
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-fast-export.1'

$ man git-fast-export.1

GIT-FAST-EXPORT(1) Git Manual GIT-FAST-EXPORT(1)

NAME

 git-fast-export - Git data exporter

SYNOPSIS

 git fast-export [<options>] | git fast-import

DESCRIPTION

 This program dumps the given revisions in a form suitable to be piped into git

 fast-import.

 You can use it as a human-readable bundle replacement (see git-bundle(1)), or as a format

 that can be edited before being fed to git fast-import in order to do history rewrites (an

 ability relied on by tools like git filter-repo).

OPTIONS

 --progress=<n>

 Insert progress statements every <n> objects, to be shown by git fast-import during

 import.

 --signed-tags=(verbatim|warn|warn-strip|strip|abort)

 Specify how to handle signed tags. Since any transformation after the export can

 change the tag names (which can also happen when excluding revisions) the signatures

 will not match.

 When asking to abort (which is the default), this program will die when encountering a

 signed tag. With strip, the tags will silently be made unsigned, with warn-strip they

 will be made unsigned but a warning will be displayed, with verbatim, they will be

 silently exported and with warn, they will be exported, but you will see a warning. Page 1/6

 --tag-of-filtered-object=(abort|drop|rewrite)

 Specify how to handle tags whose tagged object is filtered out. Since revisions and

 files to export can be limited by path, tagged objects may be filtered completely.

 When asking to abort (which is the default), this program will die when encountering

 such a tag. With drop it will omit such tags from the output. With rewrite, if the

 tagged object is a commit, it will rewrite the tag to tag an ancestor commit (via

 parent rewriting; see git-rev-list(1))

 -M, -C

 Perform move and/or copy detection, as described in the git-diff(1) manual page, and

 use it to generate rename and copy commands in the output dump.

 Note that earlier versions of this command did not complain and produced incorrect

 results if you gave these options.

 --export-marks=<file>

 Dumps the internal marks table to <file> when complete. Marks are written one per line

 as :markid SHA-1. Only marks for revisions are dumped; marks for blobs are ignored.

 Backends can use this file to validate imports after they have been completed, or to

 save the marks table across incremental runs. As <file> is only opened and truncated

 at completion, the same path can also be safely given to --import-marks. The file will

 not be written if no new object has been marked/exported.

 --import-marks=<file>

 Before processing any input, load the marks specified in <file>. The input file must

 exist, must be readable, and must use the same format as produced by --export-marks.

 --mark-tags

 In addition to labelling blobs and commits with mark ids, also label tags. This is

 useful in conjunction with --export-marks and --import-marks, and is also useful (and

 necessary) for exporting of nested tags. It does not hurt other cases and would be the

 default, but many fast-import frontends are not prepared to accept tags with mark

 identifiers.

 Any commits (or tags) that have already been marked will not be exported again. If the

 backend uses a similar --import-marks file, this allows for incremental bidirectional

 exporting of the repository by keeping the marks the same across runs.

 --fake-missing-tagger

 Some old repositories have tags without a tagger. The fast-import protocol was pretty Page 2/6

 strict about that, and did not allow that. So fake a tagger to be able to fast-import

 the output.

 --use-done-feature

 Start the stream with a feature done stanza, and terminate it with a done command.

 --no-data

 Skip output of blob objects and instead refer to blobs via their original SHA-1 hash.

 This is useful when rewriting the directory structure or history of a repository

 without touching the contents of individual files. Note that the resulting stream can

 only be used by a repository which already contains the necessary objects.

 --full-tree

 This option will cause fast-export to issue a "deleteall" directive for each commit

 followed by a full list of all files in the commit (as opposed to just listing the

 files which are different from the commit?s first parent).

 --anonymize

 Anonymize the contents of the repository while still retaining the shape of the

 history and stored tree. See the section on ANONYMIZING below.

 --anonymize-map=<from>[:<to>]

 Convert token <from> to <to> in the anonymized output. If <to> is omitted, map <from>

 to itself (i.e., do not anonymize it). See the section on ANONYMIZING below.

 --reference-excluded-parents

 By default, running a command such as git fast-export master~5..master will not

 include the commit master~5 and will make master~4 no longer have master~5 as a parent

 (though both the old master~4 and new master~4 will have all the same files). Use

 --reference-excluded-parents to instead have the stream refer to commits in the

 excluded range of history by their sha1sum. Note that the resulting stream can only be

 used by a repository which already contains the necessary parent commits.

 --show-original-ids

 Add an extra directive to the output for commits and blobs, original-oid <SHA1SUM>.

 While such directives will likely be ignored by importers such as git-fast-import, it

 may be useful for intermediary filters (e.g. for rewriting commit messages which refer

 to older commits, or for stripping blobs by id).

 --reencode=(yes|no|abort)

 Specify how to handle encoding header in commit objects. When asking to abort (which Page 3/6

 is the default), this program will die when encountering such a commit object. With

 yes, the commit message will be re-encoded into UTF-8. With no, the original encoding

 will be preserved.

 --refspec

 Apply the specified refspec to each ref exported. Multiple of them can be specified.

 [<git-rev-list-args>...]

 A list of arguments, acceptable to git rev-parse and git rev-list, that specifies the

 specific objects and references to export. For example, master~10..master causes the

 current master reference to be exported along with all objects added since its 10th

 ancestor commit and (unless the --reference-excluded-parents option is specified) all

 files common to master~9 and master~10.

EXAMPLES

 $ git fast-export --all | (cd /empty/repository && git fast-import)

 This will export the whole repository and import it into the existing empty repository.

 Except for reencoding commits that are not in UTF-8, it would be a one-to-one mirror.

 $ git fast-export master~5..master |

 sed "s|refs/heads/master|refs/heads/other|" |

 git fast-import

 This makes a new branch called other from master~5..master (i.e. if master has linear

 history, it will take the last 5 commits).

 Note that this assumes that none of the blobs and commit messages referenced by that

 revision range contains the string refs/heads/master.

ANONYMIZING

 If the --anonymize option is given, git will attempt to remove all identifying information

 from the repository while still retaining enough of the original tree and history patterns

 to reproduce some bugs. The goal is that a git bug which is found on a private repository

 will persist in the anonymized repository, and the latter can be shared with git

 developers to help solve the bug.

 With this option, git will replace all refnames, paths, blob contents, commit and tag

 messages, names, and email addresses in the output with anonymized data. Two instances of

 the same string will be replaced equivalently (e.g., two commits with the same author will

 have the same anonymized author in the output, but bear no resemblance to the original

 author string). The relationship between commits, branches, and tags is retained, as well Page 4/6

 as the commit timestamps (but the commit messages and refnames bear no resemblance to the

 originals). The relative makeup of the tree is retained (e.g., if you have a root tree

 with 10 files and 3 trees, so will the output), but their names and the contents of the

 files will be replaced.

 If you think you have found a git bug, you can start by exporting an anonymized stream of

 the whole repository:

 $ git fast-export --anonymize --all >anon-stream

 Then confirm that the bug persists in a repository created from that stream (many bugs

 will not, as they really do depend on the exact repository contents):

 $ git init anon-repo

 $ cd anon-repo

 $ git fast-import <../anon-stream

 $... test your bug ...

 If the anonymized repository shows the bug, it may be worth sharing anon-stream along with

 a regular bug report. Note that the anonymized stream compresses very well, so gzipping it

 is encouraged. If you want to examine the stream to see that it does not contain any

 private data, you can peruse it directly before sending. You may also want to try:

 $ perl -pe 's/\d+/X/g' <anon-stream | sort -u | less

 which shows all of the unique lines (with numbers converted to "X", to collapse "User 0",

 "User 1", etc into "User X"). This produces a much smaller output, and it is usually easy

 to quickly confirm that there is no private data in the stream.

 Reproducing some bugs may require referencing particular commits or paths, which becomes

 challenging after refnames and paths have been anonymized. You can ask for a particular

 token to be left as-is or mapped to a new value. For example, if you have a bug which

 reproduces with git rev-list sensitive -- secret.c, you can run:

 $ git fast-export --anonymize --all \

 --anonymize-map=sensitive:foo \

 --anonymize-map=secret.c:bar.c \

 >stream

 After importing the stream, you can then run git rev-list foo -- bar.c in the anonymized

 repository.

 Note that paths and refnames are split into tokens at slash boundaries. The command above

 would anonymize subdir/secret.c as something like path123/bar.c; you could then search for Page 5/6

 bar.c in the anonymized repository to determine the final pathname.

 To make referencing the final pathname simpler, you can map each path component; so if you

 also anonymize subdir to publicdir, then the final pathname would be publicdir/bar.c.

LIMITATIONS

 Since git fast-import cannot tag trees, you will not be able to export the linux.git

 repository completely, as it contains a tag referencing a tree instead of a commit.

SEE ALSO

 git-fast-import(1)

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-FAST-EXPORT(1)

Page 6/6

