
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-credential.1'

$ man git-credential.1

GIT-CREDENTIAL(1) Git Manual GIT-CREDENTIAL(1)

NAME

 git-credential - Retrieve and store user credentials

SYNOPSIS

 git credential <fill|approve|reject>

DESCRIPTION

 Git has an internal interface for storing and retrieving credentials from system-specific

 helpers, as well as prompting the user for usernames and passwords. The git-credential

 command exposes this interface to scripts which may want to retrieve, store, or prompt for

 credentials in the same manner as Git. The design of this scriptable interface models the

 internal C API; see credential.h for more background on the concepts.

 git-credential takes an "action" option on the command-line (one of fill, approve, or

 reject) and reads a credential description on stdin (see INPUT/OUTPUT FORMAT).

 If the action is fill, git-credential will attempt to add "username" and "password"

 attributes to the description by reading config files, by contacting any configured

 credential helpers, or by prompting the user. The username and password attributes of the

 credential description are then printed to stdout together with the attributes already

 provided.

 If the action is approve, git-credential will send the description to any configured

 credential helpers, which may store the credential for later use.

 If the action is reject, git-credential will send the description to any configured

 credential helpers, which may erase any stored credential matching the description.

 If the action is approve or reject, no output should be emitted. Page 1/4

TYPICAL USE OF GIT CREDENTIAL

 An application using git-credential will typically use git credential following these

 steps:

 1. Generate a credential description based on the context.

 For example, if we want a password for https://example.com/foo.git, we might generate

 the following credential description (don?t forget the blank line at the end; it tells

 git credential that the application finished feeding all the information it has):

 protocol=https

 host=example.com

 path=foo.git

 2. Ask git-credential to give us a username and password for this description. This is

 done by running git credential fill, feeding the description from step (1) to its

 standard input. The complete credential description (including the credential per se,

 i.e. the login and password) will be produced on standard output, like:

 protocol=https

 host=example.com

 username=bob

 password=secr3t

 In most cases, this means the attributes given in the input will be repeated in the

 output, but Git may also modify the credential description, for example by removing

 the path attribute when the protocol is HTTP(s) and credential.useHttpPath is false.

 If the git credential knew about the password, this step may not have involved the

 user actually typing this password (the user may have typed a password to unlock the

 keychain instead, or no user interaction was done if the keychain was already

 unlocked) before it returned password=secr3t.

 3. Use the credential (e.g., access the URL with the username and password from step

 (2)), and see if it?s accepted.

 4. Report on the success or failure of the password. If the credential allowed the

 operation to complete successfully, then it can be marked with an "approve" action to

 tell git credential to reuse it in its next invocation. If the credential was rejected

 during the operation, use the "reject" action so that git credential will ask for a

 new password in its next invocation. In either case, git credential should be fed with

 the credential description obtained from step (2) (which also contain the ones Page 2/4

 provided in step (1)).

INPUT/OUTPUT FORMAT

 git credential reads and/or writes (depending on the action used) credential information

 in its standard input/output. This information can correspond either to keys for which git

 credential will obtain the login information (e.g. host, protocol, path), or to the actual

 credential data to be obtained (username/password).

 The credential is split into a set of named attributes, with one attribute per line. Each

 attribute is specified by a key-value pair, separated by an = (equals) sign, followed by a

 newline.

 The key may contain any bytes except =, newline, or NUL. The value may contain any bytes

 except newline or NUL.

 In both cases, all bytes are treated as-is (i.e., there is no quoting, and one cannot

 transmit a value with newline or NUL in it). The list of attributes is terminated by a

 blank line or end-of-file.

 Git understands the following attributes:

 protocol

 The protocol over which the credential will be used (e.g., https).

 host

 The remote hostname for a network credential. This includes the port number if one was

 specified (e.g., "example.com:8088").

 path

 The path with which the credential will be used. E.g., for accessing a remote https

 repository, this will be the repository?s path on the server.

 username

 The credential?s username, if we already have one (e.g., from a URL, the

 configuration, the user, or from a previously run helper).

 password

 The credential?s password, if we are asking it to be stored.

 url

 When this special attribute is read by git credential, the value is parsed as a URL

 and treated as if its constituent parts were read (e.g., url=https://example.com would

 behave as if protocol=https and host=example.com had been provided). This can help

 callers avoid parsing URLs themselves. Page 3/4

 Note that specifying a protocol is mandatory and if the URL doesn?t specify a hostname

 (e.g., "cert:///path/to/file") the credential will contain a hostname attribute whose

 value is an empty string.

 Components which are missing from the URL (e.g., there is no username in the example

 above) will be left unset.

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-CREDENTIAL(1)

Page 4/4

