
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-describe.1'

$ man git-describe.1

GIT-DESCRIBE(1) Git Manual GIT-DESCRIBE(1)

NAME

 git-describe - Give an object a human readable name based on an available ref

SYNOPSIS

 git describe [--all] [--tags] [--contains] [--abbrev=<n>] [<commit-ish>...]

 git describe [--all] [--tags] [--contains] [--abbrev=<n>] --dirty[=<mark>]

 git describe <blob>

DESCRIPTION

 The command finds the most recent tag that is reachable from a commit. If the tag points

 to the commit, then only the tag is shown. Otherwise, it suffixes the tag name with the

 number of additional commits on top of the tagged object and the abbreviated object name

 of the most recent commit. The result is a "human-readable" object name which can also be

 used to identify the commit to other git commands.

 By default (without --all or --tags) git describe only shows annotated tags. For more

 information about creating annotated tags see the -a and -s options to git-tag(1).

 If the given object refers to a blob, it will be described as <commit-ish>:<path>, such

 that the blob can be found at <path> in the <commit-ish>, which itself describes the first

 commit in which this blob occurs in a reverse revision walk from HEAD.

OPTIONS

 <commit-ish>...

 Commit-ish object names to describe. Defaults to HEAD if omitted.

 --dirty[=<mark>], --broken[=<mark>]

 Describe the state of the working tree. When the working tree matches HEAD, the output Page 1/5

 is the same as "git describe HEAD". If the working tree has local modification

 "-dirty" is appended to it. If a repository is corrupt and Git cannot determine if

 there is local modification, Git will error out, unless ?--broken? is given, which

 appends the suffix "-broken" instead.

 --all

 Instead of using only the annotated tags, use any ref found in refs/ namespace. This

 option enables matching any known branch, remote-tracking branch, or lightweight tag.

 --tags

 Instead of using only the annotated tags, use any tag found in refs/tags namespace.

 This option enables matching a lightweight (non-annotated) tag.

 --contains

 Instead of finding the tag that predates the commit, find the tag that comes after the

 commit, and thus contains it. Automatically implies --tags.

 --abbrev=<n>

 Instead of using the default number of hexadecimal digits (which will vary according

 to the number of objects in the repository with a default of 7) of the abbreviated

 object name, use <n> digits, or as many digits as needed to form a unique object name.

 An <n> of 0 will suppress long format, only showing the closest tag.

 --candidates=<n>

 Instead of considering only the 10 most recent tags as candidates to describe the

 input commit-ish consider up to <n> candidates. Increasing <n> above 10 will take

 slightly longer but may produce a more accurate result. An <n> of 0 will cause only

 exact matches to be output.

 --exact-match

 Only output exact matches (a tag directly references the supplied commit). This is a

 synonym for --candidates=0.

 --debug

 Verbosely display information about the searching strategy being employed to standard

 error. The tag name will still be printed to standard out.

 --long

 Always output the long format (the tag, the number of commits and the abbreviated

 commit name) even when it matches a tag. This is useful when you want to see parts of

 the commit object name in "describe" output, even when the commit in question happens Page 2/5

 to be a tagged version. Instead of just emitting the tag name, it will describe such a

 commit as v1.2-0-gdeadbee (0th commit since tag v1.2 that points at object

 deadbee....).

 --match <pattern>

 Only consider tags matching the given glob(7) pattern, excluding the "refs/tags/"

 prefix. If used with --all, it also considers local branches and remote-tracking

 references matching the pattern, excluding respectively "refs/heads/" and

 "refs/remotes/" prefix; references of other types are never considered. If given

 multiple times, a list of patterns will be accumulated, and tags matching any of the

 patterns will be considered. Use --no-match to clear and reset the list of patterns.

 --exclude <pattern>

 Do not consider tags matching the given glob(7) pattern, excluding the "refs/tags/"

 prefix. If used with --all, it also does not consider local branches and

 remote-tracking references matching the pattern, excluding respectively "refs/heads/"

 and "refs/remotes/" prefix; references of other types are never considered. If given

 multiple times, a list of patterns will be accumulated and tags matching any of the

 patterns will be excluded. When combined with --match a tag will be considered when it

 matches at least one --match pattern and does not match any of the --exclude patterns.

 Use --no-exclude to clear and reset the list of patterns.

 --always

 Show uniquely abbreviated commit object as fallback.

 --first-parent

 Follow only the first parent commit upon seeing a merge commit. This is useful when

 you wish to not match tags on branches merged in the history of the target commit.

EXAMPLES

 With something like git.git current tree, I get:

 [torvalds@g5 git]$ git describe parent

 v1.0.4-14-g2414721

 i.e. the current head of my "parent" branch is based on v1.0.4, but since it has a few

 commits on top of that, describe has added the number of additional commits ("14") and an

 abbreviated object name for the commit itself ("2414721") at the end.

 The number of additional commits is the number of commits which would be displayed by "git

 log v1.0.4..parent". The hash suffix is "-g" + an unambigous abbreviation for the tip Page 3/5

 commit of parent (which was 2414721b194453f058079d897d13c4e377f92dc6). The length of the

 abbreviation scales as the repository grows, using the approximate number of objects in

 the repository and a bit of math around the birthday paradox, and defaults to a minimum of

 7. The "g" prefix stands for "git" and is used to allow describing the version of a

 software depending on the SCM the software is managed with. This is useful in an

 environment where people may use different SCMs.

 Doing a git describe on a tag-name will just show the tag name:

 [torvalds@g5 git]$ git describe v1.0.4

 v1.0.4

 With --all, the command can use branch heads as references, so the output shows the

 reference path as well:

 [torvalds@g5 git]$ git describe --all --abbrev=4 v1.0.5^2

 tags/v1.0.0-21-g975b

 [torvalds@g5 git]$ git describe --all --abbrev=4 HEAD^

 heads/lt/describe-7-g975b

 With --abbrev set to 0, the command can be used to find the closest tagname without any

 suffix:

 [torvalds@g5 git]$ git describe --abbrev=0 v1.0.5^2

 tags/v1.0.0

 Note that the suffix you get if you type these commands today may be longer than what

 Linus saw above when he ran these commands, as your Git repository may have new commits

 whose object names begin with 975b that did not exist back then, and "-g975b" suffix alone

 may not be sufficient to disambiguate these commits.

SEARCH STRATEGY

 For each commit-ish supplied, git describe will first look for a tag which tags exactly

 that commit. Annotated tags will always be preferred over lightweight tags, and tags with

 newer dates will always be preferred over tags with older dates. If an exact match is

 found, its name will be output and searching will stop.

 If an exact match was not found, git describe will walk back through the commit history to

 locate an ancestor commit which has been tagged. The ancestor?s tag will be output along

 with an abbreviation of the input commit-ish?s SHA-1. If --first-parent was specified then

 the walk will only consider the first parent of each commit.

 If multiple tags were found during the walk then the tag which has the fewest commits Page 4/5

 different from the input commit-ish will be selected and output. Here fewest commits

 different is defined as the number of commits which would be shown by git log tag..input

 will be the smallest number of commits possible.

BUGS

 Tree objects as well as tag objects not pointing at commits, cannot be described. When

 describing blobs, the lightweight tags pointing at blobs are ignored, but the blob is

 still described as <committ-ish>:<path> despite the lightweight tag being favorable.

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-DESCRIBE(1)

Page 5/5

