual" characters are quoted as explained for

 the configuration variable core.quotePath (see git-config(1)).

 --name-only

 Show only names of changed files. The file names are often encoded in UTF-8. For more

 information see the discussion about encoding in the git-log(1) manual page.

 --name-status

 Show only names and status of changed files. See the description of the --diff-filter

 option on what the status letters mean. Just like --name-only the file names are often

 encoded in UTF-8.

 --submodule[=<format>]

 Specify how differences in submodules are shown. When specifying --submodule=short the

 short format is used. This format just shows the names of the commits at the beginning

 and end of the range. When --submodule or --submodule=log is specified, the log format

 is used. This format lists the commits in the range like git-submodule(1) summary

 does. When --submodule=diff is specified, the diff format is used. This format shows

 an inline diff of the changes in the submodule contents between the commit range.

 Defaults to diff.submodule or the short format if the config option is unset.

 --color[=<when>]

 Show colored diff. --color (i.e. without =<when>) is the same as --color=always.

 <when> can be one of always, never, or auto.

 --no-color

 Turn off colored diff. It is the same as --color=never.

 --color-moved[=<mode>]

 Moved lines of code are colored differently. The <mode> defaults to no if the option

 is not given and to zebra if the option with no mode is given. The mode must be one

 of:

 no

 Moved lines are not highlighted.

 default

 Is a synonym for zebra. This may change to a more sensible mode in the future.

 plain

 Any line that is added in one location and was removed in another location will be

 colored with color.diff.newMoved. Similarly color.diff.oldMoved will be used for Page 37/54

 removed lines that are added somewhere else in the diff. This mode picks up any

 moved line, but it is not very useful in a review to determine if a block of code

 was moved without permutation.

 blocks

 Blocks of moved text of at least 20 alphanumeric characters are detected greedily.

 The detected blocks are painted using either the color.diff.{old,new}Moved color.

 Adjacent blocks cannot be told apart.

 zebra

 Blocks of moved text are detected as in blocks mode. The blocks are painted using

 either the color.diff.{old,new}Moved color or

 color.diff.{old,new}MovedAlternative. The change between the two colors indicates

 that a new block was detected.

 dimmed-zebra

 Similar to zebra, but additional dimming of uninteresting parts of moved code is

 performed. The bordering lines of two adjacent blocks are considered interesting,

 the rest is uninteresting. dimmed_zebra is a deprecated synonym.

 --no-color-moved

 Turn off move detection. This can be used to override configuration settings. It is

 the same as --color-moved=no.

 --color-moved-ws=<modes>

 This configures how whitespace is ignored when performing the move detection for

 --color-moved. These modes can be given as a comma separated list:

 no

 Do not ignore whitespace when performing move detection.

 ignore-space-at-eol

 Ignore changes in whitespace at EOL.

 ignore-space-change

 Ignore changes in amount of whitespace. This ignores whitespace at line end, and

 considers all other sequences of one or more whitespace characters to be

 equivalent.

 ignore-all-space

 Ignore whitespace when comparing lines. This ignores differences even if one line

 has whitespace where the other line has none. Page 38/54

 allow-indentation-change

 Initially ignore any whitespace in the move detection, then group the moved code

 blocks only into a block if the change in whitespace is the same per line. This is

 incompatible with the other modes.

 --no-color-moved-ws

 Do not ignore whitespace when performing move detection. This can be used to override

 configuration settings. It is the same as --color-moved-ws=no.

 --word-diff[=<mode>]

 Show a word diff, using the <mode> to delimit changed words. By default, words are

 delimited by whitespace; see --word-diff-regex below. The <mode> defaults to plain,

 and must be one of:

 color

 Highlight changed words using only colors. Implies --color.

 plain

 Show words as [-removed-] and {+added+}. Makes no attempts to escape the

 delimiters if they appear in the input, so the output may be ambiguous.

 porcelain

 Use a special line-based format intended for script consumption.

 Added/removed/unchanged runs are printed in the usual unified diff format,

 starting with a +/-/` ` character at the beginning of the line and extending to

 the end of the line. Newlines in the input are represented by a tilde ~ on a line

 of its own.

 none

 Disable word diff again.

 Note that despite the name of the first mode, color is used to highlight the changed

 parts in all modes if enabled.

 --word-diff-regex=<regex>

 Use <regex> to decide what a word is, instead of considering runs of non-whitespace to

 be a word. Also implies --word-diff unless it was already enabled.

 Every non-overlapping match of the <regex> is considered a word. Anything between

 these matches is considered whitespace and ignored(!) for the purposes of finding

 differences. You may want to append |[^[:space:]] to your regular expression to make

 sure that it matches all non-whitespace characters. A match that contains a newline is Page 39/54

 silently truncated(!) at the newline.

 For example, --word-diff-regex=. will treat each character as a word and,

 correspondingly, show differences character by character.

 The regex can also be set via a diff driver or configuration option, see

 gitattributes(5) or git-config(1). Giving it explicitly overrides any diff driver or

 configuration setting. Diff drivers override configuration settings.

 --color-words[=<regex>]

 Equivalent to --word-diff=color plus (if a regex was specified)

 --word-diff-regex=<regex>.

 --no-renames

 Turn off rename detection, even when the configuration file gives the default to do

 so.

 --[no-]rename-empty

 Whether to use empty blobs as rename source.

 --check

 Warn if changes introduce conflict markers or whitespace errors. What are considered

 whitespace errors is controlled by core.whitespace configuration. By default, trailing

 whitespaces (including lines that consist solely of whitespaces) and a space character

 that is immediately followed by a tab character inside the initial indent of the line

 are considered whitespace errors. Exits with non-zero status if problems are found.

 Not compatible with --exit-code.

 --ws-error-highlight=<kind>

 Highlight whitespace errors in the context, old or new lines of the diff. Multiple

 values are separated by comma, none resets previous values, default reset the list to

 new and all is a shorthand for old,new,context. When this option is not given, and the

 configuration variable diff.wsErrorHighlight is not set, only whitespace errors in new

 lines are highlighted. The whitespace errors are colored with color.diff.whitespace.

 --full-index

 Instead of the first handful of characters, show the full pre- and post-image blob

 object names on the "index" line when generating patch format output.

 --binary

 In addition to --full-index, output a binary diff that can be applied with git-apply.

 Implies --patch. Page 40/54

 --abbrev[=<n>]

 Instead of showing the full 40-byte hexadecimal object name in diff-raw format output

 and diff-tree header lines, show the shortest prefix that is at least <n> hexdigits

 long that uniquely refers the object. In diff-patch output format, --full-index takes

 higher precedence, i.e. if --full-index is specified, full blob names will be shown

 regardless of --abbrev. Non default number of digits can be specified with

 --abbrev=<n>.

 -B[<n>][/<m>], --break-rewrites[=[<n>][/<m>]]

 Break complete rewrite changes into pairs of delete and create. This serves two

 purposes:

 It affects the way a change that amounts to a total rewrite of a file not as a series

 of deletion and insertion mixed together with a very few lines that happen to match

 textually as the context, but as a single deletion of everything old followed by a

 single insertion of everything new, and the number m controls this aspect of the -B

 option (defaults to 60%). -B/70% specifies that less than 30% of the original should

 remain in the result for Git to consider it a total rewrite (i.e. otherwise the

 resulting patch will be a series of deletion and insertion mixed together with context

 lines).

 When used with -M, a totally-rewritten file is also considered as the source of a

 rename (usually -M only considers a file that disappeared as the source of a rename),

 and the number n controls this aspect of the -B option (defaults to 50%). -B20%

 specifies that a change with addition and deletion compared to 20% or more of the

 file?s size are eligible for being picked up as a possible source of a rename to

 another file.

 -M[<n>], --find-renames[=<n>]

 If generating diffs, detect and report renames for each commit. For following files

 across renames while traversing history, see --follow. If n is specified, it is a

 threshold on the similarity index (i.e. amount of addition/deletions compared to the

 file?s size). For example, -M90% means Git should consider a delete/add pair to be a

 rename if more than 90% of the file hasn?t changed. Without a % sign, the number is to

 be read as a fraction, with a decimal point before it. I.e., -M5 becomes 0.5, and is

 thus the same as -M50%. Similarly, -M05 is the same as -M5%. To limit detection to

 exact renames, use -M100%. The default similarity index is 50%. Page 41/54

 -C[<n>], --find-copies[=<n>]

 Detect copies as well as renames. See also --find-copies-harder. If n is specified, it

 has the same meaning as for -M<n>.

 --find-copies-harder

 For performance reasons, by default, -C option finds copies only if the original file

 of the copy was modified in the same changeset. This flag makes the command inspect

 unmodified files as candidates for the source of copy. This is a very expensive

 operation for large projects, so use it with caution. Giving more than one -C option

 has the same effect.

 -D, --irreversible-delete

 Omit the preimage for deletes, i.e. print only the header but not the diff between the

 preimage and /dev/null. The resulting patch is not meant to be applied with patch or

 git apply; this is solely for people who want to just concentrate on reviewing the

 text after the change. In addition, the output obviously lacks enough information to

 apply such a patch in reverse, even manually, hence the name of the option.

 When used together with -B, omit also the preimage in the deletion part of a

 delete/create pair.

 -l<num>

 The -M and -C options involve some preliminary steps that can detect subsets of

 renames/copies cheaply, followed by an exhaustive fallback portion that compares all

 remaining unpaired destinations to all relevant sources. (For renames, only remaining

 unpaired sources are relevant; for copies, all original sources are relevant.) For N

 sources and destinations, this exhaustive check is O(N^2). This option prevents the

 exhaustive portion of rename/copy detection from running if the number of

 source/destination files involved exceeds the specified number. Defaults to

 diff.renameLimit. Note that a value of 0 is treated as unlimited.

 --diff-filter=[(A|C|D|M|R|T|U|X|B)...[*]]

 Select only files that are Added (A), Copied (C), Deleted (D), Modified (M), Renamed

 (R), have their type (i.e. regular file, symlink, submodule, ...) changed (T), are

 Unmerged (U), are Unknown (X), or have had their pairing Broken (B). Any combination

 of the filter characters (including none) can be used. When * (All-or-none) is added

 to the combination, all paths are selected if there is any file that matches other

 criteria in the comparison; if there is no file that matches other criteria, nothing Page 42/54

 is selected.

 Also, these upper-case letters can be downcased to exclude. E.g. --diff-filter=ad

 excludes added and deleted paths.

 Note that not all diffs can feature all types. For instance, diffs from the index to

 the working tree can never have Added entries (because the set of paths included in

 the diff is limited by what is in the index). Similarly, copied and renamed entries

 cannot appear if detection for those types is disabled.

 -S<string>

 Look for differences that change the number of occurrences of the specified string

 (i.e. addition/deletion) in a file. Intended for the scripter?s use.

 It is useful when you?re looking for an exact block of code (like a struct), and want

 to know the history of that block since it first came into being: use the feature

 iteratively to feed the interesting block in the preimage back into -S, and keep going

 until you get the very first version of the block.

 Binary files are searched as well.

 -G<regex>

 Look for differences whose patch text contains added/removed lines that match <regex>.

 To illustrate the difference between -S<regex> --pickaxe-regex and -G<regex>, consider

 a commit with the following diff in the same file:

 + return frotz(nitfol, two->ptr, 1, 0);

 ...

 - hit = frotz(nitfol, mf2.ptr, 1, 0);

 While git log -G"frotz\(nitfol" will show this commit, git log -S"frotz\(nitfol"

 --pickaxe-regex will not (because the number of occurrences of that string did not

 change).

 Unless --text is supplied patches of binary files without a textconv filter will be

 ignored.

 See the pickaxe entry in gitdiffcore(7) for more information.

 --find-object=<object-id>

 Look for differences that change the number of occurrences of the specified object.

 Similar to -S, just the argument is different in that it doesn?t search for a specific

 string but for a specific object id.

 The object can be a blob or a submodule commit. It implies the -t option in git-log to Page 43/54

 also find trees.

 --pickaxe-all

 When -S or -G finds a change, show all the changes in that changeset, not just the

 files that contain the change in <string>.

 --pickaxe-regex

 Treat the <string> given to -S as an extended POSIX regular expression to match.

 -O<orderfile>

 Control the order in which files appear in the output. This overrides the

 diff.orderFile configuration variable (see git-config(1)). To cancel diff.orderFile,

 use -O/dev/null.

 The output order is determined by the order of glob patterns in <orderfile>. All files

 with pathnames that match the first pattern are output first, all files with pathnames

 that match the second pattern (but not the first) are output next, and so on. All

 files with pathnames that do not match any pattern are output last, as if there was an

 implicit match-all pattern at the end of the file. If multiple pathnames have the same

 rank (they match the same pattern but no earlier patterns), their output order

 relative to each other is the normal order.

 <orderfile> is parsed as follows:

 ? Blank lines are ignored, so they can be used as separators for readability.

 ? Lines starting with a hash ("#") are ignored, so they can be used for comments.

 Add a backslash ("\") to the beginning of the pattern if it starts with a hash.

 ? Each other line contains a single pattern.

 Patterns have the same syntax and semantics as patterns used for fnmatch(3) without

 the FNM_PATHNAME flag, except a pathname also matches a pattern if removing any number

 of the final pathname components matches the pattern. For example, the pattern

 "foo*bar" matches "fooasdfbar" and "foo/bar/baz/asdf" but not "foobarx".

 --skip-to=<file>, --rotate-to=<file>

 Discard the files before the named <file> from the output (i.e. skip to), or move

 them to the end of the output (i.e. rotate to). These were invented primarily for use

 of the git difftool command, and may not be very useful otherwise.

 -R

 Swap two inputs; that is, show differences from index or on-disk file to tree

 contents. Page 44/54

 --relative[=<path>], --no-relative

 When run from a subdirectory of the project, it can be told to exclude changes outside

 the directory and show pathnames relative to it with this option. When you are not in

 a subdirectory (e.g. in a bare repository), you can name which subdirectory to make

 the output relative to by giving a <path> as an argument. --no-relative can be used

 to countermand both diff.relative config option and previous --relative.

 -a, --text

 Treat all files as text.

 --ignore-cr-at-eol

 Ignore carriage-return at the end of line when doing a comparison.

 --ignore-space-at-eol

 Ignore changes in whitespace at EOL.

 -b, --ignore-space-change

 Ignore changes in amount of whitespace. This ignores whitespace at line end, and

 considers all other sequences of one or more whitespace characters to be equivalent.

 -w, --ignore-all-space

 Ignore whitespace when comparing lines. This ignores differences even if one line has

 whitespace where the other line has none.

 --ignore-blank-lines

 Ignore changes whose lines are all blank.

 -I<regex>, --ignore-matching-lines=<regex>

 Ignore changes whose all lines match <regex>. This option may be specified more than

 once.

 --inter-hunk-context=<lines>

 Show the context between diff hunks, up to the specified number of lines, thereby

 fusing hunks that are close to each other. Defaults to diff.interHunkContext or 0 if

 the config option is unset.

 -W, --function-context

 Show whole function as context lines for each change. The function names are

 determined in the same way as git diff works out patch hunk headers (see Defining a

 custom hunk-header in gitattributes(5)).

 --ext-diff

 Allow an external diff helper to be executed. If you set an external diff driver with Page 45/54

 gitattributes(5), you need to use this option with git-log(1) and friends.

 --no-ext-diff

 Disallow external diff drivers.

 --textconv, --no-textconv

 Allow (or disallow) external text conversion filters to be run when comparing binary

 files. See gitattributes(5) for details. Because textconv filters are typically a

 one-way conversion, the resulting diff is suitable for human consumption, but cannot

 be applied. For this reason, textconv filters are enabled by default only for git-

 diff(1) and git-log(1), but not for git-format-patch(1) or diff plumbing commands.

 --ignore-submodules[=<when>]

 Ignore changes to submodules in the diff generation. <when> can be either "none",

 "untracked", "dirty" or "all", which is the default. Using "none" will consider the

 submodule modified when it either contains untracked or modified files or its HEAD

 differs from the commit recorded in the superproject and can be used to override any

 settings of the ignore option in git-config(1) or gitmodules(5). When "untracked" is

 used submodules are not considered dirty when they only contain untracked content (but

 they are still scanned for modified content). Using "dirty" ignores all changes to the

 work tree of submodules, only changes to the commits stored in the superproject are

 shown (this was the behavior until 1.7.0). Using "all" hides all changes to

 submodules.

 --src-prefix=<prefix>

 Show the given source prefix instead of "a/".

 --dst-prefix=<prefix>

 Show the given destination prefix instead of "b/".

 --no-prefix

 Do not show any source or destination prefix.

 --line-prefix=<prefix>

 Prepend an additional prefix to every line of output.

 --ita-invisible-in-index

 By default entries added by "git add -N" appear as an existing empty file in "git

 diff" and a new file in "git diff --cached". This option makes the entry appear as a

 new file in "git diff" and non-existent in "git diff --cached". This option could be

 reverted with --ita-visible-in-index. Both options are experimental and could be Page 46/54

 removed in future.

 For more detailed explanation on these common options, see also gitdiffcore(7).

GENERATING PATCH TEXT WITH -P

 Running git-diff(1), git-log(1), git-show(1), git-diff-index(1), git-diff-tree(1), or git-

 diff-files(1) with the -p option produces patch text. You can customize the creation of

 patch text via the GIT_EXTERNAL_DIFF and the GIT_DIFF_OPTS environment variables (see

 git(1)), and the diff attribute (see gitattributes(5)).

 What the -p option produces is slightly different from the traditional diff format:

 1. It is preceded with a "git diff" header that looks like this:

 diff --git a/file1 b/file2

 The a/ and b/ filenames are the same unless rename/copy is involved. Especially, even

 for a creation or a deletion, /dev/null is not used in place of the a/ or b/

 filenames.

 When rename/copy is involved, file1 and file2 show the name of the source file of the

 rename/copy and the name of the file that rename/copy produces, respectively.

 2. It is followed by one or more extended header lines:

 old mode <mode>

 new mode <mode>

 deleted file mode <mode>

 new file mode <mode>

 copy from <path>

 copy to <path>

 rename from <path>

 rename to <path>

 similarity index <number>

 dissimilarity index <number>

 index <hash>..<hash> <mode>

 File modes are printed as 6-digit octal numbers including the file type and file

 permission bits.

 Path names in extended headers do not include the a/ and b/ prefixes.

 The similarity index is the percentage of unchanged lines, and the dissimilarity index

 is the percentage of changed lines. It is a rounded down integer, followed by a

 percent sign. The similarity index value of 100% is thus reserved for two equal files, Page 47/54

 while 100% dissimilarity means that no line from the old file made it into the new

 one.

 The index line includes the blob object names before and after the change. The <mode>

 is included if the file mode does not change; otherwise, separate lines indicate the

 old and the new mode.

 3. Pathnames with "unusual" characters are quoted as explained for the configuration

 variable core.quotePath (see git-config(1)).

 4. All the file1 files in the output refer to files before the commit, and all the file2

 files refer to files after the commit. It is incorrect to apply each change to each

 file sequentially. For example, this patch will swap a and b:

 diff --git a/a b/b

 rename from a

 rename to b

 diff --git a/b b/a

 rename from b

 rename to a

 5. Hunk headers mention the name of the function to which the hunk applies. See "Defining

 a custom hunk-header" in gitattributes(5) for details of how to tailor to this to

 specific languages.

COMBINED DIFF FORMAT

 Any diff-generating command can take the -c or --cc option to produce a combined diff when

 showing a merge. This is the default format when showing merges with git-diff(1) or git-

 show(1). Note also that you can give suitable --diff-merges option to any of these

 commands to force generation of diffs in specific format.

 A "combined diff" format looks like this:

 diff --combined describe.c

 index fabadb8,cc95eb0..4866510

 --- a/describe.c

 +++ b/describe.c

 @@@ -98,20 -98,12 +98,20 @@@

 return (a_date > b_date) ? -1 : (a_date == b_date) ? 0 : 1;

 }

 - static void describe(char *arg) Page 48/54

 -static void describe(struct commit *cmit, int last_one)

 ++static void describe(char *arg, int last_one)

 {

 + unsigned char sha1[20];

 + struct commit *cmit;

 struct commit_list *list;

 static int initialized = 0;

 struct commit_name *n;

 + if (get_sha1(arg, sha1) < 0)

 + usage(describe_usage);

 + cmit = lookup_commit_reference(sha1);

 + if (!cmit)

 + usage(describe_usage);

 +

 if (!initialized) {

 initialized = 1;

 for_each_ref(get_name);

 1. It is preceded with a "git diff" header, that looks like this (when the -c option is

 used):

 diff --combined file

 or like this (when the --cc option is used):

 diff --cc file

 2. It is followed by one or more extended header lines (this example shows a merge with

 two parents):

 index <hash>,<hash>..<hash>

 mode <mode>,<mode>..<mode>

 new file mode <mode>

 deleted file mode <mode>,<mode>

 The mode <mode>,<mode>..<mode> line appears only if at least one of the <mode> is

 different from the rest. Extended headers with information about detected contents

 movement (renames and copying detection) are designed to work with diff of two

 <tree-ish> and are not used by combined diff format.

 3. It is followed by two-line from-file/to-file header Page 49/54

 --- a/file

 +++ b/file

 Similar to two-line header for traditional unified diff format, /dev/null is used to

 signal created or deleted files.

 However, if the --combined-all-paths option is provided, instead of a two-line

 from-file/to-file you get a N+1 line from-file/to-file header, where N is the number

 of parents in the merge commit

 --- a/file

 --- a/file

 --- a/file

 +++ b/file

 This extended format can be useful if rename or copy detection is active, to allow you

 to see the original name of the file in different parents.

 4. Chunk header format is modified to prevent people from accidentally feeding it to

 patch -p1. Combined diff format was created for review of merge commit changes, and

 was not meant to be applied. The change is similar to the change in the extended index

 header:

 @@@ <from-file-range> <from-file-range> <to-file-range> @@@

 There are (number of parents + 1) @ characters in the chunk header for combined diff

 format.

 Unlike the traditional unified diff format, which shows two files A and B with a single

 column that has - (minus ? appears in A but removed in B), + (plus ? missing in A but

 added to B), or " " (space ? unchanged) prefix, this format compares two or more files

 file1, file2,... with one file X, and shows how X differs from each of fileN. One column

 for each of fileN is prepended to the output line to note how X?s line is different from

 it.

 A - character in the column N means that the line appears in fileN but it does not appear

 in the result. A + character in the column N means that the line appears in the result,

 and fileN does not have that line (in other words, the line was added, from the point of

 view of that parent).

 In the above example output, the function signature was changed from both files (hence two

 - removals from both file1 and file2, plus ++ to mean one line that was added does not

 appear in either file1 or file2). Also eight other lines are the same from file1 but do Page 50/54

 not appear in file2 (hence prefixed with +).

 When shown by git diff-tree -c, it compares the parents of a merge commit with the merge

 result (i.e. file1..fileN are the parents). When shown by git diff-files -c, it compares

 the two unresolved merge parents with the working tree file (i.e. file1 is stage 2 aka

 "our version", file2 is stage 3 aka "their version").

EXAMPLES

 git log --no-merges

 Show the whole commit history, but skip any merges

 git log v2.6.12.. include/scsi drivers/scsi

 Show all commits since version v2.6.12 that changed any file in the include/scsi or

 drivers/scsi subdirectories

 git log --since="2 weeks ago" -- gitk

 Show the changes during the last two weeks to the file gitk. The -- is necessary to

 avoid confusion with the branch named gitk

 git log --name-status release..test

 Show the commits that are in the "test" branch but not yet in the "release" branch,

 along with the list of paths each commit modifies.

 git log --follow builtin/rev-list.c

 Shows the commits that changed builtin/rev-list.c, including those commits that

 occurred before the file was given its present name.

 git log --branches --not --remotes=origin

 Shows all commits that are in any of local branches but not in any of remote-tracking

 branches for origin (what you have that origin doesn?t).

 git log master --not --remotes=*/master

 Shows all commits that are in local master but not in any remote repository master

 branches.

 git log -p -m --first-parent

 Shows the history including change diffs, but only from the ?main branch? perspective,

 skipping commits that come from merged branches, and showing full diffs of changes

 introduced by the merges. This makes sense only when following a strict policy of

 merging all topic branches when staying on a single integration branch.

 git log -L '/int main/',/^}/:main.c

 Shows how the function main() in the file main.c evolved over time. Page 51/54

 git log -3

 Limits the number of commits to show to 3.

DISCUSSION

 Git is to some extent character encoding agnostic.

 ? The contents of the blob objects are uninterpreted sequences of bytes. There is no

 encoding translation at the core level.

 ? Path names are encoded in UTF-8 normalization form C. This applies to tree objects,

 the index file, ref names, as well as path names in command line arguments,

 environment variables and config files (.git/config (see git-config(1)), gitignore(5),

 gitattributes(5) and gitmodules(5)).

 Note that Git at the core level treats path names simply as sequences of non-NUL

 bytes, there are no path name encoding conversions (except on Mac and Windows).

 Therefore, using non-ASCII path names will mostly work even on platforms and file

 systems that use legacy extended ASCII encodings. However, repositories created on

 such systems will not work properly on UTF-8-based systems (e.g. Linux, Mac, Windows)

 and vice versa. Additionally, many Git-based tools simply assume path names to be

 UTF-8 and will fail to display other encodings correctly.

 ? Commit log messages are typically encoded in UTF-8, but other extended ASCII encodings

 are also supported. This includes ISO-8859-x, CP125x and many others, but not

 UTF-16/32, EBCDIC and CJK multi-byte encodings (GBK, Shift-JIS, Big5, EUC-x, CP9xx

 etc.).

 Although we encourage that the commit log messages are encoded in UTF-8, both the core and

 Git Porcelain are designed not to force UTF-8 on projects. If all participants of a

 particular project find it more convenient to use legacy encodings, Git does not forbid

 it. However, there are a few things to keep in mind.

 1. git commit and git commit-tree issues a warning if the commit log message given to it

 does not look like a valid UTF-8 string, unless you explicitly say your project uses a

 legacy encoding. The way to say this is to have i18n.commitEncoding in .git/config

 file, like this:

 [i18n]

 commitEncoding = ISO-8859-1

 Commit objects created with the above setting record the value of i18n.commitEncoding

 in its encoding header. This is to help other people who look at them later. Lack of Page 52/54

 this header implies that the commit log message is encoded in UTF-8.

 2. git log, git show, git blame and friends look at the encoding header of a commit

 object, and try to re-code the log message into UTF-8 unless otherwise specified. You

 can specify the desired output encoding with i18n.logOutputEncoding in .git/config

 file, like this:

 [i18n]

 logOutputEncoding = ISO-8859-1

 If you do not have this configuration variable, the value of i18n.commitEncoding is

 used instead.

 Note that we deliberately chose not to re-code the commit log message when a commit is

 made to force UTF-8 at the commit object level, because re-coding to UTF-8 is not

 necessarily a reversible operation.

CONFIGURATION

 See git-config(1) for core variables and git-diff(1) for settings related to diff

 generation.

 format.pretty

 Default for the --format option. (See Pretty Formats above.) Defaults to medium.

 i18n.logOutputEncoding

 Encoding to use when displaying logs. (See Discussion above.) Defaults to the value of

 i18n.commitEncoding if set, and UTF-8 otherwise.

 log.date

 Default format for human-readable dates. (Compare the --date option.) Defaults to

 "default", which means to write dates like Sat May 8 19:35:34 2010 -0500.

 If the format is set to "auto:foo" and the pager is in use, format "foo" will be the

 used for the date format. Otherwise "default" will be used.

 log.follow

 If true, git log will act as if the --follow option was used when a single <path> is

 given. This has the same limitations as --follow, i.e. it cannot be used to follow

 multiple files and does not work well on non-linear history.

 log.showRoot

 If false, git log and related commands will not treat the initial commit as a big

 creation event. Any root commits in git log -p output would be shown without a diff

 attached. The default is true. Page 53/54

 log.showSignature

 If true, git log and related commands will act as if the --show-signature option was

 passed to them.

 mailmap.*

 See git-shortlog(1).

 notes.displayRef

 Which refs, in addition to the default set by core.notesRef or GIT_NOTES_REF, to read

 notes from when showing commit messages with the log family of commands. See git-

 notes(1).

 May be an unabbreviated ref name or a glob and may be specified multiple times. A

 warning will be issued for refs that do not exist, but a glob that does not match any

 refs is silently ignored.

 This setting can be disabled by the --no-notes option, overridden by the

 GIT_NOTES_DISPLAY_REF environment variable, and overridden by the --notes=<ref>

 option.

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-LOG(1)

Page 54/54

