
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-interpret-trailers.1'

$ man git-interpret-trailers.1

GIT-INTERPRET-TRAI(1) Git Manual GIT-INTERPRET-TRAI(1)

NAME

 git-interpret-trailers - Add or parse structured information in commit messages

SYNOPSIS

 git interpret-trailers [<options>] [(--trailer <token>[(=|:)<value>])...] [<file>...]

 git interpret-trailers [<options>] [--parse] [<file>...]

DESCRIPTION

 Help parsing or adding trailers lines, that look similar to RFC 822 e-mail headers, at the

 end of the otherwise free-form part of a commit message.

 This command reads some patches or commit messages from either the <file> arguments or the

 standard input if no <file> is specified. If --parse is specified, the output consists of

 the parsed trailers.

 Otherwise, this command applies the arguments passed using the --trailer option, if any,

 to the commit message part of each input file. The result is emitted on the standard

 output.

 Some configuration variables control the way the --trailer arguments are applied to each

 commit message and the way any existing trailer in the commit message is changed. They

 also make it possible to automatically add some trailers.

 By default, a <token>=<value> or <token>:<value> argument given using --trailer will be

 appended after the existing trailers only if the last trailer has a different (<token>,

 <value>) pair (or if there is no existing trailer). The <token> and <value> parts will be

 trimmed to remove starting and trailing whitespace, and the resulting trimmed <token> and

 <value> will appear in the message like this: Page 1/10

 token: value

 This means that the trimmed <token> and <value> will be separated by ': ' (one colon

 followed by one space).

 By default the new trailer will appear at the end of all the existing trailers. If there

 is no existing trailer, the new trailer will appear after the commit message part of the

 output, and, if there is no line with only spaces at the end of the commit message part,

 one blank line will be added before the new trailer.

 Existing trailers are extracted from the input message by looking for a group of one or

 more lines that (i) is all trailers, or (ii) contains at least one Git-generated or

 user-configured trailer and consists of at least 25% trailers. The group must be preceded

 by one or more empty (or whitespace-only) lines. The group must either be at the end of

 the message or be the last non-whitespace lines before a line that starts with ---

 (followed by a space or the end of the line). Such three minus signs start the patch part

 of the message. See also --no-divider below.

 When reading trailers, there can be whitespaces after the token, the separator and the

 value. There can also be whitespaces inside the token and the value. The value may be

 split over multiple lines with each subsequent line starting with whitespace, like the

 "folding" in RFC 822.

 Note that trailers do not follow and are not intended to follow many rules for RFC 822

 headers. For example they do not follow the encoding rules and probably many other rules.

OPTIONS

 --in-place

 Edit the files in place.

 --trim-empty

 If the <value> part of any trailer contains only whitespace, the whole trailer will be

 removed from the resulting message. This applies to existing trailers as well as new

 trailers.

 --trailer <token>[(=|:)<value>]

 Specify a (<token>, <value>) pair that should be applied as a trailer to the input

 messages. See the description of this command.

 --where <placement>, --no-where

 Specify where all new trailers will be added. A setting provided with --where

 overrides all configuration variables and applies to all --trailer options until the Page 2/10

 next occurrence of --where or --no-where. Possible values are after, before, end or

 start.

 --if-exists <action>, --no-if-exists

 Specify what action will be performed when there is already at least one trailer with

 the same <token> in the message. A setting provided with --if-exists overrides all

 configuration variables and applies to all --trailer options until the next occurrence

 of --if-exists or --no-if-exists. Possible actions are addIfDifferent,

 addIfDifferentNeighbor, add, replace and doNothing.

 --if-missing <action>, --no-if-missing

 Specify what action will be performed when there is no other trailer with the same

 <token> in the message. A setting provided with --if-missing overrides all

 configuration variables and applies to all --trailer options until the next occurrence

 of --if-missing or --no-if-missing. Possible actions are doNothing or add.

 --only-trailers

 Output only the trailers, not any other parts of the input.

 --only-input

 Output only trailers that exist in the input; do not add any from the command-line or

 by following configured trailer.* rules.

 --unfold

 Remove any whitespace-continuation in trailers, so that each trailer appears on a line

 by itself with its full content.

 --parse

 A convenience alias for --only-trailers --only-input --unfold.

 --no-divider

 Do not treat --- as the end of the commit message. Use this when you know your input

 contains just the commit message itself (and not an email or the output of git

 format-patch).

CONFIGURATION VARIABLES

 trailer.separators

 This option tells which characters are recognized as trailer separators. By default

 only : is recognized as a trailer separator, except that = is always accepted on the

 command line for compatibility with other git commands.

 The first character given by this option will be the default character used when Page 3/10

 another separator is not specified in the config for this trailer.

 For example, if the value for this option is "%=$", then only lines using the format

 <token><sep><value> with <sep> containing %, = or $ and then spaces will be considered

 trailers. And % will be the default separator used, so by default trailers will appear

 like: <token>% <value> (one percent sign and one space will appear between the token

 and the value).

 trailer.where

 This option tells where a new trailer will be added.

 This can be end, which is the default, start, after or before.

 If it is end, then each new trailer will appear at the end of the existing trailers.

 If it is start, then each new trailer will appear at the start, instead of the end, of

 the existing trailers.

 If it is after, then each new trailer will appear just after the last trailer with the

 same <token>.

 If it is before, then each new trailer will appear just before the first trailer with

 the same <token>.

 trailer.ifexists

 This option makes it possible to choose what action will be performed when there is

 already at least one trailer with the same <token> in the message.

 The valid values for this option are: addIfDifferentNeighbor (this is the default),

 addIfDifferent, add, replace or doNothing.

 With addIfDifferentNeighbor, a new trailer will be added only if no trailer with the

 same (<token>, <value>) pair is above or below the line where the new trailer will be

 added.

 With addIfDifferent, a new trailer will be added only if no trailer with the same

 (<token>, <value>) pair is already in the message.

 With add, a new trailer will be added, even if some trailers with the same (<token>,

 <value>) pair are already in the message.

 With replace, an existing trailer with the same <token> will be deleted and the new

 trailer will be added. The deleted trailer will be the closest one (with the same

 <token>) to the place where the new one will be added.

 With doNothing, nothing will be done; that is no new trailer will be added if there is

 already one with the same <token> in the message. Page 4/10

 trailer.ifmissing

 This option makes it possible to choose what action will be performed when there is

 not yet any trailer with the same <token> in the message.

 The valid values for this option are: add (this is the default) and doNothing.

 With add, a new trailer will be added.

 With doNothing, nothing will be done.

 trailer.<token>.key

 This key will be used instead of <token> in the trailer. At the end of this key, a

 separator can appear and then some space characters. By default the only valid

 separator is :, but this can be changed using the trailer.separators config variable.

 If there is a separator, then the key will be used instead of both the <token> and the

 default separator when adding the trailer.

 trailer.<token>.where

 This option takes the same values as the trailer.where configuration variable and it

 overrides what is specified by that option for trailers with the specified <token>.

 trailer.<token>.ifexists

 This option takes the same values as the trailer.ifexists configuration variable and

 it overrides what is specified by that option for trailers with the specified <token>.

 trailer.<token>.ifmissing

 This option takes the same values as the trailer.ifmissing configuration variable and

 it overrides what is specified by that option for trailers with the specified <token>.

 trailer.<token>.command

 This option behaves in the same way as trailer.<token>.cmd, except that it doesn?t

 pass anything as argument to the specified command. Instead the first occurrence of

 substring $ARG is replaced by the value that would be passed as argument.

 The trailer.<token>.command option has been deprecated in favor of trailer.<token>.cmd

 due to the fact that $ARG in the user?s command is only replaced once and that the

 original way of replacing $ARG is not safe.

 When both trailer.<token>.cmd and trailer.<token>.command are given for the same

 <token>, trailer.<token>.cmd is used and trailer.<token>.command is ignored.

 trailer.<token>.cmd

 This option can be used to specify a shell command that will be called: once to

 automatically add a trailer with the specified <token>, and then each time a --trailer Page 5/10

 <token>=<value> argument to modify the <value> of the trailer that this option would

 produce.

 When the specified command is first called to add a trailer with the specified

 <token>, the behavior is as if a special --trailer <token>=<value> argument was added

 at the beginning of the "git interpret-trailers" command, where <value> is taken to be

 the standard output of the command with any leading and trailing whitespace trimmed

 off.

 If some --trailer <token>=<value> arguments are also passed on the command line, the

 command is called again once for each of these arguments with the same <token>. And

 the <value> part of these arguments, if any, will be passed to the command as its

 first argument. This way the command can produce a <value> computed from the <value>

 passed in the --trailer <token>=<value> argument.

EXAMPLES

 ? Configure a sign trailer with a Signed-off-by key, and then add two of these trailers

 to a message:

 $ git config trailer.sign.key "Signed-off-by"

 $ cat msg.txt

 subject

 message

 $ cat msg.txt | git interpret-trailers --trailer 'sign: Alice <alice@example.com>' --trailer 'sign: Bob

<bob@example.com>'

 subject

 message

 Signed-off-by: Alice <alice@example.com>

 Signed-off-by: Bob <bob@example.com>

 ? Use the --in-place option to edit a message file in place:

 $ cat msg.txt

 subject

 message

 Signed-off-by: Bob <bob@example.com>

 $ git interpret-trailers --trailer 'Acked-by: Alice <alice@example.com>' --in-place msg.txt

 $ cat msg.txt

 subject Page 6/10

 message

 Signed-off-by: Bob <bob@example.com>

 Acked-by: Alice <alice@example.com>

 ? Extract the last commit as a patch, and add a Cc and a Reviewed-by trailer to it:

 $ git format-patch -1

 0001-foo.patch

 $ git interpret-trailers --trailer 'Cc: Alice <alice@example.com>' --trailer 'Reviewed-by: Bob <bob@example.com>'

0001-foo.patch >0001-bar.patch

 ? Configure a sign trailer with a command to automatically add a 'Signed-off-by: ' with

 the author information only if there is no 'Signed-off-by: ' already, and show how it

 works:

 $ git config trailer.sign.key "Signed-off-by: "

 $ git config trailer.sign.ifmissing add

 $ git config trailer.sign.ifexists doNothing

 $ git config trailer.sign.command 'echo "$(git config user.name) <$(git config user.email)>"'

 $ git interpret-trailers <<EOF

 > EOF

 Signed-off-by: Bob <bob@example.com>

 $ git interpret-trailers <<EOF

 > Signed-off-by: Alice <alice@example.com>

 > EOF

 Signed-off-by: Alice <alice@example.com>

 ? Configure a fix trailer with a key that contains a # and no space after this

 character, and show how it works:

 $ git config trailer.separators ":#"

 $ git config trailer.fix.key "Fix #"

 $ echo "subject" | git interpret-trailers --trailer fix=42

 subject

 Fix #42

 ? Configure a help trailer with a cmd use a script glog-find-author which search

 specified author identity from git log in git repository and show how it works:

 $ cat ~/bin/glog-find-author

 #!/bin/sh Page 7/10

 test -n "$1" && git log --author="$1" --pretty="%an <%ae>" -1 || true

 $ git config trailer.help.key "Helped-by: "

 $ git config trailer.help.ifExists "addIfDifferentNeighbor"

 $ git config trailer.help.cmd "~/bin/glog-find-author"

 $ git interpret-trailers --trailer="help:Junio" --trailer="help:Couder" <<EOF

 > subject

 >

 > message

 >

 > EOF

 subject

 message

 Helped-by: Junio C Hamano <gitster@pobox.com>

 Helped-by: Christian Couder <christian.couder@gmail.com>

 ? Configure a ref trailer with a cmd use a script glog-grep to grep last relevant commit

 from git log in the git repository and show how it works:

 $ cat ~/bin/glog-grep

 #!/bin/sh

 test -n "$1" && git log --grep "$1" --pretty=reference -1 || true

 $ git config trailer.ref.key "Reference-to: "

 $ git config trailer.ref.ifExists "replace"

 $ git config trailer.ref.cmd "~/bin/glog-grep"

 $ git interpret-trailers --trailer="ref:Add copyright notices." <<EOF

 > subject

 >

 > message

 >

 > EOF

 subject

 message

 Reference-to: 8bc9a0c769 (Add copyright notices., 2005-04-07)

 ? Configure a see trailer with a command to show the subject of a commit that is

 related, and show how it works: Page 8/10

 $ git config trailer.see.key "See-also: "

 $ git config trailer.see.ifExists "replace"

 $ git config trailer.see.ifMissing "doNothing"

 $ git config trailer.see.command "git log -1 --oneline --format=\"%h (%s)\" --abbrev-commit --abbrev=14 \$ARG"

 $ git interpret-trailers <<EOF

 > subject

 >

 > message

 >

 > see: HEAD~2

 > EOF

 subject

 message

 See-also: fe3187489d69c4 (subject of related commit)

 ? Configure a commit template with some trailers with empty values (using sed to show

 and keep the trailing spaces at the end of the trailers), then configure a commit-msg

 hook that uses git interpret-trailers to remove trailers with empty values and to add

 a git-version trailer:

 $ sed -e 's/ Z$/ /' >commit_template.txt <<EOF

 > ***subject***

 >

 > ***message***

 >

 > Fixes: Z

 > Cc: Z

 > Reviewed-by: Z

 > Signed-off-by: Z

 > EOF

 $ git config commit.template commit_template.txt

 $ cat >.git/hooks/commit-msg <<EOF

 > #!/bin/sh

 > git interpret-trailers --trim-empty --trailer "git-version: \$(git describe)" "\$1" > "\$1.new"

 > mv "\$1.new" "\$1" Page 9/10

 > EOF

 $ chmod +x .git/hooks/commit-msg

SEE ALSO

 git-commit(1), git-format-patch(1), git-config(1)

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-INTERPRET-TRAI(1)

Page 10/10

