
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-fast-import.1'

$ man git-fast-import.1

GIT-FAST-IMPORT(1) Git Manual GIT-FAST-IMPORT(1)

NAME

 git-fast-import - Backend for fast Git data importers

SYNOPSIS

 frontend | git fast-import [<options>]

DESCRIPTION

 This program is usually not what the end user wants to run directly. Most end users want

 to use one of the existing frontend programs, which parses a specific type of foreign

 source and feeds the contents stored there to git fast-import.

 fast-import reads a mixed command/data stream from standard input and writes one or more

 packfiles directly into the current repository. When EOF is received on standard input,

 fast import writes out updated branch and tag refs, fully updating the current repository

 with the newly imported data.

 The fast-import backend itself can import into an empty repository (one that has already

 been initialized by git init) or incrementally update an existing populated repository.

 Whether or not incremental imports are supported from a particular foreign source depends

 on the frontend program in use.

OPTIONS

 --force

 Force updating modified existing branches, even if doing so would cause commits to be

 lost (as the new commit does not contain the old commit).

 --quiet

 Disable the output shown by --stats, making fast-import usually be silent when it is Page 1/30

 successful. However, if the import stream has directives intended to show user output

 (e.g. progress directives), the corresponding messages will still be shown.

 --stats

 Display some basic statistics about the objects fast-import has created, the packfiles

 they were stored into, and the memory used by fast-import during this run. Showing

 this output is currently the default, but can be disabled with --quiet.

 --allow-unsafe-features

 Many command-line options can be provided as part of the fast-import stream itself by

 using the feature or option commands. However, some of these options are unsafe (e.g.,

 allowing fast-import to access the filesystem outside of the repository). These

 options are disabled by default, but can be allowed by providing this option on the

 command line. This currently impacts only the export-marks, import-marks, and

 import-marks-if-exists feature commands.

 Only enable this option if you trust the program generating the

 fast-import stream! This option is enabled automatically for

 remote-helpers that use the `import` capability, as they are

 already trusted to run their own code.

 Options for Frontends

 --cat-blob-fd=<fd>

 Write responses to get-mark, cat-blob, and ls queries to the file descriptor <fd>

 instead of stdout. Allows progress output intended for the end-user to be separated

 from other output.

 --date-format=<fmt>

 Specify the type of dates the frontend will supply to fast-import within author,

 committer and tagger commands. See ?Date Formats? below for details about which

 formats are supported, and their syntax.

 --done

 Terminate with error if there is no done command at the end of the stream. This option

 might be useful for detecting errors that cause the frontend to terminate before it

 has started to write a stream.

 Locations of Marks Files

 --export-marks=<file>

 Dumps the internal marks table to <file> when complete. Marks are written one per line Page 2/30

 as :markid SHA-1. Frontends can use this file to validate imports after they have been

 completed, or to save the marks table across incremental runs. As <file> is only

 opened and truncated at checkpoint (or completion) the same path can also be safely

 given to --import-marks.

 --import-marks=<file>

 Before processing any input, load the marks specified in <file>. The input file must

 exist, must be readable, and must use the same format as produced by --export-marks.

 Multiple options may be supplied to import more than one set of marks. If a mark is

 defined to different values, the last file wins.

 --import-marks-if-exists=<file>

 Like --import-marks but instead of erroring out, silently skips the file if it does

 not exist.

 --[no-]relative-marks

 After specifying --relative-marks the paths specified with --import-marks= and

 --export-marks= are relative to an internal directory in the current repository. In

 git-fast-import this means that the paths are relative to the .git/info/fast-import

 directory. However, other importers may use a different location.

 Relative and non-relative marks may be combined by interweaving --(no-)-relative-marks

 with the --(import|export)-marks= options.

 Submodule Rewriting

 --rewrite-submodules-from=<name>:<file>, --rewrite-submodules-to=<name>:<file>

 Rewrite the object IDs for the submodule specified by <name> from the values used in

 the from <file> to those used in the to <file>. The from marks should have been

 created by git fast-export, and the to marks should have been created by git

 fast-import when importing that same submodule.

 <name> may be any arbitrary string not containing a colon character, but the same

 value must be used with both options when specifying corresponding marks. Multiple

 submodules may be specified with different values for <name>. It is an error not to

 use these options in corresponding pairs.

 These options are primarily useful when converting a repository from one hash

 algorithm to another; without them, fast-import will fail if it encounters a submodule

 because it has no way of writing the object ID into the new hash algorithm.

 Performance and Compression Tuning Page 3/30

 --active-branches=<n>

 Maximum number of branches to maintain active at once. See ?Memory Utilization? below

 for details. Default is 5.

 --big-file-threshold=<n>

 Maximum size of a blob that fast-import will attempt to create a delta for, expressed

 in bytes. The default is 512m (512 MiB). Some importers may wish to lower this on

 systems with constrained memory.

 --depth=<n>

 Maximum delta depth, for blob and tree deltification. Default is 50.

 --export-pack-edges=<file>

 After creating a packfile, print a line of data to <file> listing the filename of the

 packfile and the last commit on each branch that was written to that packfile. This

 information may be useful after importing projects whose total object set exceeds the

 4 GiB packfile limit, as these commits can be used as edge points during calls to git

 pack-objects.

 --max-pack-size=<n>

 Maximum size of each output packfile. The default is unlimited.

 fastimport.unpackLimit

 See git-config(1)

PERFORMANCE

 The design of fast-import allows it to import large projects in a minimum amount of memory

 usage and processing time. Assuming the frontend is able to keep up with fast-import and

 feed it a constant stream of data, import times for projects holding 10+ years of history

 and containing 100,000+ individual commits are generally completed in just 1-2 hours on

 quite modest (~$2,000 USD) hardware.

 Most bottlenecks appear to be in foreign source data access (the source just cannot

 extract revisions fast enough) or disk IO (fast-import writes as fast as the disk will

 take the data). Imports will run faster if the source data is stored on a different drive

 than the destination Git repository (due to less IO contention).

DEVELOPMENT COST

 A typical frontend for fast-import tends to weigh in at approximately 200 lines of

 Perl/Python/Ruby code. Most developers have been able to create working importers in just

 a couple of hours, even though it is their first exposure to fast-import, and sometimes Page 4/30

 even to Git. This is an ideal situation, given that most conversion tools are throw-away

 (use once, and never look back).

PARALLEL OPERATION

 Like git push or git fetch, imports handled by fast-import are safe to run alongside

 parallel git repack -a -d or git gc invocations, or any other Git operation (including git

 prune, as loose objects are never used by fast-import).

 fast-import does not lock the branch or tag refs it is actively importing. After the

 import, during its ref update phase, fast-import tests each existing branch ref to verify

 the update will be a fast-forward update (the commit stored in the ref is contained in the

 new history of the commit to be written). If the update is not a fast-forward update,

 fast-import will skip updating that ref and instead prints a warning message. fast-import

 will always attempt to update all branch refs, and does not stop on the first failure.

 Branch updates can be forced with --force, but it?s recommended that this only be used on

 an otherwise quiet repository. Using --force is not necessary for an initial import into

 an empty repository.

TECHNICAL DISCUSSION

 fast-import tracks a set of branches in memory. Any branch can be created or modified at

 any point during the import process by sending a commit command on the input stream. This

 design allows a frontend program to process an unlimited number of branches

 simultaneously, generating commits in the order they are available from the source data.

 It also simplifies the frontend programs considerably.

 fast-import does not use or alter the current working directory, or any file within it.

 (It does however update the current Git repository, as referenced by GIT_DIR.) Therefore

 an import frontend may use the working directory for its own purposes, such as extracting

 file revisions from the foreign source. This ignorance of the working directory also

 allows fast-import to run very quickly, as it does not need to perform any costly file

 update operations when switching between branches.

INPUT FORMAT

 With the exception of raw file data (which Git does not interpret) the fast-import input

 format is text (ASCII) based. This text based format simplifies development and debugging

 of frontend programs, especially when a higher level language such as Perl, Python or Ruby

 is being used.

 fast-import is very strict about its input. Where we say SP below we mean exactly one Page 5/30

 space. Likewise LF means one (and only one) linefeed and HT one (and only one) horizontal

 tab. Supplying additional whitespace characters will cause unexpected results, such as

 branch names or file names with leading or trailing spaces in their name, or early

 termination of fast-import when it encounters unexpected input.

 Stream Comments

 To aid in debugging frontends fast-import ignores any line that begins with # (ASCII

 pound/hash) up to and including the line ending LF. A comment line may contain any

 sequence of bytes that does not contain an LF and therefore may be used to include any

 detailed debugging information that might be specific to the frontend and useful when

 inspecting a fast-import data stream.

 Date Formats

 The following date formats are supported. A frontend should select the format it will use

 for this import by passing the format name in the --date-format=<fmt> command-line option.

 raw

 This is the Git native format and is <time> SP <offutc>. It is also fast-import?s

 default format, if --date-format was not specified.

 The time of the event is specified by <time> as the number of seconds since the UNIX

 epoch (midnight, Jan 1, 1970, UTC) and is written as an ASCII decimal integer.

 The local offset is specified by <offutc> as a positive or negative offset from UTC.

 For example EST (which is 5 hours behind UTC) would be expressed in <tz> by ?-0500?

 while UTC is ?+0000?. The local offset does not affect <time>; it is used only as an

 advisement to help formatting routines display the timestamp.

 If the local offset is not available in the source material, use ?+0000?, or the most

 common local offset. For example many organizations have a CVS repository which has

 only ever been accessed by users who are located in the same location and time zone.

 In this case a reasonable offset from UTC could be assumed.

 Unlike the rfc2822 format, this format is very strict. Any variation in formatting

 will cause fast-import to reject the value, and some sanity checks on the numeric

 values may also be performed.

 raw-permissive

 This is the same as raw except that no sanity checks on the numeric epoch and local

 offset are performed. This can be useful when trying to filter or import an existing

 history with e.g. bogus timezone values. Page 6/30

 rfc2822

 This is the standard email format as described by RFC 2822.

 An example value is ?Tue Feb 6 11:22:18 2007 -0500?. The Git parser is accurate, but a

 little on the lenient side. It is the same parser used by git am when applying patches

 received from email.

 Some malformed strings may be accepted as valid dates. In some of these cases Git will

 still be able to obtain the correct date from the malformed string. There are also

 some types of malformed strings which Git will parse wrong, and yet consider valid.

 Seriously malformed strings will be rejected.

 Unlike the raw format above, the time zone/UTC offset information contained in an RFC

 2822 date string is used to adjust the date value to UTC prior to storage. Therefore

 it is important that this information be as accurate as possible.

 If the source material uses RFC 2822 style dates, the frontend should let fast-import

 handle the parsing and conversion (rather than attempting to do it itself) as the Git

 parser has been well tested in the wild.

 Frontends should prefer the raw format if the source material already uses UNIX-epoch

 format, can be coaxed to give dates in that format, or its format is easily

 convertible to it, as there is no ambiguity in parsing.

 now

 Always use the current time and time zone. The literal now must always be supplied for

 <when>.

 This is a toy format. The current time and time zone of this system is always copied

 into the identity string at the time it is being created by fast-import. There is no

 way to specify a different time or time zone.

 This particular format is supplied as it?s short to implement and may be useful to a

 process that wants to create a new commit right now, without needing to use a working

 directory or git update-index.

 If separate author and committer commands are used in a commit the timestamps may not

 match, as the system clock will be polled twice (once for each command). The only way

 to ensure that both author and committer identity information has the same timestamp

 is to omit author (thus copying from committer) or to use a date format other than

 now.

 Commands Page 7/30

 fast-import accepts several commands to update the current repository and control the

 current import process. More detailed discussion (with examples) of each command follows

 later.

 commit

 Creates a new branch or updates an existing branch by creating a new commit and

 updating the branch to point at the newly created commit.

 tag

 Creates an annotated tag object from an existing commit or branch. Lightweight tags

 are not supported by this command, as they are not recommended for recording

 meaningful points in time.

 reset

 Reset an existing branch (or a new branch) to a specific revision. This command must

 be used to change a branch to a specific revision without making a commit on it.

 blob

 Convert raw file data into a blob, for future use in a commit command. This command is

 optional and is not needed to perform an import.

 alias

 Record that a mark refers to a given object without first creating any new object.

 Using --import-marks and referring to missing marks will cause fast-import to fail, so

 aliases can provide a way to set otherwise pruned commits to a valid value (e.g. the

 nearest non-pruned ancestor).

 checkpoint

 Forces fast-import to close the current packfile, generate its unique SHA-1 checksum

 and index, and start a new packfile. This command is optional and is not needed to

 perform an import.

 progress

 Causes fast-import to echo the entire line to its own standard output. This command is

 optional and is not needed to perform an import.

 done

 Marks the end of the stream. This command is optional unless the done feature was

 requested using the --done command-line option or feature done command.

 get-mark

 Causes fast-import to print the SHA-1 corresponding to a mark to the file descriptor Page 8/30

 set with --cat-blob-fd, or stdout if unspecified.

 cat-blob

 Causes fast-import to print a blob in cat-file --batch format to the file descriptor

 set with --cat-blob-fd or stdout if unspecified.

 ls

 Causes fast-import to print a line describing a directory entry in ls-tree format to

 the file descriptor set with --cat-blob-fd or stdout if unspecified.

 feature

 Enable the specified feature. This requires that fast-import supports the specified

 feature, and aborts if it does not.

 option

 Specify any of the options listed under OPTIONS that do not change stream semantic to

 suit the frontend?s needs. This command is optional and is not needed to perform an

 import.

 commit

 Create or update a branch with a new commit, recording one logical change to the project.

 'commit' SP <ref> LF

 mark?

 original-oid?

 ('author' (SP <name>)? SP LT <email> GT SP <when> LF)?

 'committer' (SP <name>)? SP LT <email> GT SP <when> LF

 ('encoding' SP <encoding>)?

 data

 ('from' SP <commit-ish> LF)?

 ('merge' SP <commit-ish> LF)*

 (filemodify | filedelete | filecopy | filerename | filedeleteall | notemodify)*

 LF?

 where <ref> is the name of the branch to make the commit on. Typically branch names are

 prefixed with refs/heads/ in Git, so importing the CVS branch symbol RELENG-1_0 would use

 refs/heads/RELENG-1_0 for the value of <ref>. The value of <ref> must be a valid refname

 in Git. As LF is not valid in a Git refname, no quoting or escaping syntax is supported

 here.

 A mark command may optionally appear, requesting fast-import to save a reference to the Page 9/30

 newly created commit for future use by the frontend (see below for format). It is very

 common for frontends to mark every commit they create, thereby allowing future branch

 creation from any imported commit.

 The data command following committer must supply the commit message (see below for data

 command syntax). To import an empty commit message use a 0 length data. Commit messages

 are free-form and are not interpreted by Git. Currently they must be encoded in UTF-8, as

 fast-import does not permit other encodings to be specified.

 Zero or more filemodify, filedelete, filecopy, filerename, filedeleteall and notemodify

 commands may be included to update the contents of the branch prior to creating the

 commit. These commands may be supplied in any order. However it is recommended that a

 filedeleteall command precede all filemodify, filecopy, filerename and notemodify commands

 in the same commit, as filedeleteall wipes the branch clean (see below).

 The LF after the command is optional (it used to be required). Note that for reasons of

 backward compatibility, if the commit ends with a data command (i.e. it has no from,

 merge, filemodify, filedelete, filecopy, filerename, filedeleteall or notemodify commands)

 then two LF commands may appear at the end of the command instead of just one.

 author

 An author command may optionally appear, if the author information might differ from

 the committer information. If author is omitted then fast-import will automatically

 use the committer?s information for the author portion of the commit. See below for a

 description of the fields in author, as they are identical to committer.

 committer

 The committer command indicates who made this commit, and when they made it.

 Here <name> is the person?s display name (for example ?Com M Itter?) and <email> is

 the person?s email address (?cm@example.com?). LT and GT are the literal less-than

 (\x3c) and greater-than (\x3e) symbols. These are required to delimit the email

 address from the other fields in the line. Note that <name> and <email> are free-form

 and may contain any sequence of bytes, except LT, GT and LF. <name> is typically UTF-8

 encoded.

 The time of the change is specified by <when> using the date format that was selected

 by the --date-format=<fmt> command-line option. See ?Date Formats? above for the set

 of supported formats, and their syntax.

 encoding Page 10/30

 The optional encoding command indicates the encoding of the commit message. Most

 commits are UTF-8 and the encoding is omitted, but this allows importing commit

 messages into git without first reencoding them.

 from

 The from command is used to specify the commit to initialize this branch from. This

 revision will be the first ancestor of the new commit. The state of the tree built at

 this commit will begin with the state at the from commit, and be altered by the

 content modifications in this commit.

 Omitting the from command in the first commit of a new branch will cause fast-import

 to create that commit with no ancestor. This tends to be desired only for the initial

 commit of a project. If the frontend creates all files from scratch when making a new

 branch, a merge command may be used instead of from to start the commit with an empty

 tree. Omitting the from command on existing branches is usually desired, as the

 current commit on that branch is automatically assumed to be the first ancestor of the

 new commit.

 As LF is not valid in a Git refname or SHA-1 expression, no quoting or escaping syntax

 is supported within <commit-ish>.

 Here <commit-ish> is any of the following:

 ? The name of an existing branch already in fast-import?s internal branch table. If

 fast-import doesn?t know the name, it?s treated as a SHA-1 expression.

 ? A mark reference, :<idnum>, where <idnum> is the mark number.

 The reason fast-import uses : to denote a mark reference is this character is not

 legal in a Git branch name. The leading : makes it easy to distinguish between the

 mark 42 (:42) and the branch 42 (42 or refs/heads/42), or an abbreviated SHA-1

 which happened to consist only of base-10 digits.

 Marks must be declared (via mark) before they can be used.

 ? A complete 40 byte or abbreviated commit SHA-1 in hex.

 ? Any valid Git SHA-1 expression that resolves to a commit. See ?SPECIFYING

 REVISIONS? in gitrevisions(7) for details.

 ? The special null SHA-1 (40 zeros) specifies that the branch is to be removed.

 The special case of restarting an incremental import from the current branch value

 should be written as:

 from refs/heads/branch^0 Page 11/30

 The ^0 suffix is necessary as fast-import does not permit a branch to start from

 itself, and the branch is created in memory before the from command is even read from

 the input. Adding ^0 will force fast-import to resolve the commit through Git?s

 revision parsing library, rather than its internal branch table, thereby loading in

 the existing value of the branch.

 merge

 Includes one additional ancestor commit. The additional ancestry link does not change

 the way the tree state is built at this commit. If the from command is omitted when

 creating a new branch, the first merge commit will be the first ancestor of the

 current commit, and the branch will start out with no files. An unlimited number of

 merge commands per commit are permitted by fast-import, thereby establishing an n-way

 merge.

 Here <commit-ish> is any of the commit specification expressions also accepted by from

 (see above).

 filemodify

 Included in a commit command to add a new file or change the content of an existing

 file. This command has two different means of specifying the content of the file.

 External data format

 The data content for the file was already supplied by a prior blob command. The

 frontend just needs to connect it.

 'M' SP <mode> SP <dataref> SP <path> LF

 Here usually <dataref> must be either a mark reference (:<idnum>) set by a prior

 blob command, or a full 40-byte SHA-1 of an existing Git blob object. If <mode> is

 040000` then <dataref> must be the full 40-byte SHA-1 of an existing Git tree

 object or a mark reference set with --import-marks.

 Inline data format

 The data content for the file has not been supplied yet. The frontend wants to

 supply it as part of this modify command.

 'M' SP <mode> SP 'inline' SP <path> LF

 data

 See below for a detailed description of the data command.

 In both formats <mode> is the type of file entry, specified in octal. Git only

 supports the following modes: Page 12/30

 ? 100644 or 644: A normal (not-executable) file. The majority of files in most

 projects use this mode. If in doubt, this is what you want.

 ? 100755 or 755: A normal, but executable, file.

 ? 120000: A symlink, the content of the file will be the link target.

 ? 160000: A gitlink, SHA-1 of the object refers to a commit in another repository.

 Git links can only be specified by SHA or through a commit mark. They are used to

 implement submodules.

 ? 040000: A subdirectory. Subdirectories can only be specified by SHA or through a

 tree mark set with --import-marks.

 In both formats <path> is the complete path of the file to be added (if not already

 existing) or modified (if already existing).

 A <path> string must use UNIX-style directory separators (forward slash /), may

 contain any byte other than LF, and must not start with double quote (").

 A path can use C-style string quoting; this is accepted in all cases and mandatory if

 the filename starts with double quote or contains LF. In C-style quoting, the complete

 name should be surrounded with double quotes, and any LF, backslash, or double quote

 characters must be escaped by preceding them with a backslash (e.g., "path/with\n, \\

 and \" in it").

 The value of <path> must be in canonical form. That is it must not:

 ? contain an empty directory component (e.g. foo//bar is invalid),

 ? end with a directory separator (e.g. foo/ is invalid),

 ? start with a directory separator (e.g. /foo is invalid),

 ? contain the special component . or .. (e.g. foo/./bar and foo/../bar are

 invalid).

 The root of the tree can be represented by an empty string as <path>.

 It is recommended that <path> always be encoded using UTF-8.

 filedelete

 Included in a commit command to remove a file or recursively delete an entire

 directory from the branch. If the file or directory removal makes its parent directory

 empty, the parent directory will be automatically removed too. This cascades up the

 tree until the first non-empty directory or the root is reached.

 'D' SP <path> LF

 here <path> is the complete path of the file or subdirectory to be removed from the Page 13/30

 branch. See filemodify above for a detailed description of <path>.

 filecopy

 Recursively copies an existing file or subdirectory to a different location within the

 branch. The existing file or directory must exist. If the destination exists it will

 be completely replaced by the content copied from the source.

 'C' SP <path> SP <path> LF

 here the first <path> is the source location and the second <path> is the destination.

 See filemodify above for a detailed description of what <path> may look like. To use a

 source path that contains SP the path must be quoted.

 A filecopy command takes effect immediately. Once the source location has been copied

 to the destination any future commands applied to the source location will not impact

 the destination of the copy.

 filerename

 Renames an existing file or subdirectory to a different location within the branch.

 The existing file or directory must exist. If the destination exists it will be

 replaced by the source directory.

 'R' SP <path> SP <path> LF

 here the first <path> is the source location and the second <path> is the destination.

 See filemodify above for a detailed description of what <path> may look like. To use a

 source path that contains SP the path must be quoted.

 A filerename command takes effect immediately. Once the source location has been

 renamed to the destination any future commands applied to the source location will

 create new files there and not impact the destination of the rename.

 Note that a filerename is the same as a filecopy followed by a filedelete of the

 source location. There is a slight performance advantage to using filerename, but the

 advantage is so small that it is never worth trying to convert a delete/add pair in

 source material into a rename for fast-import. This filerename command is provided

 just to simplify frontends that already have rename information and don?t want bother

 with decomposing it into a filecopy followed by a filedelete.

 filedeleteall

 Included in a commit command to remove all files (and also all directories) from the

 branch. This command resets the internal branch structure to have no files in it,

 allowing the frontend to subsequently add all interesting files from scratch. Page 14/30

 'deleteall' LF

 This command is extremely useful if the frontend does not know (or does not care to

 know) what files are currently on the branch, and therefore cannot generate the proper

 filedelete commands to update the content.

 Issuing a filedeleteall followed by the needed filemodify commands to set the correct

 content will produce the same results as sending only the needed filemodify and

 filedelete commands. The filedeleteall approach may however require fast-import to use

 slightly more memory per active branch (less than 1 MiB for even most large projects);

 so frontends that can easily obtain only the affected paths for a commit are

 encouraged to do so.

 notemodify

 Included in a commit <notes_ref> command to add a new note annotating a <commit-ish>

 or change this annotation contents. Internally it is similar to filemodify 100644 on

 <commit-ish> path (maybe split into subdirectories). It?s not advised to use any other

 commands to write to the <notes_ref> tree except filedeleteall to delete all existing

 notes in this tree. This command has two different means of specifying the content of

 the note.

 External data format

 The data content for the note was already supplied by a prior blob command. The

 frontend just needs to connect it to the commit that is to be annotated.

 'N' SP <dataref> SP <commit-ish> LF

 Here <dataref> can be either a mark reference (:<idnum>) set by a prior blob

 command, or a full 40-byte SHA-1 of an existing Git blob object.

 Inline data format

 The data content for the note has not been supplied yet. The frontend wants to

 supply it as part of this modify command.

 'N' SP 'inline' SP <commit-ish> LF

 data

 See below for a detailed description of the data command.

 In both formats <commit-ish> is any of the commit specification expressions also

 accepted by from (see above).

 mark

 Arranges for fast-import to save a reference to the current object, allowing the frontend Page 15/30

 to recall this object at a future point in time, without knowing its SHA-1. Here the

 current object is the object creation command the mark command appears within. This can be

 commit, tag, and blob, but commit is the most common usage.

 'mark' SP ':' <idnum> LF

 where <idnum> is the number assigned by the frontend to this mark. The value of <idnum> is

 expressed as an ASCII decimal integer. The value 0 is reserved and cannot be used as a

 mark. Only values greater than or equal to 1 may be used as marks.

 New marks are created automatically. Existing marks can be moved to another object simply

 by reusing the same <idnum> in another mark command.

 original-oid

 Provides the name of the object in the original source control system. fast-import will

 simply ignore this directive, but filter processes which operate on and modify the stream

 before feeding to fast-import may have uses for this information

 'original-oid' SP <object-identifier> LF

 where <object-identifier> is any string not containing LF.

 tag

 Creates an annotated tag referring to a specific commit. To create lightweight

 (non-annotated) tags see the reset command below.

 'tag' SP <name> LF

 mark?

 'from' SP <commit-ish> LF

 original-oid?

 'tagger' (SP <name>)? SP LT <email> GT SP <when> LF

 data

 where <name> is the name of the tag to create.

 Tag names are automatically prefixed with refs/tags/ when stored in Git, so importing the

 CVS branch symbol RELENG-1_0-FINAL would use just RELENG-1_0-FINAL for <name>, and

 fast-import will write the corresponding ref as refs/tags/RELENG-1_0-FINAL.

 The value of <name> must be a valid refname in Git and therefore may contain forward

 slashes. As LF is not valid in a Git refname, no quoting or escaping syntax is supported

 here.

 The from command is the same as in the commit command; see above for details.

 The tagger command uses the same format as committer within commit; again see above for Page 16/30

 details.

 The data command following tagger must supply the annotated tag message (see below for

 data command syntax). To import an empty tag message use a 0 length data. Tag messages are

 free-form and are not interpreted by Git. Currently they must be encoded in UTF-8, as

 fast-import does not permit other encodings to be specified.

 Signing annotated tags during import from within fast-import is not supported. Trying to

 include your own PGP/GPG signature is not recommended, as the frontend does not (easily)

 have access to the complete set of bytes which normally goes into such a signature. If

 signing is required, create lightweight tags from within fast-import with reset, then

 create the annotated versions of those tags offline with the standard git tag process.

 reset

 Creates (or recreates) the named branch, optionally starting from a specific revision. The

 reset command allows a frontend to issue a new from command for an existing branch, or to

 create a new branch from an existing commit without creating a new commit.

 'reset' SP <ref> LF

 ('from' SP <commit-ish> LF)?

 LF?

 For a detailed description of <ref> and <commit-ish> see above under commit and from.

 The LF after the command is optional (it used to be required).

 The reset command can also be used to create lightweight (non-annotated) tags. For

 example:

 reset refs/tags/938

 from :938

 would create the lightweight tag refs/tags/938 referring to whatever commit mark :938

 references.

 blob

 Requests writing one file revision to the packfile. The revision is not connected to any

 commit; this connection must be formed in a subsequent commit command by referencing the

 blob through an assigned mark.

 'blob' LF

 mark?

 original-oid?

 data Page 17/30

 The mark command is optional here as some frontends have chosen to generate the Git SHA-1

 for the blob on their own, and feed that directly to commit. This is typically more work

 than it?s worth however, as marks are inexpensive to store and easy to use.

 data

 Supplies raw data (for use as blob/file content, commit messages, or annotated tag

 messages) to fast-import. Data can be supplied using an exact byte count or delimited with

 a terminating line. Real frontends intended for production-quality conversions should

 always use the exact byte count format, as it is more robust and performs better. The

 delimited format is intended primarily for testing fast-import.

 Comment lines appearing within the <raw> part of data commands are always taken to be part

 of the body of the data and are therefore never ignored by fast-import. This makes it safe

 to import any file/message content whose lines might start with #.

 Exact byte count format

 The frontend must specify the number of bytes of data.

 'data' SP <count> LF

 <raw> LF?

 where <count> is the exact number of bytes appearing within <raw>. The value of

 <count> is expressed as an ASCII decimal integer. The LF on either side of <raw> is

 not included in <count> and will not be included in the imported data.

 The LF after <raw> is optional (it used to be required) but recommended. Always

 including it makes debugging a fast-import stream easier as the next command always

 starts in column 0 of the next line, even if <raw> did not end with an LF.

 Delimited format

 A delimiter string is used to mark the end of the data. fast-import will compute the

 length by searching for the delimiter. This format is primarily useful for testing and

 is not recommended for real data.

 'data' SP '<<' <delim> LF

 <raw> LF

 <delim> LF

 LF?

 where <delim> is the chosen delimiter string. The string <delim> must not appear on a

 line by itself within <raw>, as otherwise fast-import will think the data ends earlier

 than it really does. The LF immediately trailing <raw> is part of <raw>. This is one Page 18/30

 of the limitations of the delimited format, it is impossible to supply a data chunk

 which does not have an LF as its last byte.

 The LF after <delim> LF is optional (it used to be required).

 alias

 Record that a mark refers to a given object without first creating any new object.

 'alias' LF

 mark

 'to' SP <commit-ish> LF

 LF?

 For a detailed description of <commit-ish> see above under from.

 checkpoint

 Forces fast-import to close the current packfile, start a new one, and to save out all

 current branch refs, tags and marks.

 'checkpoint' LF

 LF?

 Note that fast-import automatically switches packfiles when the current packfile reaches

 --max-pack-size, or 4 GiB, whichever limit is smaller. During an automatic packfile switch

 fast-import does not update the branch refs, tags or marks.

 As a checkpoint can require a significant amount of CPU time and disk IO (to compute the

 overall pack SHA-1 checksum, generate the corresponding index file, and update the refs)

 it can easily take several minutes for a single checkpoint command to complete.

 Frontends may choose to issue checkpoints during extremely large and long running imports,

 or when they need to allow another Git process access to a branch. However given that a 30

 GiB Subversion repository can be loaded into Git through fast-import in about 3 hours,

 explicit checkpointing may not be necessary.

 The LF after the command is optional (it used to be required).

 progress

 Causes fast-import to print the entire progress line unmodified to its standard output

 channel (file descriptor 1) when the command is processed from the input stream. The

 command otherwise has no impact on the current import, or on any of fast-import?s internal

 state.

 'progress' SP <any> LF

 LF? Page 19/30

 The <any> part of the command may contain any sequence of bytes that does not contain LF.

 The LF after the command is optional. Callers may wish to process the output through a

 tool such as sed to remove the leading part of the line, for example:

 frontend | git fast-import | sed 's/^progress //'

 Placing a progress command immediately after a checkpoint will inform the reader when the

 checkpoint has been completed and it can safely access the refs that fast-import updated.

 get-mark

 Causes fast-import to print the SHA-1 corresponding to a mark to stdout or to the file

 descriptor previously arranged with the --cat-blob-fd argument. The command otherwise has

 no impact on the current import; its purpose is to retrieve SHA-1s that later commits

 might want to refer to in their commit messages.

 'get-mark' SP ':' <idnum> LF

 See ?Responses To Commands? below for details about how to read this output safely.

 cat-blob

 Causes fast-import to print a blob to a file descriptor previously arranged with the

 --cat-blob-fd argument. The command otherwise has no impact on the current import; its

 main purpose is to retrieve blobs that may be in fast-import?s memory but not accessible

 from the target repository.

 'cat-blob' SP <dataref> LF

 The <dataref> can be either a mark reference (:<idnum>) set previously or a full 40-byte

 SHA-1 of a Git blob, preexisting or ready to be written.

 Output uses the same format as git cat-file --batch:

 <sha1> SP 'blob' SP <size> LF

 <contents> LF

 This command can be used where a filemodify directive can appear, allowing it to be used

 in the middle of a commit. For a filemodify using an inline directive, it can also appear

 right before the data directive.

 See ?Responses To Commands? below for details about how to read this output safely.

 ls

 Prints information about the object at a path to a file descriptor previously arranged

 with the --cat-blob-fd argument. This allows printing a blob from the active commit (with

 cat-blob) or copying a blob or tree from a previous commit for use in the current one

 (with filemodify). Page 20/30

 The ls command can also be used where a filemodify directive can appear, allowing it to be

 used in the middle of a commit.

 Reading from the active commit

 This form can only be used in the middle of a commit. The path names a directory entry

 within fast-import?s active commit. The path must be quoted in this case.

 'ls' SP <path> LF

 Reading from a named tree

 The <dataref> can be a mark reference (:<idnum>) or the full 40-byte SHA-1 of a Git

 tag, commit, or tree object, preexisting or waiting to be written. The path is

 relative to the top level of the tree named by <dataref>.

 'ls' SP <dataref> SP <path> LF

 See filemodify above for a detailed description of <path>.

 Output uses the same format as git ls-tree <tree> -- <path>:

 <mode> SP ('blob' | 'tree' | 'commit') SP <dataref> HT <path> LF

 The <dataref> represents the blob, tree, or commit object at <path> and can be used in

 later get-mark, cat-blob, filemodify, or ls commands.

 If there is no file or subtree at that path, git fast-import will instead report

 missing SP <path> LF

 See ?Responses To Commands? below for details about how to read this output safely.

 feature

 Require that fast-import supports the specified feature, or abort if it does not.

 'feature' SP <feature> ('=' <argument>)? LF

 The <feature> part of the command may be any one of the following:

 date-format, export-marks, relative-marks, no-relative-marks, force

 Act as though the corresponding command-line option with a leading -- was passed on

 the command line (see OPTIONS, above).

 import-marks, import-marks-if-exists

 Like --import-marks except in two respects: first, only one "feature import-marks" or

 "feature import-marks-if-exists" command is allowed per stream; second, an

 --import-marks= or --import-marks-if-exists command-line option overrides any of these

 "feature" commands in the stream; third, "feature import-marks-if-exists" like a

 corresponding command-line option silently skips a nonexistent file.

 get-mark, cat-blob, ls Page 21/30

 Require that the backend support the get-mark, cat-blob, or ls command respectively.

 Versions of fast-import not supporting the specified command will exit with a message

 indicating so. This lets the import error out early with a clear message, rather than

 wasting time on the early part of an import before the unsupported command is

 detected.

 notes

 Require that the backend support the notemodify (N) subcommand to the commit command.

 Versions of fast-import not supporting notes will exit with a message indicating so.

 done

 Error out if the stream ends without a done command. Without this feature, errors

 causing the frontend to end abruptly at a convenient point in the stream can go

 undetected. This may occur, for example, if an import front end dies in mid-operation

 without emitting SIGTERM or SIGKILL at its subordinate git fast-import instance.

 option

 Processes the specified option so that git fast-import behaves in a way that suits the

 frontend?s needs. Note that options specified by the frontend are overridden by any

 options the user may specify to git fast-import itself.

 'option' SP <option> LF

 The <option> part of the command may contain any of the options listed in the OPTIONS

 section that do not change import semantics, without the leading -- and is treated in the

 same way.

 Option commands must be the first commands on the input (not counting feature commands),

 to give an option command after any non-option command is an error.

 The following command-line options change import semantics and may therefore not be passed

 as option:

 ? date-format

 ? import-marks

 ? export-marks

 ? cat-blob-fd

 ? force

 done

 If the done feature is not in use, treated as if EOF was read. This can be used to tell

 fast-import to finish early. Page 22/30

 If the --done command-line option or feature done command is in use, the done command is

 mandatory and marks the end of the stream.

RESPONSES TO COMMANDS

 New objects written by fast-import are not available immediately. Most fast-import

 commands have no visible effect until the next checkpoint (or completion). The frontend

 can send commands to fill fast-import?s input pipe without worrying about how quickly they

 will take effect, which improves performance by simplifying scheduling.

 For some frontends, though, it is useful to be able to read back data from the current

 repository as it is being updated (for example when the source material describes objects

 in terms of patches to be applied to previously imported objects). This can be

 accomplished by connecting the frontend and fast-import via bidirectional pipes:

 mkfifo fast-import-output

 frontend <fast-import-output |

 git fast-import >fast-import-output

 A frontend set up this way can use progress, get-mark, ls, and cat-blob commands to read

 information from the import in progress.

 To avoid deadlock, such frontends must completely consume any pending output from

 progress, ls, get-mark, and cat-blob before performing writes to fast-import that might

 block.

CRASH REPORTS

 If fast-import is supplied invalid input it will terminate with a non-zero exit status and

 create a crash report in the top level of the Git repository it was importing into. Crash

 reports contain a snapshot of the internal fast-import state as well as the most recent

 commands that lead up to the crash.

 All recent commands (including stream comments, file changes and progress commands) are

 shown in the command history within the crash report, but raw file data and commit

 messages are excluded from the crash report. This exclusion saves space within the report

 file and reduces the amount of buffering that fast-import must perform during execution.

 After writing a crash report fast-import will close the current packfile and export the

 marks table. This allows the frontend developer to inspect the repository state and resume

 the import from the point where it crashed. The modified branches and tags are not updated

 during a crash, as the import did not complete successfully. Branch and tag information

 can be found in the crash report and must be applied manually if the update is needed. Page 23/30

 An example crash:

 $ cat >in <<END_OF_INPUT

 # my very first test commit

 commit refs/heads/master

 committer Shawn O. Pearce <spearce> 19283 -0400

 # who is that guy anyway?

 data <<EOF

 this is my commit

 EOF

 M 644 inline .gitignore

 data <<EOF

 .gitignore

 EOF

 M 777 inline bob

 END_OF_INPUT

 $ git fast-import <in

 fatal: Corrupt mode: M 777 inline bob

 fast-import: dumping crash report to .git/fast_import_crash_8434

 $ cat .git/fast_import_crash_8434

 fast-import crash report:

 fast-import process: 8434

 parent process : 1391

 at Sat Sep 1 00:58:12 2007

 fatal: Corrupt mode: M 777 inline bob

 Most Recent Commands Before Crash

 # my very first test commit

 commit refs/heads/master

 committer Shawn O. Pearce <spearce> 19283 -0400

 # who is that guy anyway?

 data <<EOF

 M 644 inline .gitignore

 data <<EOF Page 24/30

 * M 777 inline bob

 Active Branch LRU

 active_branches = 1 cur, 5 max

 pos clock name

           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

            1)      0 refs/heads/master

           Inactive Branches

           -----------------

           refs/heads/master:

             status      : active loaded dirty

             tip commit  : 0000000000000000000000000000000000000000

             old tree    : 0000000000000000000000000000000000000000

             cur tree    : 0000000000000000000000000000000000000000

             commit clock: 0

             last pack   :

           -------------------

           END OF CRASH REPORT

TIPS AND TRICKS

       The following tips and tricks have been collected from various users of fast-import, and

       are offered here as suggestions.

   Use One Mark Per Commit

       When doing a repository conversion, use a unique mark per commit (mark :<n>) and supply

       the --export-marks option on the command line. fast-import will dump a file which lists

       every mark and the Git object SHA-1 that corresponds to it. If the frontend can tie the

       marks back to the source repository, it is easy to verify the accuracy and completeness of

       the import by comparing each Git commit to the corresponding source revision.

       Coming from a system such as Perforce or Subversion this should be quite simple, as the

       fast-import mark can also be the Perforce changeset number or the Subversion revision

       number.

   Freely Skip Around Branches

       Don?t bother trying to optimize the frontend to stick to one branch at a time during an

       import. Although doing so might be slightly faster for fast-import, it tends to increase Page 25/30



       the complexity of the frontend code considerably.

       The branch LRU builtin to fast-import tends to behave very well, and the cost of

       activating an inactive branch is so low that bouncing around between branches has

       virtually no impact on import performance.

   Handling Renames

       When importing a renamed file or directory, simply delete the old name(s) and modify the

       new name(s) during the corresponding commit. Git performs rename detection after-the-fact,

       rather than explicitly during a commit.

   Use Tag Fixup Branches

       Some other SCM systems let the user create a tag from multiple files which are not from

       the same commit/changeset. Or to create tags which are a subset of the files available in

       the repository.

       Importing these tags as-is in Git is impossible without making at least one commit which

       ?fixes up? the files to match the content of the tag. Use fast-import?s reset command to

       reset a dummy branch outside of your normal branch space to the base commit for the tag,

       then commit one or more file fixup commits, and finally tag the dummy branch.

       For example since all normal branches are stored under refs/heads/ name the tag fixup

       branch TAG_FIXUP. This way it is impossible for the fixup branch used by the importer to

       have namespace conflicts with real branches imported from the source (the name TAG_FIXUP

       is not refs/heads/TAG_FIXUP).

       When committing fixups, consider using merge to connect the commit(s) which are supplying

       file revisions to the fixup branch. Doing so will allow tools such as git blame to track

       through the real commit history and properly annotate the source files.

       After fast-import terminates the frontend will need to do rm .git/TAG_FIXUP to remove the

       dummy branch.

   Import Now, Repack Later

       As soon as fast-import completes the Git repository is completely valid and ready for use.

       Typically this takes only a very short time, even for considerably large projects

       (100,000+ commits).

       However repacking the repository is necessary to improve data locality and access

       performance. It can also take hours on extremely large projects (especially if -f and a

       large --window parameter is used). Since repacking is safe to run alongside readers and

       writers, run the repack in the background and let it finish when it finishes. There is no Page 26/30



       reason to wait to explore your new Git project!

       If you choose to wait for the repack, don?t try to run benchmarks or performance tests

       until repacking is completed. fast-import outputs suboptimal packfiles that are simply

       never seen in real use situations.

   Repacking Historical Data

       If you are repacking very old imported data (e.g. older than the last year), consider

       expending some extra CPU time and supplying --window=50 (or higher) when you run git

       repack. This will take longer, but will also produce a smaller packfile. You only need to

       expend the effort once, and everyone using your project will benefit from the smaller

       repository.

   Include Some Progress Messages

       Every once in a while have your frontend emit a progress message to fast-import. The

       contents of the messages are entirely free-form, so one suggestion would be to output the

       current month and year each time the current commit date moves into the next month. Your

       users will feel better knowing how much of the data stream has been processed.

PACKFILE OPTIMIZATION

       When packing a blob fast-import always attempts to deltify against the last blob written.

       Unless specifically arranged for by the frontend, this will probably not be a prior

       version of the same file, so the generated delta will not be the smallest possible. The

       resulting packfile will be compressed, but will not be optimal.

       Frontends which have efficient access to all revisions of a single file (for example

       reading an RCS/CVS ,v file) can choose to supply all revisions of that file as a sequence

       of consecutive blob commands. This allows fast-import to deltify the different file

       revisions against each other, saving space in the final packfile. Marks can be used to

       later identify individual file revisions during a sequence of commit commands.

       The packfile(s) created by fast-import do not encourage good disk access patterns. This is

       caused by fast-import writing the data in the order it is received on standard input,

       while Git typically organizes data within packfiles to make the most recent (current tip)

       data appear before historical data. Git also clusters commits together, speeding up

       revision traversal through better cache locality.

       For this reason it is strongly recommended that users repack the repository with git

       repack -a -d after fast-import completes, allowing Git to reorganize the packfiles for

       faster data access. If blob deltas are suboptimal (see above) then also adding the -f Page 27/30



       option to force recomputation of all deltas can significantly reduce the final packfile

       size (30-50% smaller can be quite typical).

       Instead of running git repack you can also run git gc --aggressive, which will also

       optimize other things after an import (e.g. pack loose refs). As noted in the "AGGRESSIVE"

       section in git-gc(1) the --aggressive option will find new deltas with the -f option to

       git-repack(1). For the reasons elaborated on above using --aggressive after a fast-import

       is one of the few cases where it?s known to be worthwhile.

MEMORY UTILIZATION

       There are a number of factors which affect how much memory fast-import requires to perform

       an import. Like critical sections of core Git, fast-import uses its own memory allocators

       to amortize any overheads associated with malloc. In practice fast-import tends to

       amortize any malloc overheads to 0, due to its use of large block allocations.

   per object

       fast-import maintains an in-memory structure for every object written in this execution.

       On a 32 bit system the structure is 32 bytes, on a 64 bit system the structure is 40 bytes

       (due to the larger pointer sizes). Objects in the table are not deallocated until

       fast-import terminates. Importing 2 million objects on a 32 bit system will require

       approximately 64 MiB of memory.

       The object table is actually a hashtable keyed on the object name (the unique SHA-1). This

       storage configuration allows fast-import to reuse an existing or already written object

       and avoid writing duplicates to the output packfile. Duplicate blobs are surprisingly

       common in an import, typically due to branch merges in the source.

   per mark

       Marks are stored in a sparse array, using 1 pointer (4 bytes or 8 bytes, depending on

       pointer size) per mark. Although the array is sparse, frontends are still strongly

       encouraged to use marks between 1 and n, where n is the total number of marks required for

       this import.

   per branch

       Branches are classified as active and inactive. The memory usage of the two classes is

       significantly different.

       Inactive branches are stored in a structure which uses 96 or 120 bytes (32 bit or 64 bit

       systems, respectively), plus the length of the branch name (typically under 200 bytes),

       per branch. fast-import will easily handle as many as 10,000 inactive branches in under 2 Page 28/30



       MiB of memory.

       Active branches have the same overhead as inactive branches, but also contain copies of

       every tree that has been recently modified on that branch. If subtree include has not been

       modified since the branch became active, its contents will not be loaded into memory, but

       if subtree src has been modified by a commit since the branch became active, then its

       contents will be loaded in memory.

       As active branches store metadata about the files contained on that branch, their

       in-memory storage size can grow to a considerable size (see below).

       fast-import automatically moves active branches to inactive status based on a simple

       least-recently-used algorithm. The LRU chain is updated on each commit command. The

       maximum number of active branches can be increased or decreased on the command line with

       --active-branches=.

   per active tree

       Trees (aka directories) use just 12 bytes of memory on top of the memory required for

       their entries (see ?per active file? below). The cost of a tree is virtually 0, as its

       overhead amortizes out over the individual file entries.

   per active file entry

       Files (and pointers to subtrees) within active trees require 52 or 64 bytes (32/64 bit

       platforms) per entry. To conserve space, file and tree names are pooled in a common string

       table, allowing the filename ?Makefile? to use just 16 bytes (after including the string

       header overhead) no matter how many times it occurs within the project.

       The active branch LRU, when coupled with the filename string pool and lazy loading of

       subtrees, allows fast-import to efficiently import projects with 2,000+ branches and

       45,114+ files in a very limited memory footprint (less than 2.7 MiB per active branch).

SIGNALS

       Sending SIGUSR1 to the git fast-import process ends the current packfile early, simulating

       a checkpoint command. The impatient operator can use this facility to peek at the objects

       and refs from an import in progress, at the cost of some added running time and worse

       compression.

SEE ALSO

       git-fast-export(1)

GIT

       Part of the git(1) suite Page 29/30



Git 2.34.1                                  07/07/2023                         GIT-FAST-IMPORT(1)

Page 30/30


