
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-config.1'

$ man git-config.1

GIT-CONFIG(1)                               Git Manual                              GIT-CONFIG(1)

NAME

       git-config - Get and set repository or global options

SYNOPSIS

       git config [<file-option>] [--type=<type>] [--fixed-value] [--show-origin] [--show-scope] [-z|--null] name [value

[value-pattern]]

       git config [<file-option>] [--type=<type>] --add name value

       git config [<file-option>] [--type=<type>] [--fixed-value] --replace-all name value [value-pattern]

       git config [<file-option>] [--type=<type>] [--show-origin] [--show-scope] [-z|--null] [--fixed-value] --get name

[value-pattern]

       git config [<file-option>] [--type=<type>] [--show-origin] [--show-scope] [-z|--null] [--fixed-value] --get-all name

[value-pattern]

       git config [<file-option>] [--type=<type>] [--show-origin] [--show-scope] [-z|--null] [--fixed-value] [--name-only]

--get-regexp name_regex [value-pattern]

       git config [<file-option>] [--type=<type>] [-z|--null] --get-urlmatch name URL

       git config [<file-option>] [--fixed-value] --unset name [value-pattern]

       git config [<file-option>] [--fixed-value] --unset-all name [value-pattern]

       git config [<file-option>] --rename-section old_name new_name

       git config [<file-option>] --remove-section name

       git config [<file-option>] [--show-origin] [--show-scope] [-z|--null] [--name-only] -l | --list

       git config [<file-option>] --get-color name [default]

       git config [<file-option>] --get-colorbool name [stdout-is-tty]

       git config [<file-option>] -e | --edit Page 1/118



DESCRIPTION

       You can query/set/replace/unset options with this command. The name is actually the

       section and the key separated by a dot, and the value will be escaped.

       Multiple lines can be added to an option by using the --add option. If you want to update

       or unset an option which can occur on multiple lines, a value-pattern (which is an

       extended regular expression, unless the --fixed-value option is given) needs to be given.

       Only the existing values that match the pattern are updated or unset. If you want to

       handle the lines that do not match the pattern, just prepend a single exclamation mark in

       front (see also the section called ?EXAMPLES?), but note that this only works when the

       --fixed-value option is not in use.

       The --type=<type> option instructs git config to ensure that incoming and outgoing values

       are canonicalize-able under the given <type>. If no --type=<type> is given, no

       canonicalization will be performed. Callers may unset an existing --type specifier with

       --no-type.

       When reading, the values are read from the system, global and repository local

       configuration files by default, and options --system, --global, --local, --worktree and

       --file <filename> can be used to tell the command to read from only that location (see the

       section called ?FILES?).

       When writing, the new value is written to the repository local configuration file by

       default, and options --system, --global, --worktree, --file <filename> can be used to tell

       the command to write to that location (you can say --local but that is the default).

       This command will fail with non-zero status upon error. Some exit codes are:

       ?   The section or key is invalid (ret=1),

       ?   no section or name was provided (ret=2),

       ?   the config file is invalid (ret=3),

       ?   the config file cannot be written (ret=4),

       ?   you try to unset an option which does not exist (ret=5),

       ?   you try to unset/set an option for which multiple lines match (ret=5), or

       ?   you try to use an invalid regexp (ret=6).

       On success, the command returns the exit code 0.

       A list of all available configuration variables can be obtained using the git help

       --config command.

OPTIONS Page 2/118



       --replace-all

           Default behavior is to replace at most one line. This replaces all lines matching the

           key (and optionally the value-pattern).

       --add

           Adds a new line to the option without altering any existing values. This is the same

           as providing ^$ as the value-pattern in --replace-all.

       --get

           Get the value for a given key (optionally filtered by a regex matching the value).

           Returns error code 1 if the key was not found and the last value if multiple key

           values were found.

       --get-all

           Like get, but returns all values for a multi-valued key.

       --get-regexp

           Like --get-all, but interprets the name as a regular expression and writes out the key

           names. Regular expression matching is currently case-sensitive and done against a

           canonicalized version of the key in which section and variable names are lowercased,

           but subsection names are not.

       --get-urlmatch name URL

           When given a two-part name section.key, the value for section.<url>.key whose <url>

           part matches the best to the given URL is returned (if no such key exists, the value

           for section.key is used as a fallback). When given just the section as name, do so for

           all the keys in the section and list them. Returns error code 1 if no value is found.

       --global

           For writing options: write to global ~/.gitconfig file rather than the repository

           .git/config, write to $XDG_CONFIG_HOME/git/config file if this file exists and the

           ~/.gitconfig file doesn?t.

           For reading options: read only from global ~/.gitconfig and from

           $XDG_CONFIG_HOME/git/config rather than from all available files.

           See also the section called ?FILES?.

       --system

           For writing options: write to system-wide $(prefix)/etc/gitconfig rather than the

           repository .git/config.

           For reading options: read only from system-wide $(prefix)/etc/gitconfig rather than Page 3/118



           from all available files.

           See also the section called ?FILES?.

       --local

           For writing options: write to the repository .git/config file. This is the default

           behavior.

           For reading options: read only from the repository .git/config rather than from all

           available files.

           See also the section called ?FILES?.

       --worktree

           Similar to --local except that .git/config.worktree is read from or written to if

           extensions.worktreeConfig is present. If not it?s the same as --local.

       -f config-file, --file config-file

           For writing options: write to the specified file rather than the repository

           .git/config.

           For reading options: read only from the specified file rather than from all available

           files.

           See also the section called ?FILES?.

       --blob blob

           Similar to --file but use the given blob instead of a file. E.g. you can use

           master:.gitmodules to read values from the file .gitmodules in the master branch. See

           "SPECIFYING REVISIONS" section in gitrevisions(7) for a more complete list of ways to

           spell blob names.

       --remove-section

           Remove the given section from the configuration file.

       --rename-section

           Rename the given section to a new name.

       --unset

           Remove the line matching the key from config file.

       --unset-all

           Remove all lines matching the key from config file.

       -l, --list

           List all variables set in config file, along with their values.

       --fixed-value Page 4/118



           When used with the value-pattern argument, treat value-pattern as an exact string

           instead of a regular expression. This will restrict the name/value pairs that are

           matched to only those where the value is exactly equal to the value-pattern.

       --type <type>

           git config will ensure that any input or output is valid under the given type

           constraint(s), and will canonicalize outgoing values in <type>'s canonical form.

           Valid <type>'s include:

           ?   bool: canonicalize values as either "true" or "false".

           ?   int: canonicalize values as simple decimal numbers. An optional suffix of k, m, or

               g will cause the value to be multiplied by 1024, 1048576, or 1073741824 upon

               input.

           ?   bool-or-int: canonicalize according to either bool or int, as described above.

           ?   path: canonicalize by adding a leading ~ to the value of $HOME and ~user to the

               home directory for the specified user. This specifier has no effect when setting

               the value (but you can use git config section.variable ~/ from the command line to

               let your shell do the expansion.)

           ?   expiry-date: canonicalize by converting from a fixed or relative date-string to a

               timestamp. This specifier has no effect when setting the value.

           ?   color: When getting a value, canonicalize by converting to an ANSI color escape

               sequence. When setting a value, a sanity-check is performed to ensure that the

               given value is canonicalize-able as an ANSI color, but it is written as-is.

       --bool, --int, --bool-or-int, --path, --expiry-date

           Historical options for selecting a type specifier. Prefer instead --type (see above).

       --no-type

           Un-sets the previously set type specifier (if one was previously set). This option

           requests that git config not canonicalize the retrieved variable.  --no-type has no

           effect without --type=<type> or --<type>.

       -z, --null

           For all options that output values and/or keys, always end values with the null

           character (instead of a newline). Use newline instead as a delimiter between key and

           value. This allows for secure parsing of the output without getting confused e.g. by

           values that contain line breaks.

       --name-only Page 5/118



           Output only the names of config variables for --list or --get-regexp.

       --show-origin

           Augment the output of all queried config options with the origin type (file, standard

           input, blob, command line) and the actual origin (config file path, ref, or blob id if

           applicable).

       --show-scope

           Similar to --show-origin in that it augments the output of all queried config options

           with the scope of that value (local, global, system, command).

       --get-colorbool name [stdout-is-tty]

           Find the color setting for name (e.g.  color.diff) and output "true" or "false".

           stdout-is-tty should be either "true" or "false", and is taken into account when

           configuration says "auto". If stdout-is-tty is missing, then checks the standard

           output of the command itself, and exits with status 0 if color is to be used, or exits

           with status 1 otherwise. When the color setting for name is undefined, the command

           uses color.ui as fallback.

       --get-color name [default]

           Find the color configured for name (e.g.  color.diff.new) and output it as the ANSI

           color escape sequence to the standard output. The optional default parameter is used

           instead, if there is no color configured for name.

           --type=color [--default=<default>] is preferred over --get-color (but note that

           --get-color will omit the trailing newline printed by --type=color).

       -e, --edit

           Opens an editor to modify the specified config file; either --system, --global, or

           repository (default).

       --[no-]includes

           Respect include.*  directives in config files when looking up values. Defaults to off

           when a specific file is given (e.g., using --file, --global, etc) and on when

           searching all config files.

       --default <value>

           When using --get, and the requested variable is not found, behave as if <value> were

           the value assigned to the that variable.

CONFIGURATION

       pager.config is only respected when listing configuration, i.e., when using --list or any Page 6/118



       of the --get-* which may return multiple results. The default is to use a pager.

FILES

       If not set explicitly with --file, there are four files where git config will search for

       configuration options:

       $(prefix)/etc/gitconfig

           System-wide configuration file.

       $XDG_CONFIG_HOME/git/config

           Second user-specific configuration file. If $XDG_CONFIG_HOME is not set or empty,

           $HOME/.config/git/config will be used. Any single-valued variable set in this file

           will be overwritten by whatever is in ~/.gitconfig. It is a good idea not to create

           this file if you sometimes use older versions of Git, as support for this file was

           added fairly recently.

       ~/.gitconfig

           User-specific configuration file. Also called "global" configuration file.

       $GIT_DIR/config

           Repository specific configuration file.

       $GIT_DIR/config.worktree

           This is optional and is only searched when extensions.worktreeConfig is present in

           $GIT_DIR/config.

       If no further options are given, all reading options will read all of these files that are

       available. If the global or the system-wide configuration file are not available they will

       be ignored. If the repository configuration file is not available or readable, git config

       will exit with a non-zero error code. However, in neither case will an error message be

       issued.

       The files are read in the order given above, with last value found taking precedence over

       values read earlier. When multiple values are taken then all values of a key from all

       files will be used.

       You may override individual configuration parameters when running any git command by using

       the -c option. See git(1) for details.

       All writing options will per default write to the repository specific configuration file.

       Note that this also affects options like --replace-all and --unset. git config will only

       ever change one file at a time.

       You can override these rules using the --global, --system, --local, --worktree, and --file Page 7/118



       command-line options; see the section called ?OPTIONS? above.

ENVIRONMENT

       GIT_CONFIG_GLOBAL, GIT_CONFIG_SYSTEM

           Take the configuration from the given files instead from global or system-level

           configuration. See git(1) for details.

       GIT_CONFIG_NOSYSTEM

           Whether to skip reading settings from the system-wide $(prefix)/etc/gitconfig file.

           See git(1) for details.

       See also the section called ?FILES?.

       GIT_CONFIG_COUNT, GIT_CONFIG_KEY_<n>, GIT_CONFIG_VALUE_<n>

           If GIT_CONFIG_COUNT is set to a positive number, all environment pairs

           GIT_CONFIG_KEY_<n> and GIT_CONFIG_VALUE_<n> up to that number will be added to the

           process?s runtime configuration. The config pairs are zero-indexed. Any missing key or

           value is treated as an error. An empty GIT_CONFIG_COUNT is treated the same as

           GIT_CONFIG_COUNT=0, namely no pairs are processed. These environment variables will

           override values in configuration files, but will be overridden by any explicit options

           passed via git -c.

           This is useful for cases where you want to spawn multiple git commands with a common

           configuration but cannot depend on a configuration file, for example when writing

           scripts.

       GIT_CONFIG

           If no --file option is provided to git config, use the file given by GIT_CONFIG as if

           it were provided via --file. This variable has no effect on other Git commands, and is

           mostly for historical compatibility; there is generally no reason to use it instead of

           the --file option.

EXAMPLES

       Given a .git/config like this:

           #

           # This is the config file, and

           # a '#' or ';' character indicates

           # a comment

           #

           ; core variables Page 8/118



           [core]

                   ; Don't trust file modes

                   filemode = false

           ; Our diff algorithm

           [diff]

                   external = /usr/local/bin/diff-wrapper

                   renames = true

           ; Proxy settings

           [core]

                   gitproxy=proxy-command for kernel.org

                   gitproxy=default-proxy ; for all the rest

           ; HTTP

           [http]

                   sslVerify

           [http "https://weak.example.com"]

                   sslVerify = false

                   cookieFile = /tmp/cookie.txt

       you can set the filemode to true with

           % git config core.filemode true

       The hypothetical proxy command entries actually have a postfix to discern what URL they

       apply to. Here is how to change the entry for kernel.org to "ssh".

           % git config core.gitproxy '"ssh" for kernel.org' 'for kernel.org$'

       This makes sure that only the key/value pair for kernel.org is replaced.

       To delete the entry for renames, do

           % git config --unset diff.renames

       If you want to delete an entry for a multivar (like core.gitproxy above), you have to

       provide a regex matching the value of exactly one line.

       To query the value for a given key, do

           % git config --get core.filemode

       or

           % git config core.filemode

       or, to query a multivar:

           % git config --get core.gitproxy "for kernel.org$" Page 9/118



       If you want to know all the values for a multivar, do:

           % git config --get-all core.gitproxy

       If you like to live dangerously, you can replace all core.gitproxy by a new one with

           % git config --replace-all core.gitproxy ssh

       However, if you really only want to replace the line for the default proxy, i.e. the one

       without a "for ..." postfix, do something like this:

           % git config core.gitproxy ssh '! for '

       To actually match only values with an exclamation mark, you have to

           % git config section.key value '[!]'

       To add a new proxy, without altering any of the existing ones, use

           % git config --add core.gitproxy '"proxy-command" for example.com'

       An example to use customized color from the configuration in your script:

           #!/bin/sh

           WS=$(git config --get-color color.diff.whitespace "blue reverse")

           RESET=$(git config --get-color "" "reset")

           echo "${WS}your whitespace color or blue reverse${RESET}"

       For URLs in https://weak.example.com, http.sslVerify is set to false, while it is set to

       true for all others:

           % git config --type=bool --get-urlmatch http.sslverify https://good.example.com

           true

           % git config --type=bool --get-urlmatch http.sslverify https://weak.example.com

           false

           % git config --get-urlmatch http https://weak.example.com

           http.cookieFile /tmp/cookie.txt

           http.sslverify false

CONFIGURATION FILE

       The Git configuration file contains a number of variables that affect the Git commands'

       behavior. The files .git/config and optionally config.worktree (see the "CONFIGURATION

       FILE" section of git-worktree(1)) in each repository are used to store the configuration

       for that repository, and $HOME/.gitconfig is used to store a per-user configuration as

       fallback values for the .git/config file. The file /etc/gitconfig can be used to store a

       system-wide default configuration.

       The configuration variables are used by both the Git plumbing and the porcelains. The Page 10/118



       variables are divided into sections, wherein the fully qualified variable name of the

       variable itself is the last dot-separated segment and the section name is everything

       before the last dot. The variable names are case-insensitive, allow only alphanumeric

       characters and -, and must start with an alphabetic character. Some variables may appear

       multiple times; we say then that the variable is multivalued.

   Syntax

       The syntax is fairly flexible and permissive; whitespaces are mostly ignored. The # and ;

       characters begin comments to the end of line, blank lines are ignored.

       The file consists of sections and variables. A section begins with the name of the section

       in square brackets and continues until the next section begins. Section names are

       case-insensitive. Only alphanumeric characters, - and . are allowed in section names. Each

       variable must belong to some section, which means that there must be a section header

       before the first setting of a variable.

       Sections can be further divided into subsections. To begin a subsection put its name in

       double quotes, separated by space from the section name, in the section header, like in

       the example below:

                   [section "subsection"]

       Subsection names are case sensitive and can contain any characters except newline and the

       null byte. Doublequote " and backslash can be included by escaping them as \" and \\,

       respectively. Backslashes preceding other characters are dropped when reading; for

       example, \t is read as t and \0 is read as 0. Section headers cannot span multiple lines.

       Variables may belong directly to a section or to a given subsection. You can have

       [section] if you have [section "subsection"], but you don?t need to.

       There is also a deprecated [section.subsection] syntax. With this syntax, the subsection

       name is converted to lower-case and is also compared case sensitively. These subsection

       names follow the same restrictions as section names.

       All the other lines (and the remainder of the line after the section header) are

       recognized as setting variables, in the form name = value (or just name, which is a

       short-hand to say that the variable is the boolean "true"). The variable names are

       case-insensitive, allow only alphanumeric characters and -, and must start with an

       alphabetic character.

       A line that defines a value can be continued to the next line by ending it with a \; the

       backslash and the end-of-line are stripped. Leading whitespaces after name =, the Page 11/118



       remainder of the line after the first comment character # or ;, and trailing whitespaces

       of the line are discarded unless they are enclosed in double quotes. Internal whitespaces

       within the value are retained verbatim.

       Inside double quotes, double quote " and backslash \ characters must be escaped: use \"

       for " and \\ for \.

       The following escape sequences (beside \" and \\) are recognized: \n for newline character

       (NL), \t for horizontal tabulation (HT, TAB) and \b for backspace (BS). Other char escape

       sequences (including octal escape sequences) are invalid.

   Includes

       The include and includeIf sections allow you to include config directives from another

       source. These sections behave identically to each other with the exception that includeIf

       sections may be ignored if their condition does not evaluate to true; see "Conditional

       includes" below.

       You can include a config file from another by setting the special include.path (or

       includeIf.*.path) variable to the name of the file to be included. The variable takes a

       pathname as its value, and is subject to tilde expansion. These variables can be given

       multiple times.

       The contents of the included file are inserted immediately, as if they had been found at

       the location of the include directive. If the value of the variable is a relative path,

       the path is considered to be relative to the configuration file in which the include

       directive was found. See below for examples.

   Conditional includes

       You can include a config file from another conditionally by setting a

       includeIf.<condition>.path variable to the name of the file to be included.

       The condition starts with a keyword followed by a colon and some data whose format and

       meaning depends on the keyword. Supported keywords are:

       gitdir

           The data that follows the keyword gitdir: is used as a glob pattern. If the location

           of the .git directory matches the pattern, the include condition is met.

           The .git location may be auto-discovered, or come from $GIT_DIR environment variable.

           If the repository is auto discovered via a .git file (e.g. from submodules, or a

           linked worktree), the .git location would be the final location where the .git

           directory is, not where the .git file is. Page 12/118



           The pattern can contain standard globbing wildcards and two additional ones, **/ and

           /**, that can match multiple path components. Please refer to gitignore(5) for

           details. For convenience:

           ?   If the pattern starts with ~/, ~ will be substituted with the content of the

               environment variable HOME.

           ?   If the pattern starts with ./, it is replaced with the directory containing the

               current config file.

           ?   If the pattern does not start with either ~/, ./ or /, **/ will be automatically

               prepended. For example, the pattern foo/bar becomes **/foo/bar and would match

               /any/path/to/foo/bar.

           ?   If the pattern ends with /, ** will be automatically added. For example, the

               pattern foo/ becomes foo/**. In other words, it matches "foo" and everything

               inside, recursively.

       gitdir/i

           This is the same as gitdir except that matching is done case-insensitively (e.g. on

           case-insensitive file systems)

       onbranch

           The data that follows the keyword onbranch: is taken to be a pattern with standard

           globbing wildcards and two additional ones, **/ and /**, that can match multiple path

           components. If we are in a worktree where the name of the branch that is currently

           checked out matches the pattern, the include condition is met.

           If the pattern ends with /, ** will be automatically added. For example, the pattern

           foo/ becomes foo/**. In other words, it matches all branches that begin with foo/.

           This is useful if your branches are organized hierarchically and you would like to

           apply a configuration to all the branches in that hierarchy.

       A few more notes on matching via gitdir and gitdir/i:

       ?   Symlinks in $GIT_DIR are not resolved before matching.

       ?   Both the symlink & realpath versions of paths will be matched outside of $GIT_DIR.

           E.g. if ~/git is a symlink to /mnt/storage/git, both gitdir:~/git and

           gitdir:/mnt/storage/git will match.

           This was not the case in the initial release of this feature in v2.13.0, which only

           matched the realpath version. Configuration that wants to be compatible with the

           initial release of this feature needs to either specify only the realpath version, or Page 13/118



           both versions.

       ?   Note that "../" is not special and will match literally, which is unlikely what you

           want.

   Example

           # Core variables

           [core]

                   ; Don't trust file modes

                   filemode = false

           # Our diff algorithm

           [diff]

                   external = /usr/local/bin/diff-wrapper

                   renames = true

           [branch "devel"]

                   remote = origin

                   merge = refs/heads/devel

           # Proxy settings

           [core]

                   gitProxy="ssh" for "kernel.org"

                   gitProxy=default-proxy ; for the rest

           [include]

                   path = /path/to/foo.inc ; include by absolute path

                   path = foo.inc ; find "foo.inc" relative to the current file

                   path = ~/foo.inc ; find "foo.inc" in your `$HOME` directory

           ; include if $GIT_DIR is /path/to/foo/.git

           [includeIf "gitdir:/path/to/foo/.git"]

                   path = /path/to/foo.inc

           ; include for all repositories inside /path/to/group

           [includeIf "gitdir:/path/to/group/"]

                   path = /path/to/foo.inc

           ; include for all repositories inside $HOME/to/group

           [includeIf "gitdir:~/to/group/"]

                   path = /path/to/foo.inc

           ; relative paths are always relative to the including Page 14/118



           ; file (if the condition is true); their location is not

           ; affected by the condition

           [includeIf "gitdir:/path/to/group/"]

                   path = foo.inc

           ; include only if we are in a worktree where foo-branch is

           ; currently checked out

           [includeIf "onbranch:foo-branch"]

                   path = foo.inc

   Values

       Values of many variables are treated as a simple string, but there are variables that take

       values of specific types and there are rules as to how to spell them.

       boolean

           When a variable is said to take a boolean value, many synonyms are accepted for true

           and false; these are all case-insensitive.

           true

               Boolean true literals are yes, on, true, and 1. Also, a variable defined without =

               <value> is taken as true.

           false

               Boolean false literals are no, off, false, 0 and the empty string.

               When converting a value to its canonical form using the --type=bool type

               specifier, git config will ensure that the output is "true" or "false" (spelled in

               lowercase).

       integer

           The value for many variables that specify various sizes can be suffixed with k, M,...

           to mean "scale the number by 1024", "by 1024x1024", etc.

       color

           The value for a variable that takes a color is a list of colors (at most two, one for

           foreground and one for background) and attributes (as many as you want), separated by

           spaces.

           The basic colors accepted are normal, black, red, green, yellow, blue, magenta, cyan

           and white. The first color given is the foreground; the second is the background. All

           the basic colors except normal have a bright variant that can be specified by

           prefixing the color with bright, like brightred. Page 15/118



           Colors may also be given as numbers between 0 and 255; these use ANSI 256-color mode

           (but note that not all terminals may support this). If your terminal supports it, you

           may also specify 24-bit RGB values as hex, like #ff0ab3.

           The accepted attributes are bold, dim, ul, blink, reverse, italic, and strike (for

           crossed-out or "strikethrough" letters). The position of any attributes with respect

           to the colors (before, after, or in between), doesn?t matter. Specific attributes may

           be turned off by prefixing them with no or no- (e.g., noreverse, no-ul, etc).

           An empty color string produces no color effect at all. This can be used to avoid

           coloring specific elements without disabling color entirely.

           For git?s pre-defined color slots, the attributes are meant to be reset at the

           beginning of each item in the colored output. So setting color.decorate.branch to

           black will paint that branch name in a plain black, even if the previous thing on the

           same output line (e.g. opening parenthesis before the list of branch names in log

           --decorate output) is set to be painted with bold or some other attribute. However,

           custom log formats may do more complicated and layered coloring, and the negated forms

           may be useful there.

       pathname

           A variable that takes a pathname value can be given a string that begins with "~/" or

           "~user/", and the usual tilde expansion happens to such a string: ~/ is expanded to

           the value of $HOME, and ~user/ to the specified user?s home directory.

           If a path starts with %(prefix)/, the remainder is interpreted as a path relative to

           Git?s "runtime prefix", i.e. relative to the location where Git itself was installed.

           For example, %(prefix)/bin/ refers to the directory in which the Git executable itself

           lives. If Git was compiled without runtime prefix support, the compiled-in prefix will

           be substituted instead. In the unlikely event that a literal path needs to be

           specified that should not be expanded, it needs to be prefixed by ./, like so:

           ./%(prefix)/bin.

   Variables

       Note that this list is non-comprehensive and not necessarily complete. For

       command-specific variables, you will find a more detailed description in the appropriate

       manual page.

       Other git-related tools may and do use their own variables. When inventing new variables

       for use in your own tool, make sure their names do not conflict with those that are used Page 16/118



       by Git itself and other popular tools, and describe them in your documentation.

       advice.*

           These variables control various optional help messages designed to aid new users. All

           advice.*  variables default to true, and you can tell Git that you do not need help by

           setting these to false:

           fetchShowForcedUpdates

               Advice shown when git-fetch(1) takes a long time to calculate forced updates after

               ref updates, or to warn that the check is disabled.

           pushUpdateRejected

               Set this variable to false if you want to disable pushNonFFCurrent,

               pushNonFFMatching, pushAlreadyExists, pushFetchFirst, pushNeedsForce, and

               pushRefNeedsUpdate simultaneously.

           pushNonFFCurrent

               Advice shown when git-push(1) fails due to a non-fast-forward update to the

               current branch.

           pushNonFFMatching

               Advice shown when you ran git-push(1) and pushed matching refs explicitly (i.e.

               you used :, or specified a refspec that isn?t your current branch) and it resulted

               in a non-fast-forward error.

           pushAlreadyExists

               Shown when git-push(1) rejects an update that does not qualify for fast-forwarding

               (e.g., a tag.)

           pushFetchFirst

               Shown when git-push(1) rejects an update that tries to overwrite a remote ref that

               points at an object we do not have.

           pushNeedsForce

               Shown when git-push(1) rejects an update that tries to overwrite a remote ref that

               points at an object that is not a commit-ish, or make the remote ref point at an

               object that is not a commit-ish.

           pushUnqualifiedRefname

               Shown when git-push(1) gives up trying to guess based on the source and

               destination refs what remote ref namespace the source belongs in, but where we can

               still suggest that the user push to either refs/heads/* or refs/tags/* based on Page 17/118



               the type of the source object.

           pushRefNeedsUpdate

               Shown when git-push(1) rejects a forced update of a branch when its

               remote-tracking ref has updates that we do not have locally.

           skippedCherryPicks

               Shown when git-rebase(1) skips a commit that has already been cherry-picked onto

               the upstream branch.

           statusAheadBehind

               Shown when git-status(1) computes the ahead/behind counts for a local ref compared

               to its remote tracking ref, and that calculation takes longer than expected. Will

               not appear if status.aheadBehind is false or the option --no-ahead-behind is

               given.

           statusHints

               Show directions on how to proceed from the current state in the output of git-

               status(1), in the template shown when writing commit messages in git-commit(1),

               and in the help message shown by git-switch(1) or git-checkout(1) when switching

               branch.

           statusUoption

               Advise to consider using the -u option to git-status(1) when the command takes

               more than 2 seconds to enumerate untracked files.

           commitBeforeMerge

               Advice shown when git-merge(1) refuses to merge to avoid overwriting local

               changes.

           resetQuiet

               Advice to consider using the --quiet option to git-reset(1) when the command takes

               more than 2 seconds to enumerate unstaged changes after reset.

           resolveConflict

               Advice shown by various commands when conflicts prevent the operation from being

               performed.

           sequencerInUse

               Advice shown when a sequencer command is already in progress.

           implicitIdentity

               Advice on how to set your identity configuration when your information is guessed Page 18/118



               from the system username and domain name.

           detachedHead

               Advice shown when you used git-switch(1) or git-checkout(1) to move to the detach

               HEAD state, to instruct how to create a local branch after the fact.

           checkoutAmbiguousRemoteBranchName

               Advice shown when the argument to git-checkout(1) and git-switch(1) ambiguously

               resolves to a remote tracking branch on more than one remote in situations where

               an unambiguous argument would have otherwise caused a remote-tracking branch to be

               checked out. See the checkout.defaultRemote configuration variable for how to set

               a given remote to used by default in some situations where this advice would be

               printed.

           amWorkDir

               Advice that shows the location of the patch file when git-am(1) fails to apply it.

           rmHints

               In case of failure in the output of git-rm(1), show directions on how to proceed

               from the current state.

           addEmbeddedRepo

               Advice on what to do when you?ve accidentally added one git repo inside of

               another.

           ignoredHook

               Advice shown if a hook is ignored because the hook is not set as executable.

           waitingForEditor

               Print a message to the terminal whenever Git is waiting for editor input from the

               user.

           nestedTag

               Advice shown if a user attempts to recursively tag a tag object.

           submoduleAlternateErrorStrategyDie

               Advice shown when a submodule.alternateErrorStrategy option configured to "die"

               causes a fatal error.

           addIgnoredFile

               Advice shown if a user attempts to add an ignored file to the index.

           addEmptyPathspec

               Advice shown if a user runs the add command without providing the pathspec Page 19/118



               parameter.

           updateSparsePath

               Advice shown when either git-add(1) or git-rm(1) is asked to update index entries

               outside the current sparse checkout.

       core.fileMode

           Tells Git if the executable bit of files in the working tree is to be honored.

           Some filesystems lose the executable bit when a file that is marked as executable is

           checked out, or checks out a non-executable file with executable bit on.  git-clone(1)

           or git-init(1) probe the filesystem to see if it handles the executable bit correctly

           and this variable is automatically set as necessary.

           A repository, however, may be on a filesystem that handles the filemode correctly, and

           this variable is set to true when created, but later may be made accessible from

           another environment that loses the filemode (e.g. exporting ext4 via CIFS mount,

           visiting a Cygwin created repository with Git for Windows or Eclipse). In such a case

           it may be necessary to set this variable to false. See git-update-index(1).

           The default is true (when core.filemode is not specified in the config file).

       core.hideDotFiles

           (Windows-only) If true, mark newly-created directories and files whose name starts

           with a dot as hidden. If dotGitOnly, only the .git/ directory is hidden, but no other

           files starting with a dot. The default mode is dotGitOnly.

       core.ignoreCase

           Internal variable which enables various workarounds to enable Git to work better on

           filesystems that are not case sensitive, like APFS, HFS+, FAT, NTFS, etc. For example,

           if a directory listing finds "makefile" when Git expects "Makefile", Git will assume

           it is really the same file, and continue to remember it as "Makefile".

           The default is false, except git-clone(1) or git-init(1) will probe and set

           core.ignoreCase true if appropriate when the repository is created.

           Git relies on the proper configuration of this variable for your operating and file

           system. Modifying this value may result in unexpected behavior.

       core.precomposeUnicode

           This option is only used by Mac OS implementation of Git. When

           core.precomposeUnicode=true, Git reverts the unicode decomposition of filenames done

           by Mac OS. This is useful when sharing a repository between Mac OS and Linux or Page 20/118



           Windows. (Git for Windows 1.7.10 or higher is needed, or Git under cygwin 1.7). When

           false, file names are handled fully transparent by Git, which is backward compatible

           with older versions of Git.

       core.protectHFS

           If set to true, do not allow checkout of paths that would be considered equivalent to

           .git on an HFS+ filesystem. Defaults to true on Mac OS, and false elsewhere.

       core.protectNTFS

           If set to true, do not allow checkout of paths that would cause problems with the NTFS

           filesystem, e.g. conflict with 8.3 "short" names. Defaults to true on Windows, and

           false elsewhere.

       core.fsmonitor

           If set, the value of this variable is used as a command which will identify all files

           that may have changed since the requested date/time. This information is used to speed

           up git by avoiding unnecessary processing of files that have not changed. See the

           "fsmonitor-watchman" section of githooks(5).

       core.fsmonitorHookVersion

           Sets the version of hook that is to be used when calling fsmonitor. There are

           currently versions 1 and 2. When this is not set, version 2 will be tried first and if

           it fails then version 1 will be tried. Version 1 uses a timestamp as input to

           determine which files have changes since that time but some monitors like watchman

           have race conditions when used with a timestamp. Version 2 uses an opaque string so

           that the monitor can return something that can be used to determine what files have

           changed without race conditions.

       core.trustctime

           If false, the ctime differences between the index and the working tree are ignored;

           useful when the inode change time is regularly modified by something outside Git (file

           system crawlers and some backup systems). See git-update-index(1). True by default.

       core.splitIndex

           If true, the split-index feature of the index will be used. See git-update-index(1).

           False by default.

       core.untrackedCache

           Determines what to do about the untracked cache feature of the index. It will be kept,

           if this variable is unset or set to keep. It will automatically be added if set to Page 21/118



           true. And it will automatically be removed, if set to false. Before setting it to

           true, you should check that mtime is working properly on your system. See git-update-

           index(1).  keep by default, unless feature.manyFiles is enabled which sets this

           setting to true by default.

       core.checkStat

           When missing or is set to default, many fields in the stat structure are checked to

           detect if a file has been modified since Git looked at it. When this configuration

           variable is set to minimal, sub-second part of mtime and ctime, the uid and gid of the

           owner of the file, the inode number (and the device number, if Git was compiled to use

           it), are excluded from the check among these fields, leaving only the whole-second

           part of mtime (and ctime, if core.trustCtime is set) and the filesize to be checked.

           There are implementations of Git that do not leave usable values in some fields (e.g.

           JGit); by excluding these fields from the comparison, the minimal mode may help

           interoperability when the same repository is used by these other systems at the same

           time.

       core.quotePath

           Commands that output paths (e.g.  ls-files, diff), will quote "unusual" characters in

           the pathname by enclosing the pathname in double-quotes and escaping those characters

           with backslashes in the same way C escapes control characters (e.g.  \t for TAB, \n

           for LF, \\ for backslash) or bytes with values larger than 0x80 (e.g. octal \302\265

           for "micro" in UTF-8). If this variable is set to false, bytes higher than 0x80 are

           not considered "unusual" any more. Double-quotes, backslash and control characters are

           always escaped regardless of the setting of this variable. A simple space character is

           not considered "unusual". Many commands can output pathnames completely verbatim using

           the -z option. The default value is true.

       core.eol

           Sets the line ending type to use in the working directory for files that are marked as

           text (either by having the text attribute set, or by having text=auto and Git

           auto-detecting the contents as text). Alternatives are lf, crlf and native, which uses

           the platform?s native line ending. The default value is native. See gitattributes(5)

           for more information on end-of-line conversion. Note that this value is ignored if

           core.autocrlf is set to true or input.

       core.safecrlf Page 22/118



           If true, makes Git check if converting CRLF is reversible when end-of-line conversion

           is active. Git will verify if a command modifies a file in the work tree either

           directly or indirectly. For example, committing a file followed by checking out the

           same file should yield the original file in the work tree. If this is not the case for

           the current setting of core.autocrlf, Git will reject the file. The variable can be

           set to "warn", in which case Git will only warn about an irreversible conversion but

           continue the operation.

           CRLF conversion bears a slight chance of corrupting data. When it is enabled, Git will

           convert CRLF to LF during commit and LF to CRLF during checkout. A file that contains

           a mixture of LF and CRLF before the commit cannot be recreated by Git. For text files

           this is the right thing to do: it corrects line endings such that we have only LF line

           endings in the repository. But for binary files that are accidentally classified as

           text the conversion can corrupt data.

           If you recognize such corruption early you can easily fix it by setting the conversion

           type explicitly in .gitattributes. Right after committing you still have the original

           file in your work tree and this file is not yet corrupted. You can explicitly tell Git

           that this file is binary and Git will handle the file appropriately.

           Unfortunately, the desired effect of cleaning up text files with mixed line endings

           and the undesired effect of corrupting binary files cannot be distinguished. In both

           cases CRLFs are removed in an irreversible way. For text files this is the right thing

           to do because CRLFs are line endings, while for binary files converting CRLFs corrupts

           data.

           Note, this safety check does not mean that a checkout will generate a file identical

           to the original file for a different setting of core.eol and core.autocrlf, but only

           for the current one. For example, a text file with LF would be accepted with

           core.eol=lf and could later be checked out with core.eol=crlf, in which case the

           resulting file would contain CRLF, although the original file contained LF. However,

           in both work trees the line endings would be consistent, that is either all LF or all

           CRLF, but never mixed. A file with mixed line endings would be reported by the

           core.safecrlf mechanism.

       core.autocrlf

           Setting this variable to "true" is the same as setting the text attribute to "auto" on

           all files and core.eol to "crlf". Set to true if you want to have CRLF line endings in Page 23/118



           your working directory and the repository has LF line endings. This variable can be

           set to input, in which case no output conversion is performed.

       core.checkRoundtripEncoding

           A comma and/or whitespace separated list of encodings that Git performs UTF-8 round

           trip checks on if they are used in an working-tree-encoding attribute (see

           gitattributes(5)). The default value is SHIFT-JIS.

       core.symlinks

           If false, symbolic links are checked out as small plain files that contain the link

           text.  git-update-index(1) and git-add(1) will not change the recorded type to regular

           file. Useful on filesystems like FAT that do not support symbolic links.

           The default is true, except git-clone(1) or git-init(1) will probe and set

           core.symlinks false if appropriate when the repository is created.

       core.gitProxy

           A "proxy command" to execute (as command host port) instead of establishing direct

           connection to the remote server when using the Git protocol for fetching. If the

           variable value is in the "COMMAND for DOMAIN" format, the command is applied only on

           hostnames ending with the specified domain string. This variable may be set multiple

           times and is matched in the given order; the first match wins.

           Can be overridden by the GIT_PROXY_COMMAND environment variable (which always applies

           universally, without the special "for" handling).

           The special string none can be used as the proxy command to specify that no proxy be

           used for a given domain pattern. This is useful for excluding servers inside a

           firewall from proxy use, while defaulting to a common proxy for external domains.

       core.sshCommand

           If this variable is set, git fetch and git push will use the specified command instead

           of ssh when they need to connect to a remote system. The command is in the same form

           as the GIT_SSH_COMMAND environment variable and is overridden when the environment

           variable is set.

       core.ignoreStat

           If true, Git will avoid using lstat() calls to detect if files have changed by setting

           the "assume-unchanged" bit for those tracked files which it has updated identically in

           both the index and working tree.

           When files are modified outside of Git, the user will need to stage the modified files Page 24/118



           explicitly (e.g. see Examples section in git-update-index(1)). Git will not normally

           detect changes to those files.

           This is useful on systems where lstat() calls are very slow, such as CIFS/Microsoft

           Windows.

           False by default.

       core.preferSymlinkRefs

           Instead of the default "symref" format for HEAD and other symbolic reference files,

           use symbolic links. This is sometimes needed to work with old scripts that expect HEAD

           to be a symbolic link.

       core.alternateRefsCommand

           When advertising tips of available history from an alternate, use the shell to execute

           the specified command instead of git-for-each-ref(1). The first argument is the

           absolute path of the alternate. Output must contain one hex object id per line (i.e.,

           the same as produced by git for-each-ref --format='%(objectname)').

           Note that you cannot generally put git for-each-ref directly into the config value, as

           it does not take a repository path as an argument (but you can wrap the command above

           in a shell script).

       core.alternateRefsPrefixes

           When listing references from an alternate, list only references that begin with the

           given prefix. Prefixes match as if they were given as arguments to git-for-each-

           ref(1). To list multiple prefixes, separate them with whitespace. If

           core.alternateRefsCommand is set, setting core.alternateRefsPrefixes has no effect.

       core.bare

           If true this repository is assumed to be bare and has no working directory associated

           with it. If this is the case a number of commands that require a working directory

           will be disabled, such as git-add(1) or git-merge(1).

           This setting is automatically guessed by git-clone(1) or git-init(1) when the

           repository was created. By default a repository that ends in "/.git" is assumed to be

           not bare (bare = false), while all other repositories are assumed to be bare (bare =

           true).

       core.worktree

           Set the path to the root of the working tree. If GIT_COMMON_DIR environment variable

           is set, core.worktree is ignored and not used for determining the root of working Page 25/118



           tree. This can be overridden by the GIT_WORK_TREE environment variable and the

           --work-tree command-line option. The value can be an absolute path or relative to the

           path to the .git directory, which is either specified by --git-dir or GIT_DIR, or

           automatically discovered. If --git-dir or GIT_DIR is specified but none of

           --work-tree, GIT_WORK_TREE and core.worktree is specified, the current working

           directory is regarded as the top level of your working tree.

           Note that this variable is honored even when set in a configuration file in a ".git"

           subdirectory of a directory and its value differs from the latter directory (e.g.

           "/path/to/.git/config" has core.worktree set to "/different/path"), which is most

           likely a misconfiguration. Running Git commands in the "/path/to" directory will still

           use "/different/path" as the root of the work tree and can cause confusion unless you

           know what you are doing (e.g. you are creating a read-only snapshot of the same index

           to a location different from the repository?s usual working tree).

       core.logAllRefUpdates

           Enable the reflog. Updates to a ref <ref> is logged to the file "$GIT_DIR/logs/<ref>",

           by appending the new and old SHA-1, the date/time and the reason of the update, but

           only when the file exists. If this configuration variable is set to true, missing

           "$GIT_DIR/logs/<ref>" file is automatically created for branch heads (i.e. under

           refs/heads/), remote refs (i.e. under refs/remotes/), note refs (i.e. under

           refs/notes/), and the symbolic ref HEAD. If it is set to always, then a missing reflog

           is automatically created for any ref under refs/.

           This information can be used to determine what commit was the tip of a branch "2 days

           ago".

           This value is true by default in a repository that has a working directory associated

           with it, and false by default in a bare repository.

       core.repositoryFormatVersion

           Internal variable identifying the repository format and layout version.

       core.sharedRepository

           When group (or true), the repository is made shareable between several users in a

           group (making sure all the files and objects are group-writable). When all (or world

           or everybody), the repository will be readable by all users, additionally to being

           group-shareable. When umask (or false), Git will use permissions reported by umask(2).

           When 0xxx, where 0xxx is an octal number, files in the repository will have this mode Page 26/118



           value.  0xxx will override user?s umask value (whereas the other options will only

           override requested parts of the user?s umask value). Examples: 0660 will make the repo

           read/write-able for the owner and group, but inaccessible to others (equivalent to

           group unless umask is e.g.  0022).  0640 is a repository that is group-readable but

           not group-writable. See git-init(1). False by default.

       core.warnAmbiguousRefs

           If true, Git will warn you if the ref name you passed it is ambiguous and might match

           multiple refs in the repository. True by default.

       core.compression

           An integer -1..9, indicating a default compression level. -1 is the zlib default. 0

           means no compression, and 1..9 are various speed/size tradeoffs, 9 being slowest. If

           set, this provides a default to other compression variables, such as

           core.looseCompression and pack.compression.

       core.looseCompression

           An integer -1..9, indicating the compression level for objects that are not in a pack

           file. -1 is the zlib default. 0 means no compression, and 1..9 are various speed/size

           tradeoffs, 9 being slowest. If not set, defaults to core.compression. If that is not

           set, defaults to 1 (best speed).

       core.packedGitWindowSize

           Number of bytes of a pack file to map into memory in a single mapping operation.

           Larger window sizes may allow your system to process a smaller number of large pack

           files more quickly. Smaller window sizes will negatively affect performance due to

           increased calls to the operating system?s memory manager, but may improve performance

           when accessing a large number of large pack files.

           Default is 1 MiB if NO_MMAP was set at compile time, otherwise 32 MiB on 32 bit

           platforms and 1 GiB on 64 bit platforms. This should be reasonable for all

           users/operating systems. You probably do not need to adjust this value.

           Common unit suffixes of k, m, or g are supported.

       core.packedGitLimit

           Maximum number of bytes to map simultaneously into memory from pack files. If Git

           needs to access more than this many bytes at once to complete an operation it will

           unmap existing regions to reclaim virtual address space within the process.

           Default is 256 MiB on 32 bit platforms and 32 TiB (effectively unlimited) on 64 bit Page 27/118



           platforms. This should be reasonable for all users/operating systems, except on the

           largest projects. You probably do not need to adjust this value.

           Common unit suffixes of k, m, or g are supported.

       core.deltaBaseCacheLimit

           Maximum number of bytes per thread to reserve for caching base objects that may be

           referenced by multiple deltified objects. By storing the entire decompressed base

           objects in a cache Git is able to avoid unpacking and decompressing frequently used

           base objects multiple times.

           Default is 96 MiB on all platforms. This should be reasonable for all users/operating

           systems, except on the largest projects. You probably do not need to adjust this

           value.

           Common unit suffixes of k, m, or g are supported.

       core.bigFileThreshold

           Files larger than this size are stored deflated, without attempting delta compression.

           Storing large files without delta compression avoids excessive memory usage, at the

           slight expense of increased disk usage. Additionally files larger than this size are

           always treated as binary.

           Default is 512 MiB on all platforms. This should be reasonable for most projects as

           source code and other text files can still be delta compressed, but larger binary

           media files won?t be.

           Common unit suffixes of k, m, or g are supported.

       core.excludesFile

           Specifies the pathname to the file that contains patterns to describe paths that are

           not meant to be tracked, in addition to .gitignore (per-directory) and

           .git/info/exclude. Defaults to $XDG_CONFIG_HOME/git/ignore. If $XDG_CONFIG_HOME is

           either not set or empty, $HOME/.config/git/ignore is used instead. See gitignore(5).

       core.askPass

           Some commands (e.g. svn and http interfaces) that interactively ask for a password can

           be told to use an external program given via the value of this variable. Can be

           overridden by the GIT_ASKPASS environment variable. If not set, fall back to the value

           of the SSH_ASKPASS environment variable or, failing that, a simple password prompt.

           The external program shall be given a suitable prompt as command-line argument and

           write the password on its STDOUT. Page 28/118



       core.attributesFile

           In addition to .gitattributes (per-directory) and .git/info/attributes, Git looks into

           this file for attributes (see gitattributes(5)). Path expansions are made the same way

           as for core.excludesFile. Its default value is $XDG_CONFIG_HOME/git/attributes. If

           $XDG_CONFIG_HOME is either not set or empty, $HOME/.config/git/attributes is used

           instead.

       core.hooksPath

           By default Git will look for your hooks in the $GIT_DIR/hooks directory. Set this to

           different path, e.g.  /etc/git/hooks, and Git will try to find your hooks in that

           directory, e.g.  /etc/git/hooks/pre-receive instead of in $GIT_DIR/hooks/pre-receive.

           The path can be either absolute or relative. A relative path is taken as relative to

           the directory where the hooks are run (see the "DESCRIPTION" section of githooks(5)).

           This configuration variable is useful in cases where you?d like to centrally configure

           your Git hooks instead of configuring them on a per-repository basis, or as a more

           flexible and centralized alternative to having an init.templateDir where you?ve

           changed default hooks.

       core.editor

           Commands such as commit and tag that let you edit messages by launching an editor use

           the value of this variable when it is set, and the environment variable GIT_EDITOR is

           not set. See git-var(1).

       core.commentChar

           Commands such as commit and tag that let you edit messages consider a line that begins

           with this character commented, and removes them after the editor returns (default #).

           If set to "auto", git-commit would select a character that is not the beginning

           character of any line in existing commit messages.

       core.filesRefLockTimeout

           The length of time, in milliseconds, to retry when trying to lock an individual

           reference. Value 0 means not to retry at all; -1 means to try indefinitely. Default is

           100 (i.e., retry for 100ms).

       core.packedRefsTimeout

           The length of time, in milliseconds, to retry when trying to lock the packed-refs

           file. Value 0 means not to retry at all; -1 means to try indefinitely. Default is 1000

           (i.e., retry for 1 second). Page 29/118



       core.pager

           Text viewer for use by Git commands (e.g., less). The value is meant to be interpreted

           by the shell. The order of preference is the $GIT_PAGER environment variable, then

           core.pager configuration, then $PAGER, and then the default chosen at compile time

           (usually less).

           When the LESS environment variable is unset, Git sets it to FRX (if LESS environment

           variable is set, Git does not change it at all). If you want to selectively override

           Git?s default setting for LESS, you can set core.pager to e.g.  less -S. This will be

           passed to the shell by Git, which will translate the final command to LESS=FRX less

           -S. The environment does not set the S option but the command line does, instructing

           less to truncate long lines. Similarly, setting core.pager to less -+F will deactivate

           the F option specified by the environment from the command-line, deactivating the

           "quit if one screen" behavior of less. One can specifically activate some flags for

           particular commands: for example, setting pager.blame to less -S enables line

           truncation only for git blame.

           Likewise, when the LV environment variable is unset, Git sets it to -c. You can

           override this setting by exporting LV with another value or setting core.pager to lv

           +c.

       core.whitespace

           A comma separated list of common whitespace problems to notice.  git diff will use

           color.diff.whitespace to highlight them, and git apply --whitespace=error will

           consider them as errors. You can prefix - to disable any of them (e.g.

           -trailing-space):

           ?   blank-at-eol treats trailing whitespaces at the end of the line as an error

               (enabled by default).

           ?   space-before-tab treats a space character that appears immediately before a tab

               character in the initial indent part of the line as an error (enabled by default).

           ?   indent-with-non-tab treats a line that is indented with space characters instead

               of the equivalent tabs as an error (not enabled by default).

           ?   tab-in-indent treats a tab character in the initial indent part of the line as an

               error (not enabled by default).

           ?   blank-at-eof treats blank lines added at the end of file as an error (enabled by

               default). Page 30/118



           ?   trailing-space is a short-hand to cover both blank-at-eol and blank-at-eof.

           ?   cr-at-eol treats a carriage-return at the end of line as part of the line

               terminator, i.e. with it, trailing-space does not trigger if the character before

               such a carriage-return is not a whitespace (not enabled by default).

           ?   tabwidth=<n> tells how many character positions a tab occupies; this is relevant

               for indent-with-non-tab and when Git fixes tab-in-indent errors. The default tab

               width is 8. Allowed values are 1 to 63.

       core.fsyncObjectFiles

           This boolean will enable fsync() when writing object files.

           This is a total waste of time and effort on a filesystem that orders data writes

           properly, but can be useful for filesystems that do not use journalling (traditional

           UNIX filesystems) or that only journal metadata and not file contents (OS X?s HFS+, or

           Linux ext3 with "data=writeback").

       core.preloadIndex

           Enable parallel index preload for operations like git diff

           This can speed up operations like git diff and git status especially on filesystems

           like NFS that have weak caching semantics and thus relatively high IO latencies. When

           enabled, Git will do the index comparison to the filesystem data in parallel, allowing

           overlapping IO?s. Defaults to true.

       core.unsetenvvars

           Windows-only: comma-separated list of environment variables' names that need to be

           unset before spawning any other process. Defaults to PERL5LIB to account for the fact

           that Git for Windows insists on using its own Perl interpreter.

       core.restrictinheritedhandles

           Windows-only: override whether spawned processes inherit only standard file handles

           (stdin, stdout and stderr) or all handles. Can be auto, true or false. Defaults to

           auto, which means true on Windows 7 and later, and false on older Windows versions.

       core.createObject

           You can set this to link, in which case a hardlink followed by a delete of the source

           are used to make sure that object creation will not overwrite existing objects.

           On some file system/operating system combinations, this is unreliable. Set this config

           setting to rename there; However, This will remove the check that makes sure that

           existing object files will not get overwritten. Page 31/118



       core.notesRef

           When showing commit messages, also show notes which are stored in the given ref. The

           ref must be fully qualified. If the given ref does not exist, it is not an error but

           means that no notes should be printed.

           This setting defaults to "refs/notes/commits", and it can be overridden by the

           GIT_NOTES_REF environment variable. See git-notes(1).

       core.commitGraph

           If true, then git will read the commit-graph file (if it exists) to parse the graph

           structure of commits. Defaults to true. See git-commit-graph(1) for more information.

       core.useReplaceRefs

           If set to false, behave as if the --no-replace-objects option was given on the command

           line. See git(1) and git-replace(1) for more information.

       core.multiPackIndex

           Use the multi-pack-index file to track multiple packfiles using a single index. See

           git-multi-pack-index(1) for more information. Defaults to true.

       core.sparseCheckout

           Enable "sparse checkout" feature. See git-sparse-checkout(1) for more information.

       core.sparseCheckoutCone

           Enables the "cone mode" of the sparse checkout feature. When the sparse-checkout file

           contains a limited set of patterns, then this mode provides significant performance

           advantages. See git-sparse-checkout(1) for more information.

       core.abbrev

           Set the length object names are abbreviated to. If unspecified or set to "auto", an

           appropriate value is computed based on the approximate number of packed objects in

           your repository, which hopefully is enough for abbreviated object names to stay unique

           for some time. If set to "no", no abbreviation is made and the object names are shown

           in their full length. The minimum length is 4.

       add.ignoreErrors, add.ignore-errors (deprecated)

           Tells git add to continue adding files when some files cannot be added due to indexing

           errors. Equivalent to the --ignore-errors option of git-add(1).  add.ignore-errors is

           deprecated, as it does not follow the usual naming convention for configuration

           variables.

       add.interactive.useBuiltin Page 32/118



           [EXPERIMENTAL] Set to true to use the experimental built-in implementation of the

           interactive version of git-add(1) instead of the Perl script version. Is false by

           default.

       alias.*

           Command aliases for the git(1) command wrapper - e.g. after defining alias.last =

           cat-file commit HEAD, the invocation git last is equivalent to git cat-file commit

           HEAD. To avoid confusion and troubles with script usage, aliases that hide existing

           Git commands are ignored. Arguments are split by spaces, the usual shell quoting and

           escaping is supported. A quote pair or a backslash can be used to quote them.

           Note that the first word of an alias does not necessarily have to be a command. It can

           be a command-line option that will be passed into the invocation of git. In

           particular, this is useful when used with -c to pass in one-time configurations or -p

           to force pagination. For example, loud-rebase = -c commit.verbose=true rebase can be

           defined such that running git loud-rebase would be equivalent to git -c

           commit.verbose=true rebase. Also, ps = -p status would be a helpful alias since git ps

           would paginate the output of git status where the original command does not.

           If the alias expansion is prefixed with an exclamation point, it will be treated as a

           shell command. For example, defining alias.new = !gitk --all --not ORIG_HEAD, the

           invocation git new is equivalent to running the shell command gitk --all --not

           ORIG_HEAD. Note that shell commands will be executed from the top-level directory of a

           repository, which may not necessarily be the current directory.  GIT_PREFIX is set as

           returned by running git rev-parse --show-prefix from the original current directory.

           See git-rev-parse(1).

       am.keepcr

           If true, git-am will call git-mailsplit for patches in mbox format with parameter

           --keep-cr. In this case git-mailsplit will not remove \r from lines ending with \r\n.

           Can be overridden by giving --no-keep-cr from the command line. See git-am(1), git-

           mailsplit(1).

       am.threeWay

           By default, git am will fail if the patch does not apply cleanly. When set to true,

           this setting tells git am to fall back on 3-way merge if the patch records the

           identity of blobs it is supposed to apply to and we have those blobs available locally

           (equivalent to giving the --3way option from the command line). Defaults to false. See Page 33/118



           git-am(1).

       apply.ignoreWhitespace

           When set to change, tells git apply to ignore changes in whitespace, in the same way

           as the --ignore-space-change option. When set to one of: no, none, never, false tells

           git apply to respect all whitespace differences. See git-apply(1).

       apply.whitespace

           Tells git apply how to handle whitespaces, in the same way as the --whitespace option.

           See git-apply(1).

       blame.blankBoundary

           Show blank commit object name for boundary commits in git-blame(1). This option

           defaults to false.

       blame.coloring

           This determines the coloring scheme to be applied to blame output. It can be

           repeatedLines, highlightRecent, or none which is the default.

       blame.date

           Specifies the format used to output dates in git-blame(1). If unset the iso format is

           used. For supported values, see the discussion of the --date option at git-log(1).

       blame.showEmail

           Show the author email instead of author name in git-blame(1). This option defaults to

           false.

       blame.showRoot

           Do not treat root commits as boundaries in git-blame(1). This option defaults to

           false.

       blame.ignoreRevsFile

           Ignore revisions listed in the file, one unabbreviated object name per line, in git-

           blame(1). Whitespace and comments beginning with # are ignored. This option may be

           repeated multiple times. Empty file names will reset the list of ignored revisions.

           This option will be handled before the command line option --ignore-revs-file.

       blame.markUnblamableLines

           Mark lines that were changed by an ignored revision that we could not attribute to

           another commit with a * in the output of git-blame(1).

       blame.markIgnoredLines

           Mark lines that were changed by an ignored revision that we attributed to another Page 34/118



           commit with a ?  in the output of git-blame(1).

       branch.autoSetupMerge

           Tells git branch, git switch and git checkout to set up new branches so that git-

           pull(1) will appropriately merge from the starting point branch. Note that even if

           this option is not set, this behavior can be chosen per-branch using the --track and

           --no-track options. The valid settings are: false ? no automatic setup is done; true ?

           automatic setup is done when the starting point is a remote-tracking branch; always ?

           automatic setup is done when the starting point is either a local branch or

           remote-tracking branch. This option defaults to true.

       branch.autoSetupRebase

           When a new branch is created with git branch, git switch or git checkout that tracks

           another branch, this variable tells Git to set up pull to rebase instead of merge (see

           "branch.<name>.rebase"). When never, rebase is never automatically set to true. When

           local, rebase is set to true for tracked branches of other local branches. When

           remote, rebase is set to true for tracked branches of remote-tracking branches. When

           always, rebase will be set to true for all tracking branches. See

           "branch.autoSetupMerge" for details on how to set up a branch to track another branch.

           This option defaults to never.

       branch.sort

           This variable controls the sort ordering of branches when displayed by git-branch(1).

           Without the "--sort=<value>" option provided, the value of this variable will be used

           as the default. See git-for-each-ref(1) field names for valid values.

       branch.<name>.remote

           When on branch <name>, it tells git fetch and git push which remote to fetch from/push

           to. The remote to push to may be overridden with remote.pushDefault (for all

           branches). The remote to push to, for the current branch, may be further overridden by

           branch.<name>.pushRemote. If no remote is configured, or if you are not on any branch,

           it defaults to origin for fetching and remote.pushDefault for pushing. Additionally, .

           (a period) is the current local repository (a dot-repository), see

           branch.<name>.merge's final note below.

       branch.<name>.pushRemote

           When on branch <name>, it overrides branch.<name>.remote for pushing. It also

           overrides remote.pushDefault for pushing from branch <name>. When you pull from one Page 35/118



           place (e.g. your upstream) and push to another place (e.g. your own publishing

           repository), you would want to set remote.pushDefault to specify the remote to push to

           for all branches, and use this option to override it for a specific branch.

       branch.<name>.merge

           Defines, together with branch.<name>.remote, the upstream branch for the given branch.

           It tells git fetch/git pull/git rebase which branch to merge and can also affect git

           push (see push.default). When in branch <name>, it tells git fetch the default refspec

           to be marked for merging in FETCH_HEAD. The value is handled like the remote part of a

           refspec, and must match a ref which is fetched from the remote given by

           "branch.<name>.remote". The merge information is used by git pull (which at first

           calls git fetch) to lookup the default branch for merging. Without this option, git

           pull defaults to merge the first refspec fetched. Specify multiple values to get an

           octopus merge. If you wish to setup git pull so that it merges into <name> from

           another branch in the local repository, you can point branch.<name>.merge to the

           desired branch, and use the relative path setting .  (a period) for

           branch.<name>.remote.

       branch.<name>.mergeOptions

           Sets default options for merging into branch <name>. The syntax and supported options

           are the same as those of git-merge(1), but option values containing whitespace

           characters are currently not supported.

       branch.<name>.rebase

           When true, rebase the branch <name> on top of the fetched branch, instead of merging

           the default branch from the default remote when "git pull" is run. See "pull.rebase"

           for doing this in a non branch-specific manner.

           When merges (or just m), pass the --rebase-merges option to git rebase so that the

           local merge commits are included in the rebase (see git-rebase(1) for details).

           When the value is interactive (or just i), the rebase is run in interactive mode.

           NOTE: this is a possibly dangerous operation; do not use it unless you understand the

           implications (see git-rebase(1) for details).

       branch.<name>.description

           Branch description, can be edited with git branch --edit-description. Branch

           description is automatically added in the format-patch cover letter or request-pull

           summary. Page 36/118



       browser.<tool>.cmd

           Specify the command to invoke the specified browser. The specified command is

           evaluated in shell with the URLs passed as arguments. (See git-web--browse(1).)

       browser.<tool>.path

           Override the path for the given tool that may be used to browse HTML help (see -w

           option in git-help(1)) or a working repository in gitweb (see git-instaweb(1)).

       checkout.defaultRemote

           When you run git checkout <something> or git switch <something> and only have one

           remote, it may implicitly fall back on checking out and tracking e.g.

           origin/<something>. This stops working as soon as you have more than one remote with a

           <something> reference. This setting allows for setting the name of a preferred remote

           that should always win when it comes to disambiguation. The typical use-case is to set

           this to origin.

           Currently this is used by git-switch(1) and git-checkout(1) when git checkout

           <something> or git switch <something> will checkout the <something> branch on another

           remote, and by git-worktree(1) when git worktree add refers to a remote branch. This

           setting might be used for other checkout-like commands or functionality in the future.

       checkout.guess

           Provides the default value for the --guess or --no-guess option in git checkout and

           git switch. See git-switch(1) and git-checkout(1).

       checkout.workers

           The number of parallel workers to use when updating the working tree. The default is

           one, i.e. sequential execution. If set to a value less than one, Git will use as many

           workers as the number of logical cores available. This setting and

           checkout.thresholdForParallelism affect all commands that perform checkout. E.g.

           checkout, clone, reset, sparse-checkout, etc.

           Note: parallel checkout usually delivers better performance for repositories located

           on SSDs or over NFS. For repositories on spinning disks and/or machines with a small

           number of cores, the default sequential checkout often performs better. The size and

           compression level of a repository might also influence how well the parallel version

           performs.

       checkout.thresholdForParallelism

           When running parallel checkout with a small number of files, the cost of subprocess Page 37/118



           spawning and inter-process communication might outweigh the parallelization gains.

           This setting allows to define the minimum number of files for which parallel checkout

           should be attempted. The default is 100.

       clean.requireForce

           A boolean to make git-clean do nothing unless given -f, -i or -n. Defaults to true.

       clone.defaultRemoteName

           The name of the remote to create when cloning a repository. Defaults to origin, and

           can be overridden by passing the --origin command-line option to git-clone(1).

       clone.rejectShallow

           Reject to clone a repository if it is a shallow one, can be overridden by passing

           option --reject-shallow in command line. See git-clone(1)

       color.advice

           A boolean to enable/disable color in hints (e.g. when a push failed, see advice.*  for

           a list). May be set to always, false (or never) or auto (or true), in which case

           colors are used only when the error output goes to a terminal. If unset, then the

           value of color.ui is used (auto by default).

       color.advice.hint

           Use customized color for hints.

       color.blame.highlightRecent

           Specify the line annotation color for git blame --color-by-age depending upon the age

           of the line.

           This setting should be set to a comma-separated list of color and date settings,

           starting and ending with a color, the dates should be set from oldest to newest. The

           metadata will be colored with the specified colors if the line was introduced before

           the given timestamp, overwriting older timestamped colors.

           Instead of an absolute timestamp relative timestamps work as well, e.g.  2.weeks.ago

           is valid to address anything older than 2 weeks.

           It defaults to blue,12 month ago,white,1 month ago,red, which colors everything older

           than one year blue, recent changes between one month and one year old are kept white,

           and lines introduced within the last month are colored red.

       color.blame.repeatedLines

           Use the specified color to colorize line annotations for git blame --color-lines, if

           they come from the same commit as the preceding line. Defaults to cyan. Page 38/118



       color.branch

           A boolean to enable/disable color in the output of git-branch(1). May be set to

           always, false (or never) or auto (or true), in which case colors are used only when

           the output is to a terminal. If unset, then the value of color.ui is used (auto by

           default).

       color.branch.<slot>

           Use customized color for branch coloration.  <slot> is one of current (the current

           branch), local (a local branch), remote (a remote-tracking branch in refs/remotes/),

           upstream (upstream tracking branch), plain (other refs).

       color.diff

           Whether to use ANSI escape sequences to add color to patches. If this is set to

           always, git-diff(1), git-log(1), and git-show(1) will use color for all patches. If it

           is set to true or auto, those commands will only use color when output is to the

           terminal. If unset, then the value of color.ui is used (auto by default).

           This does not affect git-format-patch(1) or the git-diff-* plumbing commands. Can be

           overridden on the command line with the --color[=<when>] option.

       color.diff.<slot>

           Use customized color for diff colorization.  <slot> specifies which part of the patch

           to use the specified color, and is one of context (context text - plain is a

           historical synonym), meta (metainformation), frag (hunk header), func (function in

           hunk header), old (removed lines), new (added lines), commit (commit headers),

           whitespace (highlighting whitespace errors), oldMoved (deleted lines), newMoved (added

           lines), oldMovedDimmed, oldMovedAlternative, oldMovedAlternativeDimmed,

           newMovedDimmed, newMovedAlternative newMovedAlternativeDimmed (See the <mode> setting

           of --color-moved in git-diff(1) for details), contextDimmed, oldDimmed, newDimmed,

           contextBold, oldBold, and newBold (see git-range-diff(1) for details).

       color.decorate.<slot>

           Use customized color for git log --decorate output.  <slot> is one of branch,

           remoteBranch, tag, stash or HEAD for local branches, remote-tracking branches, tags,

           stash and HEAD, respectively and grafted for grafted commits.

       color.grep

           When set to always, always highlight matches. When false (or never), never. When set

           to true or auto, use color only when the output is written to the terminal. If unset, Page 39/118



           then the value of color.ui is used (auto by default).

       color.grep.<slot>

           Use customized color for grep colorization.  <slot> specifies which part of the line

           to use the specified color, and is one of

           context

               non-matching text in context lines (when using -A, -B, or -C)

           filename

               filename prefix (when not using -h)

           function

               function name lines (when using -p)

           lineNumber

               line number prefix (when using -n)

           column

               column number prefix (when using --column)

           match

               matching text (same as setting matchContext and matchSelected)

           matchContext

               matching text in context lines

           matchSelected

               matching text in selected lines. Also, used to customize the following git-log(1)

               subcommands: --grep, --author and --committer.

           selected

               non-matching text in selected lines. Also, used to customize the following git-

               log(1) subcommands: --grep, --author and --committer.

           separator

               separators between fields on a line (:, -, and =) and between hunks (--)

       color.interactive

           When set to always, always use colors for interactive prompts and displays (such as

           those used by "git-add --interactive" and "git-clean --interactive"). When false (or

           never), never. When set to true or auto, use colors only when the output is to the

           terminal. If unset, then the value of color.ui is used (auto by default).

       color.interactive.<slot>

           Use customized color for git add --interactive and git clean --interactive output. Page 40/118



           <slot> may be prompt, header, help or error, for four distinct types of normal output

           from interactive commands.

       color.pager

           A boolean to specify whether auto color modes should colorize output going to the

           pager. Defaults to true; set this to false if your pager does not understand ANSI

           color codes.

       color.push

           A boolean to enable/disable color in push errors. May be set to always, false (or

           never) or auto (or true), in which case colors are used only when the error output

           goes to a terminal. If unset, then the value of color.ui is used (auto by default).

       color.push.error

           Use customized color for push errors.

       color.remote

           If set, keywords at the start of the line are highlighted. The keywords are "error",

           "warning", "hint" and "success", and are matched case-insensitively. May be set to

           always, false (or never) or auto (or true). If unset, then the value of color.ui is

           used (auto by default).

       color.remote.<slot>

           Use customized color for each remote keyword.  <slot> may be hint, warning, success or

           error which match the corresponding keyword.

       color.showBranch

           A boolean to enable/disable color in the output of git-show-branch(1). May be set to

           always, false (or never) or auto (or true), in which case colors are used only when

           the output is to a terminal. If unset, then the value of color.ui is used (auto by

           default).

       color.status

           A boolean to enable/disable color in the output of git-status(1). May be set to

           always, false (or never) or auto (or true), in which case colors are used only when

           the output is to a terminal. If unset, then the value of color.ui is used (auto by

           default).

       color.status.<slot>

           Use customized color for status colorization.  <slot> is one of header (the header

           text of the status message), added or updated (files which are added but not Page 41/118



           committed), changed (files which are changed but not added in the index), untracked

           (files which are not tracked by Git), branch (the current branch), nobranch (the color

           the no branch warning is shown in, defaulting to red), localBranch or remoteBranch

           (the local and remote branch names, respectively, when branch and tracking information

           is displayed in the status short-format), or unmerged (files which have unmerged

           changes).

       color.transport

           A boolean to enable/disable color when pushes are rejected. May be set to always,

           false (or never) or auto (or true), in which case colors are used only when the error

           output goes to a terminal. If unset, then the value of color.ui is used (auto by

           default).

       color.transport.rejected

           Use customized color when a push was rejected.

       color.ui

           This variable determines the default value for variables such as color.diff and

           color.grep that control the use of color per command family. Its scope will expand as

           more commands learn configuration to set a default for the --color option. Set it to

           false or never if you prefer Git commands not to use color unless enabled explicitly

           with some other configuration or the --color option. Set it to always if you want all

           output not intended for machine consumption to use color, to true or auto (this is the

           default since Git 1.8.4) if you want such output to use color when written to the

           terminal.

       column.ui

           Specify whether supported commands should output in columns. This variable consists of

           a list of tokens separated by spaces or commas:

           These options control when the feature should be enabled (defaults to never):

           always

               always show in columns

           never

               never show in columns

           auto

               show in columns if the output is to the terminal

           These options control layout (defaults to column). Setting any of these implies always Page 42/118



           if none of always, never, or auto are specified.

           column

               fill columns before rows

           row

               fill rows before columns

           plain

               show in one column

           Finally, these options can be combined with a layout option (defaults to nodense):

           dense

               make unequal size columns to utilize more space

           nodense

               make equal size columns

       column.branch

           Specify whether to output branch listing in git branch in columns. See column.ui for

           details.

       column.clean

           Specify the layout when list items in git clean -i, which always shows files and

           directories in columns. See column.ui for details.

       column.status

           Specify whether to output untracked files in git status in columns. See column.ui for

           details.

       column.tag

           Specify whether to output tag listing in git tag in columns. See column.ui for

           details.

       commit.cleanup

           This setting overrides the default of the --cleanup option in git commit. See git-

           commit(1) for details. Changing the default can be useful when you always want to keep

           lines that begin with comment character # in your log message, in which case you would

           do git config commit.cleanup whitespace (note that you will have to remove the help

           lines that begin with # in the commit log template yourself, if you do this).

       commit.gpgSign

           A boolean to specify whether all commits should be GPG signed. Use of this option when

           doing operations such as rebase can result in a large number of commits being signed. Page 43/118



           It may be convenient to use an agent to avoid typing your GPG passphrase several

           times.

       commit.status

           A boolean to enable/disable inclusion of status information in the commit message

           template when using an editor to prepare the commit message. Defaults to true.

       commit.template

           Specify the pathname of a file to use as the template for new commit messages.

       commit.verbose

           A boolean or int to specify the level of verbose with git commit. See git-commit(1).

       commitGraph.generationVersion

           Specifies the type of generation number version to use when writing or reading the

           commit-graph file. If version 1 is specified, then the corrected commit dates will not

           be written or read. Defaults to 2.

       commitGraph.maxNewFilters

           Specifies the default value for the --max-new-filters option of git commit-graph write

           (c.f., git-commit-graph(1)).

       commitGraph.readChangedPaths

           If true, then git will use the changed-path Bloom filters in the commit-graph file (if

           it exists, and they are present). Defaults to true. See git-commit-graph(1) for more

           information.

       credential.helper

           Specify an external helper to be called when a username or password credential is

           needed; the helper may consult external storage to avoid prompting the user for the

           credentials. This is normally the name of a credential helper with possible arguments,

           but may also be an absolute path with arguments or, if preceded by !, shell commands.

           Note that multiple helpers may be defined. See gitcredentials(7) for details and

           examples.

       credential.useHttpPath

           When acquiring credentials, consider the "path" component of an http or https URL to

           be important. Defaults to false. See gitcredentials(7) for more information.

       credential.username

           If no username is set for a network authentication, use this username by default. See

           credential.<context>.* below, and gitcredentials(7). Page 44/118



       credential.<url>.*

           Any of the credential.* options above can be applied selectively to some credentials.

           For example "credential.https://example.com.username" would set the default username

           only for https connections to example.com. See gitcredentials(7) for details on how

           URLs are matched.

       credentialCache.ignoreSIGHUP

           Tell git-credential-cache?daemon to ignore SIGHUP, instead of quitting.

       credentialStore.lockTimeoutMS

           The length of time, in milliseconds, for git-credential-store to retry when trying to

           lock the credentials file. Value 0 means not to retry at all; -1 means to try

           indefinitely. Default is 1000 (i.e., retry for 1s).

       completion.commands

           This is only used by git-completion.bash to add or remove commands from the list of

           completed commands. Normally only porcelain commands and a few select others are

           completed. You can add more commands, separated by space, in this variable. Prefixing

           the command with - will remove it from the existing list.

       diff.autoRefreshIndex

           When using git diff to compare with work tree files, do not consider stat-only change

           as changed. Instead, silently run git update-index --refresh to update the cached stat

           information for paths whose contents in the work tree match the contents in the index.

           This option defaults to true. Note that this affects only git diff Porcelain, and not

           lower level diff commands such as git diff-files.

       diff.dirstat

           A comma separated list of --dirstat parameters specifying the default behavior of the

           --dirstat option to git-diff(1) and friends. The defaults can be overridden on the

           command line (using --dirstat=<param1,param2,...>). The fallback defaults (when not

           changed by diff.dirstat) are changes,noncumulative,3. The following parameters are

           available:

           changes

               Compute the dirstat numbers by counting the lines that have been removed from the

               source, or added to the destination. This ignores the amount of pure code

               movements within a file. In other words, rearranging lines in a file is not

               counted as much as other changes. This is the default behavior when no parameter Page 45/118



               is given.

           lines

               Compute the dirstat numbers by doing the regular line-based diff analysis, and

               summing the removed/added line counts. (For binary files, count 64-byte chunks

               instead, since binary files have no natural concept of lines). This is a more

               expensive --dirstat behavior than the changes behavior, but it does count

               rearranged lines within a file as much as other changes. The resulting output is

               consistent with what you get from the other --*stat options.

           files

               Compute the dirstat numbers by counting the number of files changed. Each changed

               file counts equally in the dirstat analysis. This is the computationally cheapest

               --dirstat behavior, since it does not have to look at the file contents at all.

           cumulative

               Count changes in a child directory for the parent directory as well. Note that

               when using cumulative, the sum of the percentages reported may exceed 100%. The

               default (non-cumulative) behavior can be specified with the noncumulative

               parameter.

           <limit>

               An integer parameter specifies a cut-off percent (3% by default). Directories

               contributing less than this percentage of the changes are not shown in the output.

           Example: The following will count changed files, while ignoring directories with less

           than 10% of the total amount of changed files, and accumulating child directory counts

           in the parent directories: files,10,cumulative.

       diff.statGraphWidth

           Limit the width of the graph part in --stat output. If set, applies to all commands

           generating --stat output except format-patch.

       diff.context

           Generate diffs with <n> lines of context instead of the default of 3. This value is

           overridden by the -U option.

       diff.interHunkContext

           Show the context between diff hunks, up to the specified number of lines, thereby

           fusing the hunks that are close to each other. This value serves as the default for

           the --inter-hunk-context command line option. Page 46/118



       diff.external

           If this config variable is set, diff generation is not performed using the internal

           diff machinery, but using the given command. Can be overridden with the

           ?GIT_EXTERNAL_DIFF? environment variable. The command is called with parameters as

           described under "git Diffs" in git(1). Note: if you want to use an external diff

           program only on a subset of your files, you might want to use gitattributes(5)

           instead.

       diff.ignoreSubmodules

           Sets the default value of --ignore-submodules. Note that this affects only git diff

           Porcelain, and not lower level diff commands such as git diff-files.  git checkout and

           git switch also honor this setting when reporting uncommitted changes. Setting it to

           all disables the submodule summary normally shown by git commit and git status when

           status.submoduleSummary is set unless it is overridden by using the

           --ignore-submodules command-line option. The git submodule commands are not affected

           by this setting. By default this is set to untracked so that any untracked submodules

           are ignored.

       diff.mnemonicPrefix

           If set, git diff uses a prefix pair that is different from the standard "a/" and "b/"

           depending on what is being compared. When this configuration is in effect, reverse

           diff output also swaps the order of the prefixes:

           git diff

               compares the (i)ndex and the (w)ork tree;

           git diff HEAD

               compares a (c)ommit and the (w)ork tree;

           git diff --cached

               compares a (c)ommit and the (i)ndex;

           git diff HEAD:file1 file2

               compares an (o)bject and a (w)ork tree entity;

           git diff --no-index a b

               compares two non-git things (1) and (2).

       diff.noprefix

           If set, git diff does not show any source or destination prefix.

       diff.relative Page 47/118



           If set to true, git diff does not show changes outside of the directory and show

           pathnames relative to the current directory.

       diff.orderFile

           File indicating how to order files within a diff. See the -O option to git-diff(1) for

           details. If diff.orderFile is a relative pathname, it is treated as relative to the

           top of the working tree.

       diff.renameLimit

           The number of files to consider in the exhaustive portion of copy/rename detection;

           equivalent to the git diff option -l. If not set, the default value is currently 1000.

           This setting has no effect if rename detection is turned off.

       diff.renames

           Whether and how Git detects renames. If set to "false", rename detection is disabled.

           If set to "true", basic rename detection is enabled. If set to "copies" or "copy", Git

           will detect copies, as well. Defaults to true. Note that this affects only git diff

           Porcelain like git-diff(1) and git-log(1), and not lower level commands such as git-

           diff-files(1).

       diff.suppressBlankEmpty

           A boolean to inhibit the standard behavior of printing a space before each empty

           output line. Defaults to false.

       diff.submodule

           Specify the format in which differences in submodules are shown. The "short" format

           just shows the names of the commits at the beginning and end of the range. The "log"

           format lists the commits in the range like git-submodule(1) summary does. The "diff"

           format shows an inline diff of the changed contents of the submodule. Defaults to

           "short".

       diff.wordRegex

           A POSIX Extended Regular Expression used to determine what is a "word" when performing

           word-by-word difference calculations. Character sequences that match the regular

           expression are "words", all other characters are ignorable whitespace.

       diff.<driver>.command

           The custom diff driver command. See gitattributes(5) for details.

       diff.<driver>.xfuncname

           The regular expression that the diff driver should use to recognize the hunk header. A Page 48/118



           built-in pattern may also be used. See gitattributes(5) for details.

       diff.<driver>.binary

           Set this option to true to make the diff driver treat files as binary. See

           gitattributes(5) for details.

       diff.<driver>.textconv

           The command that the diff driver should call to generate the text-converted version of

           a file. The result of the conversion is used to generate a human-readable diff. See

           gitattributes(5) for details.

       diff.<driver>.wordRegex

           The regular expression that the diff driver should use to split words in a line. See

           gitattributes(5) for details.

       diff.<driver>.cachetextconv

           Set this option to true to make the diff driver cache the text conversion outputs. See

           gitattributes(5) for details.

       diff.tool

           Controls which diff tool is used by git-difftool(1). This variable overrides the value

           configured in merge.tool. The list below shows the valid built-in values. Any other

           value is treated as a custom diff tool and requires that a corresponding

           difftool.<tool>.cmd variable is defined.

       diff.guitool

           Controls which diff tool is used by git-difftool(1) when the -g/--gui flag is

           specified. This variable overrides the value configured in merge.guitool. The list

           below shows the valid built-in values. Any other value is treated as a custom diff

           tool and requires that a corresponding difftool.<guitool>.cmd variable is defined.

           ?   araxis

           ?   bc

           ?   bc3

           ?   bc4

           ?   codecompare

           ?   deltawalker

           ?   diffmerge

           ?   diffuse

           ?   ecmerge Page 49/118



           ?   emerge

           ?   examdiff

           ?   guiffy

           ?   gvimdiff

           ?   gvimdiff1

           ?   gvimdiff2

           ?   gvimdiff3

           ?   kdiff3

           ?   kompare

           ?   meld

           ?   nvimdiff

           ?   nvimdiff1

           ?   nvimdiff2

           ?   nvimdiff3

           ?   opendiff

           ?   p4merge

           ?   smerge

           ?   tkdiff

           ?   vimdiff

           ?   vimdiff1

           ?   vimdiff2

           ?   vimdiff3

           ?   winmerge

           ?   xxdiff

       diff.indentHeuristic

           Set this option to false to disable the default heuristics that shift diff hunk

           boundaries to make patches easier to read.

       diff.algorithm

           Choose a diff algorithm. The variants are as follows:

           default, myers

               The basic greedy diff algorithm. Currently, this is the default.

           minimal

               Spend extra time to make sure the smallest possible diff is produced. Page 50/118



           patience

               Use "patience diff" algorithm when generating patches.

           histogram

               This algorithm extends the patience algorithm to "support low-occurrence common

               elements".

       diff.wsErrorHighlight

           Highlight whitespace errors in the context, old or new lines of the diff. Multiple

           values are separated by comma, none resets previous values, default reset the list to

           new and all is a shorthand for old,new,context. The whitespace errors are colored with

           color.diff.whitespace. The command line option --ws-error-highlight=<kind> overrides

           this setting.

       diff.colorMoved

           If set to either a valid <mode> or a true value, moved lines in a diff are colored

           differently, for details of valid modes see --color-moved in git-diff(1). If simply

           set to true the default color mode will be used. When set to false, moved lines are

           not colored.

       diff.colorMovedWS

           When moved lines are colored using e.g. the diff.colorMoved setting, this option

           controls the <mode> how spaces are treated for details of valid modes see

           --color-moved-ws in git-diff(1).

       difftool.<tool>.path

           Override the path for the given tool. This is useful in case your tool is not in the

           PATH.

       difftool.<tool>.cmd

           Specify the command to invoke the specified diff tool. The specified command is

           evaluated in shell with the following variables available: LOCAL is set to the name of

           the temporary file containing the contents of the diff pre-image and REMOTE is set to

           the name of the temporary file containing the contents of the diff post-image.

       difftool.prompt

           Prompt before each invocation of the diff tool.

       extensions.objectFormat

           Specify the hash algorithm to use. The acceptable values are sha1 and sha256. If not

           specified, sha1 is assumed. It is an error to specify this key unless Page 51/118



           core.repositoryFormatVersion is 1.

           Note that this setting should only be set by git-init(1) or git-clone(1). Trying to

           change it after initialization will not work and will produce hard-to-diagnose issues.

       fastimport.unpackLimit

           If the number of objects imported by git-fast-import(1) is below this limit, then the

           objects will be unpacked into loose object files. However if the number of imported

           objects equals or exceeds this limit then the pack will be stored as a pack. Storing

           the pack from a fast-import can make the import operation complete faster, especially

           on slow filesystems. If not set, the value of transfer.unpackLimit is used instead.

       feature.*

           The config settings that start with feature.  modify the defaults of a group of other

           config settings. These groups are created by the Git developer community as

           recommended defaults and are subject to change. In particular, new config options may

           be added with different defaults.

       feature.experimental

           Enable config options that are new to Git, and are being considered for future

           defaults. Config settings included here may be added or removed with each release,

           including minor version updates. These settings may have unintended interactions since

           they are so new. Please enable this setting if you are interested in providing

           feedback on experimental features. The new default values are:

           ?   fetch.negotiationAlgorithm=skipping may improve fetch negotiation times by

               skipping more commits at a time, reducing the number of round trips.

       feature.manyFiles

           Enable config options that optimize for repos with many files in the working

           directory. With many files, commands such as git status and git checkout may be slow

           and these new defaults improve performance:

           ?   index.version=4 enables path-prefix compression in the index.

           ?   core.untrackedCache=true enables the untracked cache. This setting assumes that

               mtime is working on your machine.

       fetch.recurseSubmodules

           This option controls whether git fetch (and the underlying fetch in git pull) will

           recursively fetch into populated submodules. This option can be set either to a

           boolean value or to on-demand. Setting it to a boolean changes the behavior of fetch Page 52/118



           and pull to recurse unconditionally into submodules when set to true or to not recurse

           at all when set to false. When set to on-demand, fetch and pull will only recurse into

           a populated submodule when its superproject retrieves a commit that updates the

           submodule?s reference. Defaults to on-demand, or to the value of submodule.recurse if

           set.

       fetch.fsckObjects

           If it is set to true, git-fetch-pack will check all fetched objects. See

           transfer.fsckObjects for what?s checked. Defaults to false. If not set, the value of

           transfer.fsckObjects is used instead.

       fetch.fsck.<msg-id>

           Acts like fsck.<msg-id>, but is used by git-fetch-pack(1) instead of git-fsck(1). See

           the fsck.<msg-id> documentation for details.

       fetch.fsck.skipList

           Acts like fsck.skipList, but is used by git-fetch-pack(1) instead of git-fsck(1). See

           the fsck.skipList documentation for details.

       fetch.unpackLimit

           If the number of objects fetched over the Git native transfer is below this limit,

           then the objects will be unpacked into loose object files. However if the number of

           received objects equals or exceeds this limit then the received pack will be stored as

           a pack, after adding any missing delta bases. Storing the pack from a push can make

           the push operation complete faster, especially on slow filesystems. If not set, the

           value of transfer.unpackLimit is used instead.

       fetch.prune

           If true, fetch will automatically behave as if the --prune option was given on the

           command line. See also remote.<name>.prune and the PRUNING section of git-fetch(1).

       fetch.pruneTags

           If true, fetch will automatically behave as if the refs/tags/*:refs/tags/* refspec was

           provided when pruning, if not set already. This allows for setting both this option

           and fetch.prune to maintain a 1=1 mapping to upstream refs. See also

           remote.<name>.pruneTags and the PRUNING section of git-fetch(1).

       fetch.output

           Control how ref update status is printed. Valid values are full and compact. Default

           value is full. See section OUTPUT in git-fetch(1) for detail. Page 53/118



       fetch.negotiationAlgorithm

           Control how information about the commits in the local repository is sent when

           negotiating the contents of the packfile to be sent by the server. Set to "skipping"

           to use an algorithm that skips commits in an effort to converge faster, but may result

           in a larger-than-necessary packfile; or set to "noop" to not send any information at

           all, which will almost certainly result in a larger-than-necessary packfile, but will

           skip the negotiation step. The default is "default" which instructs Git to use the

           default algorithm that never skips commits (unless the server has acknowledged it or

           one of its descendants). If feature.experimental is enabled, then this setting

           defaults to "skipping". Unknown values will cause git fetch to error out.

           See also the --negotiate-only and --negotiation-tip options to git-fetch(1).

       fetch.showForcedUpdates

           Set to false to enable --no-show-forced-updates in git-fetch(1) and git-pull(1)

           commands. Defaults to true.

       fetch.parallel

           Specifies the maximal number of fetch operations to be run in parallel at a time

           (submodules, or remotes when the --multiple option of git-fetch(1) is in effect).

           A value of 0 will give some reasonable default. If unset, it defaults to 1.

           For submodules, this setting can be overridden using the submodule.fetchJobs config

           setting.

       fetch.writeCommitGraph

           Set to true to write a commit-graph after every git fetch command that downloads a

           pack-file from a remote. Using the --split option, most executions will create a very

           small commit-graph file on top of the existing commit-graph file(s). Occasionally,

           these files will merge and the write may take longer. Having an updated commit-graph

           file helps performance of many Git commands, including git merge-base, git push -f,

           and git log --graph. Defaults to false.

       format.attach

           Enable multipart/mixed attachments as the default for format-patch. The value can also

           be a double quoted string which will enable attachments as the default and set the

           value as the boundary. See the --attach option in git-format-patch(1).

       format.from

           Provides the default value for the --from option to format-patch. Accepts a boolean Page 54/118



           value, or a name and email address. If false, format-patch defaults to --no-from,

           using commit authors directly in the "From:" field of patch mails. If true,

           format-patch defaults to --from, using your committer identity in the "From:" field of

           patch mails and including a "From:" field in the body of the patch mail if different.

           If set to a non-boolean value, format-patch uses that value instead of your committer

           identity. Defaults to false.

       format.numbered

           A boolean which can enable or disable sequence numbers in patch subjects. It defaults

           to "auto" which enables it only if there is more than one patch. It can be enabled or

           disabled for all messages by setting it to "true" or "false". See --numbered option in

           git-format-patch(1).

       format.headers

           Additional email headers to include in a patch to be submitted by mail. See git-

           format-patch(1).

       format.to, format.cc

           Additional recipients to include in a patch to be submitted by mail. See the --to and

           --cc options in git-format-patch(1).

       format.subjectPrefix

           The default for format-patch is to output files with the [PATCH] subject prefix. Use

           this variable to change that prefix.

       format.coverFromDescription

           The default mode for format-patch to determine which parts of the cover letter will be

           populated using the branch?s description. See the --cover-from-description option in

           git-format-patch(1).

       format.signature

           The default for format-patch is to output a signature containing the Git version

           number. Use this variable to change that default. Set this variable to the empty

           string ("") to suppress signature generation.

       format.signatureFile

           Works just like format.signature except the contents of the file specified by this

           variable will be used as the signature.

       format.suffix

           The default for format-patch is to output files with the suffix .patch. Use this Page 55/118



           variable to change that suffix (make sure to include the dot if you want it).

       format.encodeEmailHeaders

           Encode email headers that have non-ASCII characters with "Q-encoding" (described in

           RFC 2047) for email transmission. Defaults to true.

       format.pretty

           The default pretty format for log/show/whatchanged command, See git-log(1), git-

           show(1), git-whatchanged(1).

       format.thread

           The default threading style for git format-patch. Can be a boolean value, or shallow

           or deep.  shallow threading makes every mail a reply to the head of the series, where

           the head is chosen from the cover letter, the --in-reply-to, and the first patch mail,

           in this order.  deep threading makes every mail a reply to the previous one. A true

           boolean value is the same as shallow, and a false value disables threading.

       format.signOff

           A boolean value which lets you enable the -s/--signoff option of format-patch by

           default.  Note: Adding the Signed-off-by trailer to a patch should be a conscious act

           and means that you certify you have the rights to submit this work under the same open

           source license. Please see the SubmittingPatches document for further discussion.

       format.coverLetter

           A boolean that controls whether to generate a cover-letter when format-patch is

           invoked, but in addition can be set to "auto", to generate a cover-letter only when

           there?s more than one patch. Default is false.

       format.outputDirectory

           Set a custom directory to store the resulting files instead of the current working

           directory. All directory components will be created.

       format.filenameMaxLength

           The maximum length of the output filenames generated by the format-patch command;

           defaults to 64. Can be overridden by the --filename-max-length=<n> command line

           option.

       format.useAutoBase

           A boolean value which lets you enable the --base=auto option of format-patch by

           default. Can also be set to "whenAble" to allow enabling --base=auto if a suitable

           base is available, but to skip adding base info otherwise without the format dying. Page 56/118



       format.notes

           Provides the default value for the --notes option to format-patch. Accepts a boolean

           value, or a ref which specifies where to get notes. If false, format-patch defaults to

           --no-notes. If true, format-patch defaults to --notes. If set to a non-boolean value,

           format-patch defaults to --notes=<ref>, where ref is the non-boolean value. Defaults

           to false.

           If one wishes to use the ref ref/notes/true, please use that literal instead.

           This configuration can be specified multiple times in order to allow multiple notes

           refs to be included. In that case, it will behave similarly to multiple

           --[no-]notes[=] options passed in. That is, a value of true will show the default

           notes, a value of <ref> will also show notes from that notes ref and a value of false

           will negate previous configurations and not show notes.

           For example,

               [format]

                       notes = true

                       notes = foo

                       notes = false

                       notes = bar

           will only show notes from refs/notes/bar.

       filter.<driver>.clean

           The command which is used to convert the content of a worktree file to a blob upon

           checkin. See gitattributes(5) for details.

       filter.<driver>.smudge

           The command which is used to convert the content of a blob object to a worktree file

           upon checkout. See gitattributes(5) for details.

       fsck.<msg-id>

           During fsck git may find issues with legacy data which wouldn?t be generated by

           current versions of git, and which wouldn?t be sent over the wire if

           transfer.fsckObjects was set. This feature is intended to support working with legacy

           repositories containing such data.

           Setting fsck.<msg-id> will be picked up by git-fsck(1), but to accept pushes of such

           data set receive.fsck.<msg-id> instead, or to clone or fetch it set

           fetch.fsck.<msg-id>. Page 57/118



           The rest of the documentation discusses fsck.*  for brevity, but the same applies for

           the corresponding receive.fsck.*  and fetch.<msg-id>.*. variables.

           Unlike variables like color.ui and core.editor the receive.fsck.<msg-id> and

           fetch.fsck.<msg-id> variables will not fall back on the fsck.<msg-id> configuration if

           they aren?t set. To uniformly configure the same fsck settings in different

           circumstances all three of them they must all set to the same values.

           When fsck.<msg-id> is set, errors can be switched to warnings and vice versa by

           configuring the fsck.<msg-id> setting where the <msg-id> is the fsck message ID and

           the value is one of error, warn or ignore. For convenience, fsck prefixes the

           error/warning with the message ID, e.g. "missingEmail: invalid author/committer line -

           missing email" means that setting fsck.missingEmail = ignore will hide that issue.

           In general, it is better to enumerate existing objects with problems with

           fsck.skipList, instead of listing the kind of breakages these problematic objects

           share to be ignored, as doing the latter will allow new instances of the same

           breakages go unnoticed.

           Setting an unknown fsck.<msg-id> value will cause fsck to die, but doing the same for

           receive.fsck.<msg-id> and fetch.fsck.<msg-id> will only cause git to warn.

       fsck.skipList

           The path to a list of object names (i.e. one unabbreviated SHA-1 per line) that are

           known to be broken in a non-fatal way and should be ignored. On versions of Git 2.20

           and later comments (#), empty lines, and any leading and trailing whitespace is

           ignored. Everything but a SHA-1 per line will error out on older versions.

           This feature is useful when an established project should be accepted despite early

           commits containing errors that can be safely ignored such as invalid committer email

           addresses. Note: corrupt objects cannot be skipped with this setting.

           Like fsck.<msg-id> this variable has corresponding receive.fsck.skipList and

           fetch.fsck.skipList variants.

           Unlike variables like color.ui and core.editor the receive.fsck.skipList and

           fetch.fsck.skipList variables will not fall back on the fsck.skipList configuration if

           they aren?t set. To uniformly configure the same fsck settings in different

           circumstances all three of them they must all set to the same values.

           Older versions of Git (before 2.20) documented that the object names list should be

           sorted. This was never a requirement, the object names could appear in any order, but Page 58/118



           when reading the list we tracked whether the list was sorted for the purposes of an

           internal binary search implementation, which could save itself some work with an

           already sorted list. Unless you had a humongous list there was no reason to go out of

           your way to pre-sort the list. After Git version 2.20 a hash implementation is used

           instead, so there?s now no reason to pre-sort the list.

       gc.aggressiveDepth

           The depth parameter used in the delta compression algorithm used by git gc

           --aggressive. This defaults to 50, which is the default for the --depth option when

           --aggressive isn?t in use.

           See the documentation for the --depth option in git-repack(1) for more details.

       gc.aggressiveWindow

           The window size parameter used in the delta compression algorithm used by git gc

           --aggressive. This defaults to 250, which is a much more aggressive window size than

           the default --window of 10.

           See the documentation for the --window option in git-repack(1) for more details.

       gc.auto

           When there are approximately more than this many loose objects in the repository, git

           gc --auto will pack them. Some Porcelain commands use this command to perform a

           light-weight garbage collection from time to time. The default value is 6700.

           Setting this to 0 disables not only automatic packing based on the number of loose

           objects, but any other heuristic git gc --auto will otherwise use to determine if

           there?s work to do, such as gc.autoPackLimit.

       gc.autoPackLimit

           When there are more than this many packs that are not marked with *.keep file in the

           repository, git gc --auto consolidates them into one larger pack. The default value is

           50. Setting this to 0 disables it. Setting gc.auto to 0 will also disable this.

           See the gc.bigPackThreshold configuration variable below. When in use, it?ll affect

           how the auto pack limit works.

       gc.autoDetach

           Make git gc --auto return immediately and run in background if the system supports it.

           Default is true.

       gc.bigPackThreshold

           If non-zero, all packs larger than this limit are kept when git gc is run. This is Page 59/118



           very similar to --keep-largest-pack except that all packs that meet the threshold are

           kept, not just the largest pack. Defaults to zero. Common unit suffixes of k, m, or g

           are supported.

           Note that if the number of kept packs is more than gc.autoPackLimit, this

           configuration variable is ignored, all packs except the base pack will be repacked.

           After this the number of packs should go below gc.autoPackLimit and

           gc.bigPackThreshold should be respected again.

           If the amount of memory estimated for git repack to run smoothly is not available and

           gc.bigPackThreshold is not set, the largest pack will also be excluded (this is the

           equivalent of running git gc with --keep-largest-pack).

       gc.writeCommitGraph

           If true, then gc will rewrite the commit-graph file when git-gc(1) is run. When using

           git gc --auto the commit-graph will be updated if housekeeping is required. Default is

           true. See git-commit-graph(1) for details.

       gc.logExpiry

           If the file gc.log exists, then git gc --auto will print its content and exit with

           status zero instead of running unless that file is more than gc.logExpiry old. Default

           is "1.day". See gc.pruneExpire for more ways to specify its value.

       gc.packRefs

           Running git pack-refs in a repository renders it unclonable by Git versions prior to

           1.5.1.2 over dumb transports such as HTTP. This variable determines whether git gc

           runs git pack-refs. This can be set to notbare to enable it within all non-bare repos

           or it can be set to a boolean value. The default is true.

       gc.pruneExpire

           When git gc is run, it will call prune --expire 2.weeks.ago. Override the grace period

           with this config variable. The value "now" may be used to disable this grace period

           and always prune unreachable objects immediately, or "never" may be used to suppress

           pruning. This feature helps prevent corruption when git gc runs concurrently with

           another process writing to the repository; see the "NOTES" section of git-gc(1).

       gc.worktreePruneExpire

           When git gc is run, it calls git worktree prune --expire 3.months.ago. This config

           variable can be used to set a different grace period. The value "now" may be used to

           disable the grace period and prune $GIT_DIR/worktrees immediately, or "never" may be Page 60/118



           used to suppress pruning.

       gc.reflogExpire, gc.<pattern>.reflogExpire

           git reflog expire removes reflog entries older than this time; defaults to 90 days.

           The value "now" expires all entries immediately, and "never" suppresses expiration

           altogether. With "<pattern>" (e.g. "refs/stash") in the middle the setting applies

           only to the refs that match the <pattern>.

       gc.reflogExpireUnreachable, gc.<pattern>.reflogExpireUnreachable

           git reflog expire removes reflog entries older than this time and are not reachable

           from the current tip; defaults to 30 days. The value "now" expires all entries

           immediately, and "never" suppresses expiration altogether. With "<pattern>" (e.g.

           "refs/stash") in the middle, the setting applies only to the refs that match the

           <pattern>.

           These types of entries are generally created as a result of using git commit --amend

           or git rebase and are the commits prior to the amend or rebase occurring. Since these

           changes are not part of the current project most users will want to expire them

           sooner, which is why the default is more aggressive than gc.reflogExpire.

       gc.rerereResolved

           Records of conflicted merge you resolved earlier are kept for this many days when git

           rerere gc is run. You can also use more human-readable "1.month.ago", etc. The default

           is 60 days. See git-rerere(1).

       gc.rerereUnresolved

           Records of conflicted merge you have not resolved are kept for this many days when git

           rerere gc is run. You can also use more human-readable "1.month.ago", etc. The default

           is 15 days. See git-rerere(1).

       gitcvs.commitMsgAnnotation

           Append this string to each commit message. Set to empty string to disable this

           feature. Defaults to "via git-CVS emulator".

       gitcvs.enabled

           Whether the CVS server interface is enabled for this repository. See git-cvsserver(1).

       gitcvs.logFile

           Path to a log file where the CVS server interface well... logs various stuff. See git-

           cvsserver(1).

       gitcvs.usecrlfattr Page 61/118



           If true, the server will look up the end-of-line conversion attributes for files to

           determine the -k modes to use. If the attributes force Git to treat a file as text,

           the -k mode will be left blank so CVS clients will treat it as text. If they suppress

           text conversion, the file will be set with -kb mode, which suppresses any newline

           munging the client might otherwise do. If the attributes do not allow the file type to

           be determined, then gitcvs.allBinary is used. See gitattributes(5).

       gitcvs.allBinary

           This is used if gitcvs.usecrlfattr does not resolve the correct -kb mode to use. If

           true, all unresolved files are sent to the client in mode -kb. This causes the client

           to treat them as binary files, which suppresses any newline munging it otherwise might

           do. Alternatively, if it is set to "guess", then the contents of the file are examined

           to decide if it is binary, similar to core.autocrlf.

       gitcvs.dbName

           Database used by git-cvsserver to cache revision information derived from the Git

           repository. The exact meaning depends on the used database driver, for SQLite (which

           is the default driver) this is a filename. Supports variable substitution (see git-

           cvsserver(1) for details). May not contain semicolons (;). Default: %Ggitcvs.%m.sqlite

       gitcvs.dbDriver

           Used Perl DBI driver. You can specify any available driver for this here, but it might

           not work. git-cvsserver is tested with DBD::SQLite, reported to work with DBD::Pg, and

           reported not to work with DBD::mysql. Experimental feature. May not contain double

           colons (:). Default: SQLite. See git-cvsserver(1).

       gitcvs.dbUser, gitcvs.dbPass

           Database user and password. Only useful if setting gitcvs.dbDriver, since SQLite has

           no concept of database users and/or passwords.  gitcvs.dbUser supports variable

           substitution (see git-cvsserver(1) for details).

       gitcvs.dbTableNamePrefix

           Database table name prefix. Prepended to the names of any database tables used,

           allowing a single database to be used for several repositories. Supports variable

           substitution (see git-cvsserver(1) for details). Any non-alphabetic characters will be

           replaced with underscores.

       All gitcvs variables except for gitcvs.usecrlfattr and gitcvs.allBinary can also be

       specified as gitcvs.<access_method>.<varname> (where access_method is one of "ext" and Page 62/118



       "pserver") to make them apply only for the given access method.

       gitweb.category, gitweb.description, gitweb.owner, gitweb.url

           See gitweb(1) for description.

       gitweb.avatar, gitweb.blame, gitweb.grep, gitweb.highlight, gitweb.patches,

       gitweb.pickaxe, gitweb.remote_heads, gitweb.showSizes, gitweb.snapshot

           See gitweb.conf(5) for description.

       grep.lineNumber

           If set to true, enable -n option by default.

       grep.column

           If set to true, enable the --column option by default.

       grep.patternType

           Set the default matching behavior. Using a value of basic, extended, fixed, or perl

           will enable the --basic-regexp, --extended-regexp, --fixed-strings, or --perl-regexp

           option accordingly, while the value default will return to the default matching

           behavior.

       grep.extendedRegexp

           If set to true, enable --extended-regexp option by default. This option is ignored

           when the grep.patternType option is set to a value other than default.

       grep.threads

           Number of grep worker threads to use. See grep.threads in git-grep(1) for more

           information.

       grep.fallbackToNoIndex

           If set to true, fall back to git grep --no-index if git grep is executed outside of a

           git repository. Defaults to false.

       gpg.program

           Use this custom program instead of "gpg" found on $PATH when making or verifying a PGP

           signature. The program must support the same command-line interface as GPG, namely, to

           verify a detached signature, "gpg --verify $signature - <$file" is run, and the

           program is expected to signal a good signature by exiting with code 0, and to generate

           an ASCII-armored detached signature, the standard input of "gpg -bsau $key" is fed

           with the contents to be signed, and the program is expected to send the result to its

           standard output.

       gpg.format Page 63/118



           Specifies which key format to use when signing with --gpg-sign. Default is "openpgp".

           Other possible values are "x509", "ssh".

       gpg.<format>.program

           Use this to customize the program used for the signing format you chose. (see

           gpg.program and gpg.format) gpg.program can still be used as a legacy synonym for

           gpg.openpgp.program. The default value for gpg.x509.program is "gpgsm" and

           gpg.ssh.program is "ssh-keygen".

       gpg.minTrustLevel

           Specifies a minimum trust level for signature verification. If this option is unset,

           then signature verification for merge operations require a key with at least marginal

           trust. Other operations that perform signature verification require a key with at

           least undefined trust. Setting this option overrides the required trust-level for all

           operations. Supported values, in increasing order of significance:

           ?   undefined

           ?   never

           ?   marginal

           ?   fully

           ?   ultimate

       gpg.ssh.defaultKeyCommand: This command that will be run when user.signingkey is not set

       and a ssh signature is requested. On successful exit a valid ssh public key is expected in

       the first line of its output. To automatically use the first available key from your

       ssh-agent set this to "ssh-add -L".

       gpg.ssh.allowedSignersFile

           A file containing ssh public keys which you are willing to trust. The file consists of

           one or more lines of principals followed by an ssh public key. e.g.:

           user1@example.com[1],user2@example.com[2] ssh-rsa AAAAX1... See ssh-keygen(1) "ALLOWED

           SIGNERS" for details. The principal is only used to identify the key and is available

           when verifying a signature.

           SSH has no concept of trust levels like gpg does. To be able to differentiate between

           valid signatures and trusted signatures the trust level of a signature verification is

           set to fully when the public key is present in the allowedSignersFile. Otherwise the

           trust level is undefined and git verify-commit/tag will fail.

           This file can be set to a location outside of the repository and every developer Page 64/118



           maintains their own trust store. A central repository server could generate this file

           automatically from ssh keys with push access to verify the code against. In a

           corporate setting this file is probably generated at a global location from automation

           that already handles developer ssh keys.

           A repository that only allows signed commits can store the file in the repository

           itself using a path relative to the top-level of the working tree. This way only

           committers with an already valid key can add or change keys in the keyring.

           Using a SSH CA key with the cert-authority option (see ssh-keygen(1) "CERTIFICATES")

           is also valid.

       gpg.ssh.revocationFile

           Either a SSH KRL or a list of revoked public keys (without the principal prefix). See

           ssh-keygen(1) for details. If a public key is found in this file then it will always

           be treated as having trust level "never" and signatures will show as invalid.

       gui.commitMsgWidth

           Defines how wide the commit message window is in the git-gui(1). "75" is the default.

       gui.diffContext

           Specifies how many context lines should be used in calls to diff made by the git-

           gui(1). The default is "5".

       gui.displayUntracked

           Determines if git-gui(1) shows untracked files in the file list. The default is

           "true".

       gui.encoding

           Specifies the default character encoding to use for displaying of file contents in

           git-gui(1) and gitk(1). It can be overridden by setting the encoding attribute for

           relevant files (see gitattributes(5)). If this option is not set, the tools default to

           the locale encoding.

       gui.matchTrackingBranch

           Determines if new branches created with git-gui(1) should default to tracking remote

           branches with matching names or not. Default: "false".

       gui.newBranchTemplate

           Is used as suggested name when creating new branches using the git-gui(1).

       gui.pruneDuringFetch

           "true" if git-gui(1) should prune remote-tracking branches when performing a fetch. Page 65/118



           The default value is "false".

       gui.trustmtime

           Determines if git-gui(1) should trust the file modification timestamp or not. By

           default the timestamps are not trusted.

       gui.spellingDictionary

           Specifies the dictionary used for spell checking commit messages in the git-gui(1).

           When set to "none" spell checking is turned off.

       gui.fastCopyBlame

           If true, git gui blame uses -C instead of -C -C for original location detection. It

           makes blame significantly faster on huge repositories at the expense of less thorough

           copy detection.

       gui.copyBlameThreshold

           Specifies the threshold to use in git gui blame original location detection, measured

           in alphanumeric characters. See the git-blame(1) manual for more information on copy

           detection.

       gui.blamehistoryctx

           Specifies the radius of history context in days to show in gitk(1) for the selected

           commit, when the Show History Context menu item is invoked from git gui blame. If this

           variable is set to zero, the whole history is shown.

       guitool.<name>.cmd

           Specifies the shell command line to execute when the corresponding item of the git-

           gui(1) Tools menu is invoked. This option is mandatory for every tool. The command is

           executed from the root of the working directory, and in the environment it receives

           the name of the tool as GIT_GUITOOL, the name of the currently selected file as

           FILENAME, and the name of the current branch as CUR_BRANCH (if the head is detached,

           CUR_BRANCH is empty).

       guitool.<name>.needsFile

           Run the tool only if a diff is selected in the GUI. It guarantees that FILENAME is not

           empty.

       guitool.<name>.noConsole

           Run the command silently, without creating a window to display its output.

       guitool.<name>.noRescan

           Don?t rescan the working directory for changes after the tool finishes execution. Page 66/118



       guitool.<name>.confirm

           Show a confirmation dialog before actually running the tool.

       guitool.<name>.argPrompt

           Request a string argument from the user, and pass it to the tool through the ARGS

           environment variable. Since requesting an argument implies confirmation, the confirm

           option has no effect if this is enabled. If the option is set to true, yes, or 1, the

           dialog uses a built-in generic prompt; otherwise the exact value of the variable is

           used.

       guitool.<name>.revPrompt

           Request a single valid revision from the user, and set the REVISION environment

           variable. In other aspects this option is similar to argPrompt, and can be used

           together with it.

       guitool.<name>.revUnmerged

           Show only unmerged branches in the revPrompt subdialog. This is useful for tools

           similar to merge or rebase, but not for things like checkout or reset.

       guitool.<name>.title

           Specifies the title to use for the prompt dialog. The default is the tool name.

       guitool.<name>.prompt

           Specifies the general prompt string to display at the top of the dialog, before

           subsections for argPrompt and revPrompt. The default value includes the actual

           command.

       help.browser

           Specify the browser that will be used to display help in the web format. See git-

           help(1).

       help.format

           Override the default help format used by git-help(1). Values man, info, web and html

           are supported.  man is the default.  web and html are the same.

       help.autoCorrect

           If git detects typos and can identify exactly one valid command similar to the error,

           git will try to suggest the correct command or even run the suggestion automatically.

           Possible config values are:

           ?   0 (default): show the suggested command.

           ?   positive number: run the suggested command after specified deciseconds (0.1 sec). Page 67/118



           ?   "immediate": run the suggested command immediately.

           ?   "prompt": show the suggestion and prompt for confirmation to run the command.

           ?   "never": don?t run or show any suggested command.

       help.htmlPath

           Specify the path where the HTML documentation resides. File system paths and URLs are

           supported. HTML pages will be prefixed with this path when help is displayed in the

           web format. This defaults to the documentation path of your Git installation.

       http.proxy

           Override the HTTP proxy, normally configured using the http_proxy, https_proxy, and

           all_proxy environment variables (see curl(1)). In addition to the syntax understood by

           curl, it is possible to specify a proxy string with a user name but no password, in

           which case git will attempt to acquire one in the same way it does for other

           credentials. See gitcredentials(7) for more information. The syntax thus is

           [protocol://][user[:password]@]proxyhost[:port]. This can be overridden on a

           per-remote basis; see remote.<name>.proxy

       http.proxyAuthMethod

           Set the method with which to authenticate against the HTTP proxy. This only takes

           effect if the configured proxy string contains a user name part (i.e. is of the form

           user@host or user@host:port). This can be overridden on a per-remote basis; see

           remote.<name>.proxyAuthMethod. Both can be overridden by the GIT_HTTP_PROXY_AUTHMETHOD

           environment variable. Possible values are:

           ?   anyauth - Automatically pick a suitable authentication method. It is assumed that

               the proxy answers an unauthenticated request with a 407 status code and one or

               more Proxy-authenticate headers with supported authentication methods. This is the

               default.

           ?   basic - HTTP Basic authentication

           ?   digest - HTTP Digest authentication; this prevents the password from being

               transmitted to the proxy in clear text

           ?   negotiate - GSS-Negotiate authentication (compare the --negotiate option of

               curl(1))

           ?   ntlm - NTLM authentication (compare the --ntlm option of curl(1))

       http.proxySSLCert

           The pathname of a file that stores a client certificate to use to authenticate with an Page 68/118



           HTTPS proxy. Can be overridden by the GIT_PROXY_SSL_CERT environment variable.

       http.proxySSLKey

           The pathname of a file that stores a private key to use to authenticate with an HTTPS

           proxy. Can be overridden by the GIT_PROXY_SSL_KEY environment variable.

       http.proxySSLCertPasswordProtected

           Enable Git?s password prompt for the proxy SSL certificate. Otherwise OpenSSL will

           prompt the user, possibly many times, if the certificate or private key is encrypted.

           Can be overridden by the GIT_PROXY_SSL_CERT_PASSWORD_PROTECTED environment variable.

       http.proxySSLCAInfo

           Pathname to the file containing the certificate bundle that should be used to verify

           the proxy with when using an HTTPS proxy. Can be overridden by the

           GIT_PROXY_SSL_CAINFO environment variable.

       http.emptyAuth

           Attempt authentication without seeking a username or password. This can be used to

           attempt GSS-Negotiate authentication without specifying a username in the URL, as

           libcurl normally requires a username for authentication.

       http.delegation

           Control GSSAPI credential delegation. The delegation is disabled by default in libcurl

           since version 7.21.7. Set parameter to tell the server what it is allowed to delegate

           when it comes to user credentials. Used with GSS/kerberos. Possible values are:

           ?   none - Don?t allow any delegation.

           ?   policy - Delegates if and only if the OK-AS-DELEGATE flag is set in the Kerberos

               service ticket, which is a matter of realm policy.

           ?   always - Unconditionally allow the server to delegate.

       http.extraHeader

           Pass an additional HTTP header when communicating with a server. If more than one such

           entry exists, all of them are added as extra headers. To allow overriding the settings

           inherited from the system config, an empty value will reset the extra headers to the

           empty list.

       http.cookieFile

           The pathname of a file containing previously stored cookie lines, which should be used

           in the Git http session, if they match the server. The file format of the file to read

           cookies from should be plain HTTP headers or the Netscape/Mozilla cookie file format Page 69/118



           (see curl(1)). NOTE that the file specified with http.cookieFile is used only as input

           unless http.saveCookies is set.

       http.saveCookies

           If set, store cookies received during requests to the file specified by

           http.cookieFile. Has no effect if http.cookieFile is unset.

       http.version

           Use the specified HTTP protocol version when communicating with a server. If you want

           to force the default. The available and default version depend on libcurl. Currently

           the possible values of this option are:

           ?   HTTP/2

           ?   HTTP/1.1

       http.sslVersion

           The SSL version to use when negotiating an SSL connection, if you want to force the

           default. The available and default version depend on whether libcurl was built against

           NSS or OpenSSL and the particular configuration of the crypto library in use.

           Internally this sets the CURLOPT_SSL_VERSION option; see the libcurl documentation for

           more details on the format of this option and for the ssl version supported. Currently

           the possible values of this option are:

           ?   sslv2

           ?   sslv3

           ?   tlsv1

           ?   tlsv1.0

           ?   tlsv1.1

           ?   tlsv1.2

           ?   tlsv1.3

           Can be overridden by the GIT_SSL_VERSION environment variable. To force git to use

           libcurl?s default ssl version and ignore any explicit http.sslversion option, set

           GIT_SSL_VERSION to the empty string.

       http.sslCipherList

           A list of SSL ciphers to use when negotiating an SSL connection. The available ciphers

           depend on whether libcurl was built against NSS or OpenSSL and the particular

           configuration of the crypto library in use. Internally this sets the

           CURLOPT_SSL_CIPHER_LIST option; see the libcurl documentation for more details on the Page 70/118



           format of this list.

           Can be overridden by the GIT_SSL_CIPHER_LIST environment variable. To force git to use

           libcurl?s default cipher list and ignore any explicit http.sslCipherList option, set

           GIT_SSL_CIPHER_LIST to the empty string.

       http.sslVerify

           Whether to verify the SSL certificate when fetching or pushing over HTTPS. Defaults to

           true. Can be overridden by the GIT_SSL_NO_VERIFY environment variable.

       http.sslCert

           File containing the SSL certificate when fetching or pushing over HTTPS. Can be

           overridden by the GIT_SSL_CERT environment variable.

       http.sslKey

           File containing the SSL private key when fetching or pushing over HTTPS. Can be

           overridden by the GIT_SSL_KEY environment variable.

       http.sslCertPasswordProtected

           Enable Git?s password prompt for the SSL certificate. Otherwise OpenSSL will prompt

           the user, possibly many times, if the certificate or private key is encrypted. Can be

           overridden by the GIT_SSL_CERT_PASSWORD_PROTECTED environment variable.

       http.sslCAInfo

           File containing the certificates to verify the peer with when fetching or pushing over

           HTTPS. Can be overridden by the GIT_SSL_CAINFO environment variable.

       http.sslCAPath

           Path containing files with the CA certificates to verify the peer with when fetching

           or pushing over HTTPS. Can be overridden by the GIT_SSL_CAPATH environment variable.

       http.sslBackend

           Name of the SSL backend to use (e.g. "openssl" or "schannel"). This option is ignored

           if cURL lacks support for choosing the SSL backend at runtime.

       http.schannelCheckRevoke

           Used to enforce or disable certificate revocation checks in cURL when http.sslBackend

           is set to "schannel". Defaults to true if unset. Only necessary to disable this if Git

           consistently errors and the message is about checking the revocation status of a

           certificate. This option is ignored if cURL lacks support for setting the relevant SSL

           option at runtime.

       http.schannelUseSSLCAInfo Page 71/118



           As of cURL v7.60.0, the Secure Channel backend can use the certificate bundle provided

           via http.sslCAInfo, but that would override the Windows Certificate Store. Since this

           is not desirable by default, Git will tell cURL not to use that bundle by default when

           the schannel backend was configured via http.sslBackend, unless

           http.schannelUseSSLCAInfo overrides this behavior.

       http.pinnedpubkey

           Public key of the https service. It may either be the filename of a PEM or DER encoded

           public key file or a string starting with sha256// followed by the base64 encoded

           sha256 hash of the public key. See also libcurl CURLOPT_PINNEDPUBLICKEY. git will exit

           with an error if this option is set but not supported by cURL.

       http.sslTry

           Attempt to use AUTH SSL/TLS and encrypted data transfers when connecting via regular

           FTP protocol. This might be needed if the FTP server requires it for security reasons

           or you wish to connect securely whenever remote FTP server supports it. Default is

           false since it might trigger certificate verification errors on misconfigured servers.

       http.maxRequests

           How many HTTP requests to launch in parallel. Can be overridden by the

           GIT_HTTP_MAX_REQUESTS environment variable. Default is 5.

       http.minSessions

           The number of curl sessions (counted across slots) to be kept across requests. They

           will not be ended with curl_easy_cleanup() until http_cleanup() is invoked. If

           USE_CURL_MULTI is not defined, this value will be capped at 1. Defaults to 1.

       http.postBuffer

           Maximum size in bytes of the buffer used by smart HTTP transports when POSTing data to

           the remote system. For requests larger than this buffer size, HTTP/1.1 and

           Transfer-Encoding: chunked is used to avoid creating a massive pack file locally.

           Default is 1 MiB, which is sufficient for most requests.

           Note that raising this limit is only effective for disabling chunked transfer encoding

           and therefore should be used only where the remote server or a proxy only supports

           HTTP/1.0 or is noncompliant with the HTTP standard. Raising this is not, in general,

           an effective solution for most push problems, but can increase memory consumption

           significantly since the entire buffer is allocated even for small pushes.

       http.lowSpeedLimit, http.lowSpeedTime Page 72/118



           If the HTTP transfer speed is less than http.lowSpeedLimit for longer than

           http.lowSpeedTime seconds, the transfer is aborted. Can be overridden by the

           GIT_HTTP_LOW_SPEED_LIMIT and GIT_HTTP_LOW_SPEED_TIME environment variables.

       http.noEPSV

           A boolean which disables using of EPSV ftp command by curl. This can helpful with some

           "poor" ftp servers which don?t support EPSV mode. Can be overridden by the

           GIT_CURL_FTP_NO_EPSV environment variable. Default is false (curl will use EPSV).

       http.userAgent

           The HTTP USER_AGENT string presented to an HTTP server. The default value represents

           the version of the client Git such as git/1.7.1. This option allows you to override

           this value to a more common value such as Mozilla/4.0. This may be necessary, for

           instance, if connecting through a firewall that restricts HTTP connections to a set of

           common USER_AGENT strings (but not including those like git/1.7.1). Can be overridden

           by the GIT_HTTP_USER_AGENT environment variable.

       http.followRedirects

           Whether git should follow HTTP redirects. If set to true, git will transparently

           follow any redirect issued by a server it encounters. If set to false, git will treat

           all redirects as errors. If set to initial, git will follow redirects only for the

           initial request to a remote, but not for subsequent follow-up HTTP requests. Since git

           uses the redirected URL as the base for the follow-up requests, this is generally

           sufficient. The default is initial.

       http.<url>.*

           Any of the http.* options above can be applied selectively to some URLs. For a config

           key to match a URL, each element of the config key is compared to that of the URL, in

           the following order:

            1. Scheme (e.g., https in https://example.com/). This field must match exactly

               between the config key and the URL.

            2. Host/domain name (e.g., example.com in https://example.com/). This field must

               match between the config key and the URL. It is possible to specify a * as part of

               the host name to match all subdomains at this level.  https://*.example.com/ for

               example would match https://foo.example.com/, but not

               https://foo.bar.example.com/.

            3. Port number (e.g., 8080 in http://example.com:8080/). This field must match Page 73/118



               exactly between the config key and the URL. Omitted port numbers are automatically

               converted to the correct default for the scheme before matching.

            4. Path (e.g., repo.git in https://example.com/repo.git). The path field of the

               config key must match the path field of the URL either exactly or as a prefix of

               slash-delimited path elements. This means a config key with path foo/ matches URL

               path foo/bar. A prefix can only match on a slash (/) boundary. Longer matches take

               precedence (so a config key with path foo/bar is a better match to URL path

               foo/bar than a config key with just path foo/).

            5. User name (e.g., user in https://user@example.com/repo.git). If the config key has

               a user name it must match the user name in the URL exactly. If the config key does

               not have a user name, that config key will match a URL with any user name

               (including none), but at a lower precedence than a config key with a user name.

           The list above is ordered by decreasing precedence; a URL that matches a config key?s

           path is preferred to one that matches its user name. For example, if the URL is

           https://user@example.com/foo/bar a config key match of https://example.com/foo will be

           preferred over a config key match of https://user@example.com.

           All URLs are normalized before attempting any matching (the password part, if embedded

           in the URL, is always ignored for matching purposes) so that equivalent URLs that are

           simply spelled differently will match properly. Environment variable settings always

           override any matches. The URLs that are matched against are those given directly to

           Git commands. This means any URLs visited as a result of a redirection do not

           participate in matching.

       i18n.commitEncoding

           Character encoding the commit messages are stored in; Git itself does not care per se,

           but this information is necessary e.g. when importing commits from emails or in the

           gitk graphical history browser (and possibly at other places in the future or in other

           porcelains). See e.g.  git-mailinfo(1). Defaults to utf-8.

       i18n.logOutputEncoding

           Character encoding the commit messages are converted to when running git log and

           friends.

       imap.folder

           The folder to drop the mails into, which is typically the Drafts folder. For example:

           "INBOX.Drafts", "INBOX/Drafts" or "[Gmail]/Drafts". Required. Page 74/118



       imap.tunnel

           Command used to setup a tunnel to the IMAP server through which commands will be piped

           instead of using a direct network connection to the server. Required when imap.host is

           not set.

       imap.host

           A URL identifying the server. Use an imap:// prefix for non-secure connections and an

           imaps:// prefix for secure connections. Ignored when imap.tunnel is set, but required

           otherwise.

       imap.user

           The username to use when logging in to the server.

       imap.pass

           The password to use when logging in to the server.

       imap.port

           An integer port number to connect to on the server. Defaults to 143 for imap:// hosts

           and 993 for imaps:// hosts. Ignored when imap.tunnel is set.

       imap.sslverify

           A boolean to enable/disable verification of the server certificate used by the SSL/TLS

           connection. Default is true. Ignored when imap.tunnel is set.

       imap.preformattedHTML

           A boolean to enable/disable the use of html encoding when sending a patch. An html

           encoded patch will be bracketed with <pre> and have a content type of text/html.

           Ironically, enabling this option causes Thunderbird to send the patch as a plain/text,

           format=fixed email. Default is false.

       imap.authMethod

           Specify authenticate method for authentication with IMAP server. If Git was built with

           the NO_CURL option, or if your curl version is older than 7.34.0, or if you?re running

           git-imap-send with the --no-curl option, the only supported method is CRAM-MD5. If

           this is not set then git imap-send uses the basic IMAP plaintext LOGIN command.

       index.recordEndOfIndexEntries

           Specifies whether the index file should include an "End Of Index Entry" section. This

           reduces index load time on multiprocessor machines but produces a message "ignoring

           EOIE extension" when reading the index using Git versions before 2.20. Defaults to

           true if index.threads has been explicitly enabled, false otherwise. Page 75/118



       index.recordOffsetTable

           Specifies whether the index file should include an "Index Entry Offset Table" section.

           This reduces index load time on multiprocessor machines but produces a message

           "ignoring IEOT extension" when reading the index using Git versions before 2.20.

           Defaults to true if index.threads has been explicitly enabled, false otherwise.

       index.sparse

           When enabled, write the index using sparse-directory entries. This has no effect

           unless core.sparseCheckout and core.sparseCheckoutCone are both enabled. Defaults to

           false.

       index.threads

           Specifies the number of threads to spawn when loading the index. This is meant to

           reduce index load time on multiprocessor machines. Specifying 0 or true will cause Git

           to auto-detect the number of CPU?s and set the number of threads accordingly.

           Specifying 1 or false will disable multithreading. Defaults to true.

       index.version

           Specify the version with which new index files should be initialized. This does not

           affect existing repositories. If feature.manyFiles is enabled, then the default is 4.

       init.templateDir

           Specify the directory from which templates will be copied. (See the "TEMPLATE

           DIRECTORY" section of git-init(1).)

       init.defaultBranch

           Allows overriding the default branch name e.g. when initializing a new repository.

       instaweb.browser

           Specify the program that will be used to browse your working repository in gitweb. See

           git-instaweb(1).

       instaweb.httpd

           The HTTP daemon command-line to start gitweb on your working repository. See git-

           instaweb(1).

       instaweb.local

           If true the web server started by git-instaweb(1) will be bound to the local IP

           (127.0.0.1).

       instaweb.modulePath

           The default module path for git-instaweb(1) to use instead of Page 76/118



           /usr/lib/apache2/modules. Only used if httpd is Apache.

       instaweb.port

           The port number to bind the gitweb httpd to. See git-instaweb(1).

       interactive.singleKey

           In interactive commands, allow the user to provide one-letter input with a single key

           (i.e., without hitting enter). Currently this is used by the --patch mode of git-

           add(1), git-checkout(1), git-restore(1), git-commit(1), git-reset(1), and git-

           stash(1). Note that this setting is silently ignored if portable keystroke input is

           not available; requires the Perl module Term::ReadKey.

       interactive.diffFilter

           When an interactive command (such as git add --patch) shows a colorized diff, git will

           pipe the diff through the shell command defined by this configuration variable. The

           command may mark up the diff further for human consumption, provided that it retains a

           one-to-one correspondence with the lines in the original diff. Defaults to disabled

           (no filtering).

       log.abbrevCommit

           If true, makes git-log(1), git-show(1), and git-whatchanged(1) assume --abbrev-commit.

           You may override this option with --no-abbrev-commit.

       log.date

           Set the default date-time mode for the log command. Setting a value for log.date is

           similar to using git log's --date option. See git-log(1) for details.

       log.decorate

           Print out the ref names of any commits that are shown by the log command. If short is

           specified, the ref name prefixes refs/heads/, refs/tags/ and refs/remotes/ will not be

           printed. If full is specified, the full ref name (including prefix) will be printed.

           If auto is specified, then if the output is going to a terminal, the ref names are

           shown as if short were given, otherwise no ref names are shown. This is the same as

           the --decorate option of the git log.

       log.excludeDecoration

           Exclude the specified patterns from the log decorations. This is similar to the

           --decorate-refs-exclude command-line option, but the config option can be overridden

           by the --decorate-refs option.

       log.diffMerges Page 77/118



           Set default diff format to be used for merge commits. See --diff-merges in git-log(1)

           for details. Defaults to separate.

       log.follow

           If true, git log will act as if the --follow option was used when a single <path> is

           given. This has the same limitations as --follow, i.e. it cannot be used to follow

           multiple files and does not work well on non-linear history.

       log.graphColors

           A list of colors, separated by commas, that can be used to draw history lines in git

           log --graph.

       log.showRoot

           If true, the initial commit will be shown as a big creation event. This is equivalent

           to a diff against an empty tree. Tools like git-log(1) or git-whatchanged(1), which

           normally hide the root commit will now show it. True by default.

       log.showSignature

           If true, makes git-log(1), git-show(1), and git-whatchanged(1) assume

           --show-signature.

       log.mailmap

           If true, makes git-log(1), git-show(1), and git-whatchanged(1) assume --use-mailmap,

           otherwise assume --no-use-mailmap. True by default.

       lsrefs.unborn

           May be "advertise" (the default), "allow", or "ignore". If "advertise", the server

           will respond to the client sending "unborn" (as described in protocol-v2.txt) and will

           advertise support for this feature during the protocol v2 capability advertisement.

           "allow" is the same as "advertise" except that the server will not advertise support

           for this feature; this is useful for load-balanced servers that cannot be updated

           atomically (for example), since the administrator could configure "allow", then after

           a delay, configure "advertise".

       mailinfo.scissors

           If true, makes git-mailinfo(1) (and therefore git-am(1)) act by default as if the

           --scissors option was provided on the command-line. When active, this features removes

           everything from the message body before a scissors line (i.e. consisting mainly of

           ">8", "8<" and "-").

       mailmap.file Page 78/118



           The location of an augmenting mailmap file. The default mailmap, located in the root

           of the repository, is loaded first, then the mailmap file pointed to by this variable.

           The location of the mailmap file may be in a repository subdirectory, or somewhere

           outside of the repository itself. See git-shortlog(1) and git-blame(1).

       mailmap.blob

           Like mailmap.file, but consider the value as a reference to a blob in the repository.

           If both mailmap.file and mailmap.blob are given, both are parsed, with entries from

           mailmap.file taking precedence. In a bare repository, this defaults to HEAD:.mailmap.

           In a non-bare repository, it defaults to empty.

       maintenance.auto

           This boolean config option controls whether some commands run git maintenance run

           --auto after doing their normal work. Defaults to true.

       maintenance.strategy

           This string config option provides a way to specify one of a few recommended schedules

           for background maintenance. This only affects which tasks are run during git

           maintenance run --schedule=X commands, provided no --task=<task> arguments are

           provided. Further, if a maintenance.<task>.schedule config value is set, then that

           value is used instead of the one provided by maintenance.strategy. The possible

           strategy strings are:

           ?   none: This default setting implies no task are run at any schedule.

           ?   incremental: This setting optimizes for performing small maintenance activities

               that do not delete any data. This does not schedule the gc task, but runs the

               prefetch and commit-graph tasks hourly, the loose-objects and incremental-repack

               tasks daily, and the pack-refs task weekly.

       maintenance.<task>.enabled

           This boolean config option controls whether the maintenance task with name <task> is

           run when no --task option is specified to git maintenance run. These config values are

           ignored if a --task option exists. By default, only maintenance.gc.enabled is true.

       maintenance.<task>.schedule

           This config option controls whether or not the given <task> runs during a git

           maintenance run --schedule=<frequency> command. The value must be one of "hourly",

           "daily", or "weekly".

       maintenance.commit-graph.auto Page 79/118



           This integer config option controls how often the commit-graph task should be run as

           part of git maintenance run --auto. If zero, then the commit-graph task will not run

           with the --auto option. A negative value will force the task to run every time.

           Otherwise, a positive value implies the command should run when the number of

           reachable commits that are not in the commit-graph file is at least the value of

           maintenance.commit-graph.auto. The default value is 100.

       maintenance.loose-objects.auto

           This integer config option controls how often the loose-objects task should be run as

           part of git maintenance run --auto. If zero, then the loose-objects task will not run

           with the --auto option. A negative value will force the task to run every time.

           Otherwise, a positive value implies the command should run when the number of loose

           objects is at least the value of maintenance.loose-objects.auto. The default value is

           100.

       maintenance.incremental-repack.auto

           This integer config option controls how often the incremental-repack task should be

           run as part of git maintenance run --auto. If zero, then the incremental-repack task

           will not run with the --auto option. A negative value will force the task to run every

           time. Otherwise, a positive value implies the command should run when the number of

           pack-files not in the multi-pack-index is at least the value of

           maintenance.incremental-repack.auto. The default value is 10.

       man.viewer

           Specify the programs that may be used to display help in the man format. See git-

           help(1).

       man.<tool>.cmd

           Specify the command to invoke the specified man viewer. The specified command is

           evaluated in shell with the man page passed as argument. (See git-help(1).)

       man.<tool>.path

           Override the path for the given tool that may be used to display help in the man

           format. See git-help(1).

       merge.conflictStyle

           Specify the style in which conflicted hunks are written out to working tree files upon

           merge. The default is "merge", which shows a <<<<<<< conflict marker, changes made by

           one side, a ======= marker, changes made by the other side, and then a >>>>>>> marker. Page 80/118



           An alternate style, "diff3", adds a ||||||| marker and the original text before the

           ======= marker.

       merge.defaultToUpstream

           If merge is called without any commit argument, merge the upstream branches configured

           for the current branch by using their last observed values stored in their

           remote-tracking branches. The values of the branch.<current branch>.merge that name

           the branches at the remote named by branch.<current branch>.remote are consulted, and

           then they are mapped via remote.<remote>.fetch to their corresponding remote-tracking

           branches, and the tips of these tracking branches are merged. Defaults to true.

       merge.ff

           By default, Git does not create an extra merge commit when merging a commit that is a

           descendant of the current commit. Instead, the tip of the current branch is

           fast-forwarded. When set to false, this variable tells Git to create an extra merge

           commit in such a case (equivalent to giving the --no-ff option from the command line).

           When set to only, only such fast-forward merges are allowed (equivalent to giving the

           --ff-only option from the command line).

       merge.verifySignatures

           If true, this is equivalent to the --verify-signatures command line option. See git-

           merge(1) for details.

       merge.branchdesc

           In addition to branch names, populate the log message with the branch description text

           associated with them. Defaults to false.

       merge.log

           In addition to branch names, populate the log message with at most the specified

           number of one-line descriptions from the actual commits that are being merged.

           Defaults to false, and true is a synonym for 20.

       merge.suppressDest

           By adding a glob that matches the names of integration branches to this multi-valued

           configuration variable, the default merge message computed for merges into these

           integration branches will omit "into <branch name>" from its title.

           An element with an empty value can be used to clear the list of globs accumulated from

           previous configuration entries. When there is no merge.suppressDest variable defined,

           the default value of master is used for backward compatibility. Page 81/118



       merge.renameLimit

           The number of files to consider in the exhaustive portion of rename detection during a

           merge. If not specified, defaults to the value of diff.renameLimit. If neither

           merge.renameLimit nor diff.renameLimit are specified, currently defaults to 7000. This

           setting has no effect if rename detection is turned off.

       merge.renames

           Whether Git detects renames. If set to "false", rename detection is disabled. If set

           to "true", basic rename detection is enabled. Defaults to the value of diff.renames.

       merge.directoryRenames

           Whether Git detects directory renames, affecting what happens at merge time to new

           files added to a directory on one side of history when that directory was renamed on

           the other side of history. If merge.directoryRenames is set to "false", directory

           rename detection is disabled, meaning that such new files will be left behind in the

           old directory. If set to "true", directory rename detection is enabled, meaning that

           such new files will be moved into the new directory. If set to "conflict", a conflict

           will be reported for such paths. If merge.renames is false, merge.directoryRenames is

           ignored and treated as false. Defaults to "conflict".

       merge.renormalize

           Tell Git that canonical representation of files in the repository has changed over

           time (e.g. earlier commits record text files with CRLF line endings, but recent ones

           use LF line endings). In such a repository, Git can convert the data recorded in

           commits to a canonical form before performing a merge to reduce unnecessary conflicts.

           For more information, see section "Merging branches with differing checkin/checkout

           attributes" in gitattributes(5).

       merge.stat

           Whether to print the diffstat between ORIG_HEAD and the merge result at the end of the

           merge. True by default.

       merge.autoStash

           When set to true, automatically create a temporary stash entry before the operation

           begins, and apply it after the operation ends. This means that you can run merge on a

           dirty worktree. However, use with care: the final stash application after a successful

           merge might result in non-trivial conflicts. This option can be overridden by the

           --no-autostash and --autostash options of git-merge(1). Defaults to false. Page 82/118



       merge.tool

           Controls which merge tool is used by git-mergetool(1). The list below shows the valid

           built-in values. Any other value is treated as a custom merge tool and requires that a

           corresponding mergetool.<tool>.cmd variable is defined.

       merge.guitool

           Controls which merge tool is used by git-mergetool(1) when the -g/--gui flag is

           specified. The list below shows the valid built-in values. Any other value is treated

           as a custom merge tool and requires that a corresponding mergetool.<guitool>.cmd

           variable is defined.

           ?   araxis

           ?   bc

           ?   bc3

           ?   bc4

           ?   codecompare

           ?   deltawalker

           ?   diffmerge

           ?   diffuse

           ?   ecmerge

           ?   emerge

           ?   examdiff

           ?   guiffy

           ?   gvimdiff

           ?   gvimdiff1

           ?   gvimdiff2

           ?   gvimdiff3

           ?   kdiff3

           ?   meld

           ?   nvimdiff

           ?   nvimdiff1

           ?   nvimdiff2

           ?   nvimdiff3

           ?   opendiff

           ?   p4merge Page 83/118



           ?   smerge

           ?   tkdiff

           ?   tortoisemerge

           ?   vimdiff

           ?   vimdiff1

           ?   vimdiff2

           ?   vimdiff3

           ?   winmerge

           ?   xxdiff

       merge.verbosity

           Controls the amount of output shown by the recursive merge strategy. Level 0 outputs

           nothing except a final error message if conflicts were detected. Level 1 outputs only

           conflicts, 2 outputs conflicts and file changes. Level 5 and above outputs debugging

           information. The default is level 2. Can be overridden by the GIT_MERGE_VERBOSITY

           environment variable.

       merge.<driver>.name

           Defines a human-readable name for a custom low-level merge driver. See

           gitattributes(5) for details.

       merge.<driver>.driver

           Defines the command that implements a custom low-level merge driver. See

           gitattributes(5) for details.

       merge.<driver>.recursive

           Names a low-level merge driver to be used when performing an internal merge between

           common ancestors. See gitattributes(5) for details.

       mergetool.<tool>.path

           Override the path for the given tool. This is useful in case your tool is not in the

           PATH.

       mergetool.<tool>.cmd

           Specify the command to invoke the specified merge tool. The specified command is

           evaluated in shell with the following variables available: BASE is the name of a

           temporary file containing the common base of the files to be merged, if available;

           LOCAL is the name of a temporary file containing the contents of the file on the

           current branch; REMOTE is the name of a temporary file containing the contents of the Page 84/118



           file from the branch being merged; MERGED contains the name of the file to which the

           merge tool should write the results of a successful merge.

       mergetool.<tool>.hideResolved

           Allows the user to override the global mergetool.hideResolved value for a specific

           tool. See mergetool.hideResolved for the full description.

       mergetool.<tool>.trustExitCode

           For a custom merge command, specify whether the exit code of the merge command can be

           used to determine whether the merge was successful. If this is not set to true then

           the merge target file timestamp is checked and the merge assumed to have been

           successful if the file has been updated, otherwise the user is prompted to indicate

           the success of the merge.

       mergetool.meld.hasOutput

           Older versions of meld do not support the --output option. Git will attempt to detect

           whether meld supports --output by inspecting the output of meld --help. Configuring

           mergetool.meld.hasOutput will make Git skip these checks and use the configured value

           instead. Setting mergetool.meld.hasOutput to true tells Git to unconditionally use the

           --output option, and false avoids using --output.

       mergetool.meld.useAutoMerge

           When the --auto-merge is given, meld will merge all non-conflicting parts

           automatically, highlight the conflicting parts and wait for user decision. Setting

           mergetool.meld.useAutoMerge to true tells Git to unconditionally use the --auto-merge

           option with meld. Setting this value to auto makes git detect whether --auto-merge is

           supported and will only use --auto-merge when available. A value of false avoids using

           --auto-merge altogether, and is the default value.

       mergetool.hideResolved

           During a merge Git will automatically resolve as many conflicts as possible and write

           the MERGED file containing conflict markers around any conflicts that it cannot

           resolve; LOCAL and REMOTE normally represent the versions of the file from before

           Git?s conflict resolution. This flag causes LOCAL and REMOTE to be overwriten so that

           only the unresolved conflicts are presented to the merge tool. Can be configured

           per-tool via the mergetool.<tool>.hideResolved configuration variable. Defaults to

           false.

       mergetool.keepBackup Page 85/118



           After performing a merge, the original file with conflict markers can be saved as a

           file with a .orig extension. If this variable is set to false then this file is not

           preserved. Defaults to true (i.e. keep the backup files).

       mergetool.keepTemporaries

           When invoking a custom merge tool, Git uses a set of temporary files to pass to the

           tool. If the tool returns an error and this variable is set to true, then these

           temporary files will be preserved, otherwise they will be removed after the tool has

           exited. Defaults to false.

       mergetool.writeToTemp

           Git writes temporary BASE, LOCAL, and REMOTE versions of conflicting files in the

           worktree by default. Git will attempt to use a temporary directory for these files

           when set true. Defaults to false.

       mergetool.prompt

           Prompt before each invocation of the merge resolution program.

       notes.mergeStrategy

           Which merge strategy to choose by default when resolving notes conflicts. Must be one

           of manual, ours, theirs, union, or cat_sort_uniq. Defaults to manual. See "NOTES MERGE

           STRATEGIES" section of git-notes(1) for more information on each strategy.

       notes.<name>.mergeStrategy

           Which merge strategy to choose when doing a notes merge into refs/notes/<name>. This

           overrides the more general "notes.mergeStrategy". See the "NOTES MERGE STRATEGIES"

           section in git-notes(1) for more information on the available strategies.

       notes.displayRef

           The (fully qualified) refname from which to show notes when showing commit messages.

           The value of this variable can be set to a glob, in which case notes from all matching

           refs will be shown. You may also specify this configuration variable several times. A

           warning will be issued for refs that do not exist, but a glob that does not match any

           refs is silently ignored.

           This setting can be overridden with the GIT_NOTES_DISPLAY_REF environment variable,

           which must be a colon separated list of refs or globs.

           The effective value of "core.notesRef" (possibly overridden by GIT_NOTES_REF) is also

           implicitly added to the list of refs to be displayed.

       notes.rewrite.<command> Page 86/118



           When rewriting commits with <command> (currently amend or rebase) and this variable is

           set to true, Git automatically copies your notes from the original to the rewritten

           commit. Defaults to true, but see "notes.rewriteRef" below.

       notes.rewriteMode

           When copying notes during a rewrite (see the "notes.rewrite.<command>" option),

           determines what to do if the target commit already has a note. Must be one of

           overwrite, concatenate, cat_sort_uniq, or ignore. Defaults to concatenate.

           This setting can be overridden with the GIT_NOTES_REWRITE_MODE environment variable.

       notes.rewriteRef

           When copying notes during a rewrite, specifies the (fully qualified) ref whose notes

           should be copied. The ref may be a glob, in which case notes in all matching refs will

           be copied. You may also specify this configuration several times.

           Does not have a default value; you must configure this variable to enable note

           rewriting. Set it to refs/notes/commits to enable rewriting for the default commit

           notes.

           This setting can be overridden with the GIT_NOTES_REWRITE_REF environment variable,

           which must be a colon separated list of refs or globs.

       pack.window

           The size of the window used by git-pack-objects(1) when no window size is given on the

           command line. Defaults to 10.

       pack.depth

           The maximum delta depth used by git-pack-objects(1) when no maximum depth is given on

           the command line. Defaults to 50. Maximum value is 4095.

       pack.windowMemory

           The maximum size of memory that is consumed by each thread in git-pack-objects(1) for

           pack window memory when no limit is given on the command line. The value can be

           suffixed with "k", "m", or "g". When left unconfigured (or set explicitly to 0), there

           will be no limit.

       pack.compression

           An integer -1..9, indicating the compression level for objects in a pack file. -1 is

           the zlib default. 0 means no compression, and 1..9 are various speed/size tradeoffs, 9

           being slowest. If not set, defaults to core.compression. If that is not set, defaults

           to -1, the zlib default, which is "a default compromise between speed and compression Page 87/118



           (currently equivalent to level 6)."

           Note that changing the compression level will not automatically recompress all

           existing objects. You can force recompression by passing the -F option to git-

           repack(1).

       pack.allowPackReuse

           When true, and when reachability bitmaps are enabled, pack-objects will try to send

           parts of the bitmapped packfile verbatim. This can reduce memory and CPU usage to

           serve fetches, but might result in sending a slightly larger pack. Defaults to true.

       pack.island

           An extended regular expression configuring a set of delta islands. See "DELTA ISLANDS"

           in git-pack-objects(1) for details.

       pack.islandCore

           Specify an island name which gets to have its objects be packed first. This creates a

           kind of pseudo-pack at the front of one pack, so that the objects from the specified

           island are hopefully faster to copy into any pack that should be served to a user

           requesting these objects. In practice this means that the island specified should

           likely correspond to what is the most commonly cloned in the repo. See also "DELTA

           ISLANDS" in git-pack-objects(1).

       pack.deltaCacheSize

           The maximum memory in bytes used for caching deltas in git-pack-objects(1) before

           writing them out to a pack. This cache is used to speed up the writing object phase by

           not having to recompute the final delta result once the best match for all objects is

           found. Repacking large repositories on machines which are tight with memory might be

           badly impacted by this though, especially if this cache pushes the system into

           swapping. A value of 0 means no limit. The smallest size of 1 byte may be used to

           virtually disable this cache. Defaults to 256 MiB.

       pack.deltaCacheLimit

           The maximum size of a delta, that is cached in git-pack-objects(1). This cache is used

           to speed up the writing object phase by not having to recompute the final delta result

           once the best match for all objects is found. Defaults to 1000. Maximum value is

           65535.

       pack.threads

           Specifies the number of threads to spawn when searching for best delta matches. This Page 88/118



           requires that git-pack-objects(1) be compiled with pthreads otherwise this option is

           ignored with a warning. This is meant to reduce packing time on multiprocessor

           machines. The required amount of memory for the delta search window is however

           multiplied by the number of threads. Specifying 0 will cause Git to auto-detect the

           number of CPU?s and set the number of threads accordingly.

       pack.indexVersion

           Specify the default pack index version. Valid values are 1 for legacy pack index used

           by Git versions prior to 1.5.2, and 2 for the new pack index with capabilities for

           packs larger than 4 GB as well as proper protection against the repacking of corrupted

           packs. Version 2 is the default. Note that version 2 is enforced and this config

           option ignored whenever the corresponding pack is larger than 2 GB.

           If you have an old Git that does not understand the version 2 *.idx file, cloning or

           fetching over a non native protocol (e.g. "http") that will copy both *.pack file and

           corresponding *.idx file from the other side may give you a repository that cannot be

           accessed with your older version of Git. If the *.pack file is smaller than 2 GB,

           however, you can use git-index-pack(1) on the *.pack file to regenerate the *.idx

           file.

       pack.packSizeLimit

           The maximum size of a pack. This setting only affects packing to a file when

           repacking, i.e. the git:// protocol is unaffected. It can be overridden by the

           --max-pack-size option of git-repack(1). Reaching this limit results in the creation

           of multiple packfiles.

           Note that this option is rarely useful, and may result in a larger total on-disk size

           (because Git will not store deltas between packs), as well as worse runtime

           performance (object lookup within multiple packs is slower than a single pack, and

           optimizations like reachability bitmaps cannot cope with multiple packs).

           If you need to actively run Git using smaller packfiles (e.g., because your filesystem

           does not support large files), this option may help. But if your goal is to transmit a

           packfile over a medium that supports limited sizes (e.g., removable media that cannot

           store the whole repository), you are likely better off creating a single large

           packfile and splitting it using a generic multi-volume archive tool (e.g., Unix

           split).

           The minimum size allowed is limited to 1 MiB. The default is unlimited. Common unit Page 89/118



           suffixes of k, m, or g are supported.

       pack.useBitmaps

           When true, git will use pack bitmaps (if available) when packing to stdout (e.g.,

           during the server side of a fetch). Defaults to true. You should not generally need to

           turn this off unless you are debugging pack bitmaps.

       pack.useSparse

           When true, git will default to using the --sparse option in git pack-objects when the

           --revs option is present. This algorithm only walks trees that appear in paths that

           introduce new objects. This can have significant performance benefits when computing a

           pack to send a small change. However, it is possible that extra objects are added to

           the pack-file if the included commits contain certain types of direct renames. Default

           is true.

       pack.preferBitmapTips

           When selecting which commits will receive bitmaps, prefer a commit at the tip of any

           reference that is a suffix of any value of this configuration over any other commits

           in the "selection window".

           Note that setting this configuration to refs/foo does not mean that the commits at the

           tips of refs/foo/bar and refs/foo/baz will necessarily be selected. This is because

           commits are selected for bitmaps from within a series of windows of variable length.

           If a commit at the tip of any reference which is a suffix of any value of this

           configuration is seen in a window, it is immediately given preference over any other

           commit in that window.

       pack.writeBitmaps (deprecated)

           This is a deprecated synonym for repack.writeBitmaps.

       pack.writeBitmapHashCache

           When true, git will include a "hash cache" section in the bitmap index (if one is

           written). This cache can be used to feed git?s delta heuristics, potentially leading

           to better deltas between bitmapped and non-bitmapped objects (e.g., when serving a

           fetch between an older, bitmapped pack and objects that have been pushed since the

           last gc). The downside is that it consumes 4 bytes per object of disk space. Defaults

           to true.

           When writing a multi-pack reachability bitmap, no new namehashes are computed;

           instead, any namehashes stored in an existing bitmap are permuted into their Page 90/118



           appropriate location when writing a new bitmap.

       pack.writeReverseIndex

           When true, git will write a corresponding .rev file (see:

           Documentation/technical/pack-format.txt[3]) for each new packfile that it writes in

           all places except for git-fast-import(1) and in the bulk checkin mechanism. Defaults

           to false.

       pager.<cmd>

           If the value is boolean, turns on or off pagination of the output of a particular Git

           subcommand when writing to a tty. Otherwise, turns on pagination for the subcommand

           using the pager specified by the value of pager.<cmd>. If --paginate or --no-pager is

           specified on the command line, it takes precedence over this option. To disable

           pagination for all commands, set core.pager or GIT_PAGER to cat.

       pretty.<name>

           Alias for a --pretty= format string, as specified in git-log(1). Any aliases defined

           here can be used just as the built-in pretty formats could. For example, running git

           config pretty.changelog "format:* %H %s" would cause the invocation git log

           --pretty=changelog to be equivalent to running git log "--pretty=format:* %H %s". Note

           that an alias with the same name as a built-in format will be silently ignored.

       protocol.allow

           If set, provide a user defined default policy for all protocols which don?t explicitly

           have a policy (protocol.<name>.allow). By default, if unset, known-safe protocols

           (http, https, git, ssh) have a default policy of always, known-dangerous protocols

           (ext) have a default policy of never, and all other protocols (including file) have a

           default policy of user. Supported policies:

           ?   always - protocol is always able to be used.

           ?   never - protocol is never able to be used.

           ?   user - protocol is only able to be used when GIT_PROTOCOL_FROM_USER is either

               unset or has a value of 1. This policy should be used when you want a protocol to

               be directly usable by the user but don?t want it used by commands which execute

               clone/fetch/push commands without user input, e.g. recursive submodule

               initialization.

       protocol.<name>.allow

           Set a policy to be used by protocol <name> with clone/fetch/push commands. See Page 91/118



           protocol.allow above for the available policies.

           The protocol names currently used by git are:

           ?   file: any local file-based path (including file:// URLs, or local paths)

           ?   git: the anonymous git protocol over a direct TCP connection (or proxy, if

               configured)

           ?   ssh: git over ssh (including host:path syntax, ssh://, etc).

           ?   http: git over http, both "smart http" and "dumb http". Note that this does not

               include https; if you want to configure both, you must do so individually.

           ?   any external helpers are named by their protocol (e.g., use hg to allow the

               git-remote-hg helper)

       protocol.version

           If set, clients will attempt to communicate with a server using the specified protocol

           version. If the server does not support it, communication falls back to version 0. If

           unset, the default is 2. Supported versions:

           ?   0 - the original wire protocol.

           ?   1 - the original wire protocol with the addition of a version string in the

               initial response from the server.

           ?   2 - wire protocol version 2[4].

       pull.ff

           By default, Git does not create an extra merge commit when merging a commit that is a

           descendant of the current commit. Instead, the tip of the current branch is

           fast-forwarded. When set to false, this variable tells Git to create an extra merge

           commit in such a case (equivalent to giving the --no-ff option from the command line).

           When set to only, only such fast-forward merges are allowed (equivalent to giving the

           --ff-only option from the command line). This setting overrides merge.ff when pulling.

       pull.rebase

           When true, rebase branches on top of the fetched branch, instead of merging the

           default branch from the default remote when "git pull" is run. See

           "branch.<name>.rebase" for setting this on a per-branch basis.

           When merges (or just m), pass the --rebase-merges option to git rebase so that the

           local merge commits are included in the rebase (see git-rebase(1) for details).

           When the value is interactive (or just i), the rebase is run in interactive mode.

           NOTE: this is a possibly dangerous operation; do not use it unless you understand the Page 92/118



           implications (see git-rebase(1) for details).

       pull.octopus

           The default merge strategy to use when pulling multiple branches at once.

       pull.twohead

           The default merge strategy to use when pulling a single branch.

       push.default

           Defines the action git push should take if no refspec is given (whether from the

           command-line, config, or elsewhere). Different values are well-suited for specific

           workflows; for instance, in a purely central workflow (i.e. the fetch source is equal

           to the push destination), upstream is probably what you want. Possible values are:

           ?   nothing - do not push anything (error out) unless a refspec is given. This is

               primarily meant for people who want to avoid mistakes by always being explicit.

           ?   current - push the current branch to update a branch with the same name on the

               receiving end. Works in both central and non-central workflows.

           ?   upstream - push the current branch back to the branch whose changes are usually

               integrated into the current branch (which is called @{upstream}). This mode only

               makes sense if you are pushing to the same repository you would normally pull from

               (i.e. central workflow).

           ?   tracking - This is a deprecated synonym for upstream.

           ?   simple - pushes the current branch with the same name on the remote.

               If you are working on a centralized workflow (pushing to the same repository you

               pull from, which is typically origin), then you need to configure an upstream

               branch with the same name.

               This mode is the default since Git 2.0, and is the safest option suited for

               beginners.

           ?   matching - push all branches having the same name on both ends. This makes the

               repository you are pushing to remember the set of branches that will be pushed out

               (e.g. if you always push maint and master there and no other branches, the

               repository you push to will have these two branches, and your local maint and

               master will be pushed there).

               To use this mode effectively, you have to make sure all the branches you would

               push out are ready to be pushed out before running git push, as the whole point of

               this mode is to allow you to push all of the branches in one go. If you usually Page 93/118



               finish work on only one branch and push out the result, while other branches are

               unfinished, this mode is not for you. Also this mode is not suitable for pushing

               into a shared central repository, as other people may add new branches there, or

               update the tip of existing branches outside your control.

               This used to be the default, but not since Git 2.0 (simple is the new default).

       push.followTags

           If set to true enable --follow-tags option by default. You may override this

           configuration at time of push by specifying --no-follow-tags.

       push.gpgSign

           May be set to a boolean value, or the string if-asked. A true value causes all pushes

           to be GPG signed, as if --signed is passed to git-push(1). The string if-asked causes

           pushes to be signed if the server supports it, as if --signed=if-asked is passed to

           git push. A false value may override a value from a lower-priority config file. An

           explicit command-line flag always overrides this config option.

       push.pushOption

           When no --push-option=<option> argument is given from the command line, git push

           behaves as if each <value> of this variable is given as --push-option=<value>.

           This is a multi-valued variable, and an empty value can be used in a higher priority

           configuration file (e.g.  .git/config in a repository) to clear the values inherited

           from a lower priority configuration files (e.g.  $HOME/.gitconfig).

               Example:

               /etc/gitconfig

                 push.pushoption = a

                 push.pushoption = b

               ~/.gitconfig

                 push.pushoption = c

               repo/.git/config

                 push.pushoption =

                 push.pushoption = b

               This will result in only b (a and c are cleared).

       push.recurseSubmodules

           Make sure all submodule commits used by the revisions to be pushed are available on a

           remote-tracking branch. If the value is check then Git will verify that all submodule Page 94/118



           commits that changed in the revisions to be pushed are available on at least one

           remote of the submodule. If any commits are missing, the push will be aborted and exit

           with non-zero status. If the value is on-demand then all submodules that changed in

           the revisions to be pushed will be pushed. If on-demand was not able to push all

           necessary revisions it will also be aborted and exit with non-zero status. If the

           value is no then default behavior of ignoring submodules when pushing is retained. You

           may override this configuration at time of push by specifying

           --recurse-submodules=check|on-demand|no. If not set, no is used by default, unless

           submodule.recurse is set (in which case a true value means on-demand).

       push.useForceIfIncludes

           If set to "true", it is equivalent to specifying --force-if-includes as an option to

           git-push(1) in the command line. Adding --no-force-if-includes at the time of push

           overrides this configuration setting.

       push.negotiate

           If set to "true", attempt to reduce the size of the packfile sent by rounds of

           negotiation in which the client and the server attempt to find commits in common. If

           "false", Git will rely solely on the server?s ref advertisement to find commits in

           common.

       rebase.backend

           Default backend to use for rebasing. Possible choices are apply or merge. In the

           future, if the merge backend gains all remaining capabilities of the apply backend,

           this setting may become unused.

       rebase.stat

           Whether to show a diffstat of what changed upstream since the last rebase. False by

           default.

       rebase.autoSquash

           If set to true enable --autosquash option by default.

       rebase.autoStash

           When set to true, automatically create a temporary stash entry before the operation

           begins, and apply it after the operation ends. This means that you can run rebase on a

           dirty worktree. However, use with care: the final stash application after a successful

           rebase might result in non-trivial conflicts. This option can be overridden by the

           --no-autostash and --autostash options of git-rebase(1). Defaults to false. Page 95/118



       rebase.missingCommitsCheck

           If set to "warn", git rebase -i will print a warning if some commits are removed (e.g.

           a line was deleted), however the rebase will still proceed. If set to "error", it will

           print the previous warning and stop the rebase, git rebase --edit-todo can then be

           used to correct the error. If set to "ignore", no checking is done. To drop a commit

           without warning or error, use the drop command in the todo list. Defaults to "ignore".

       rebase.instructionFormat

           A format string, as specified in git-log(1), to be used for the todo list during an

           interactive rebase. The format will automatically have the long commit hash prepended

           to the format.

       rebase.abbreviateCommands

           If set to true, git rebase will use abbreviated command names in the todo list

           resulting in something like this:

                       p deadbee The oneline of the commit

                       p fa1afe1 The oneline of the next commit

                       ...

           instead of:

                       pick deadbee The oneline of the commit

                       pick fa1afe1 The oneline of the next commit

                       ...

           Defaults to false.

       rebase.rescheduleFailedExec

           Automatically reschedule exec commands that failed. This only makes sense in

           interactive mode (or when an --exec option was provided). This is the same as

           specifying the --reschedule-failed-exec option.

       rebase.forkPoint

           If set to false set --no-fork-point option by default.

       receive.advertiseAtomic

           By default, git-receive-pack will advertise the atomic push capability to its clients.

           If you don?t want to advertise this capability, set this variable to false.

       receive.advertisePushOptions

           When set to true, git-receive-pack will advertise the push options capability to its

           clients. False by default. Page 96/118



       receive.autogc

           By default, git-receive-pack will run "git-gc --auto" after receiving data from

           git-push and updating refs. You can stop it by setting this variable to false.

       receive.certNonceSeed

           By setting this variable to a string, git receive-pack will accept a git push --signed

           and verifies it by using a "nonce" protected by HMAC using this string as a secret

           key.

       receive.certNonceSlop

           When a git push --signed sent a push certificate with a "nonce" that was issued by a

           receive-pack serving the same repository within this many seconds, export the "nonce"

           found in the certificate to GIT_PUSH_CERT_NONCE to the hooks (instead of what the

           receive-pack asked the sending side to include). This may allow writing checks in

           pre-receive and post-receive a bit easier. Instead of checking

           GIT_PUSH_CERT_NONCE_SLOP environment variable that records by how many seconds the

           nonce is stale to decide if they want to accept the certificate, they only can check

           GIT_PUSH_CERT_NONCE_STATUS is OK.

       receive.fsckObjects

           If it is set to true, git-receive-pack will check all received objects. See

           transfer.fsckObjects for what?s checked. Defaults to false. If not set, the value of

           transfer.fsckObjects is used instead.

       receive.fsck.<msg-id>

           Acts like fsck.<msg-id>, but is used by git-receive-pack(1) instead of git-fsck(1).

           See the fsck.<msg-id> documentation for details.

       receive.fsck.skipList

           Acts like fsck.skipList, but is used by git-receive-pack(1) instead of git-fsck(1).

           See the fsck.skipList documentation for details.

       receive.keepAlive

           After receiving the pack from the client, receive-pack may produce no output (if

           --quiet was specified) while processing the pack, causing some networks to drop the

           TCP connection. With this option set, if receive-pack does not transmit any data in

           this phase for receive.keepAlive seconds, it will send a short keepalive packet. The

           default is 5 seconds; set to 0 to disable keepalives entirely.

       receive.unpackLimit Page 97/118



           If the number of objects received in a push is below this limit then the objects will

           be unpacked into loose object files. However if the number of received objects equals

           or exceeds this limit then the received pack will be stored as a pack, after adding

           any missing delta bases. Storing the pack from a push can make the push operation

           complete faster, especially on slow filesystems. If not set, the value of

           transfer.unpackLimit is used instead.

       receive.maxInputSize

           If the size of the incoming pack stream is larger than this limit, then

           git-receive-pack will error out, instead of accepting the pack file. If not set or set

           to 0, then the size is unlimited.

       receive.denyDeletes

           If set to true, git-receive-pack will deny a ref update that deletes the ref. Use this

           to prevent such a ref deletion via a push.

       receive.denyDeleteCurrent

           If set to true, git-receive-pack will deny a ref update that deletes the currently

           checked out branch of a non-bare repository.

       receive.denyCurrentBranch

           If set to true or "refuse", git-receive-pack will deny a ref update to the currently

           checked out branch of a non-bare repository. Such a push is potentially dangerous

           because it brings the HEAD out of sync with the index and working tree. If set to

           "warn", print a warning of such a push to stderr, but allow the push to proceed. If

           set to false or "ignore", allow such pushes with no message. Defaults to "refuse".

           Another option is "updateInstead" which will update the working tree if pushing into

           the current branch. This option is intended for synchronizing working directories when

           one side is not easily accessible via interactive ssh (e.g. a live web site, hence the

           requirement that the working directory be clean). This mode also comes in handy when

           developing inside a VM to test and fix code on different Operating Systems.

           By default, "updateInstead" will refuse the push if the working tree or the index have

           any difference from the HEAD, but the push-to-checkout hook can be used to customize

           this. See githooks(5).

       receive.denyNonFastForwards

           If set to true, git-receive-pack will deny a ref update which is not a fast-forward.

           Use this to prevent such an update via a push, even if that push is forced. This Page 98/118



           configuration variable is set when initializing a shared repository.

       receive.hideRefs

           This variable is the same as transfer.hideRefs, but applies only to receive-pack (and

           so affects pushes, but not fetches). An attempt to update or delete a hidden ref by

           git push is rejected.

       receive.procReceiveRefs

           This is a multi-valued variable that defines reference prefixes to match the commands

           in receive-pack. Commands matching the prefixes will be executed by an external hook

           "proc-receive", instead of the internal execute_commands function. If this variable is

           not defined, the "proc-receive" hook will never be used, and all commands will be

           executed by the internal execute_commands function.

           For example, if this variable is set to "refs/for", pushing to reference such as

           "refs/for/master" will not create or update a reference named "refs/for/master", but

           may create or update a pull request directly by running the hook "proc-receive".

           Optional modifiers can be provided in the beginning of the value to filter commands

           for specific actions: create (a), modify (m), delete (d). A !  can be included in the

           modifiers to negate the reference prefix entry. E.g.:

               git config --system --add receive.procReceiveRefs ad:refs/heads

               git config --system --add receive.procReceiveRefs !:refs/heads

       receive.updateServerInfo

           If set to true, git-receive-pack will run git-update-server-info after receiving data

           from git-push and updating refs.

       receive.shallowUpdate

           If set to true, .git/shallow can be updated when new refs require new shallow roots.

           Otherwise those refs are rejected.

       remote.pushDefault

           The remote to push to by default. Overrides branch.<name>.remote for all branches, and

           is overridden by branch.<name>.pushRemote for specific branches.

       remote.<name>.url

           The URL of a remote repository. See git-fetch(1) or git-push(1).

       remote.<name>.pushurl

           The push URL of a remote repository. See git-push(1).

       remote.<name>.proxy Page 99/118



           For remotes that require curl (http, https and ftp), the URL to the proxy to use for

           that remote. Set to the empty string to disable proxying for that remote.

       remote.<name>.proxyAuthMethod

           For remotes that require curl (http, https and ftp), the method to use for

           authenticating against the proxy in use (probably set in remote.<name>.proxy). See

           http.proxyAuthMethod.

       remote.<name>.fetch

           The default set of "refspec" for git-fetch(1). See git-fetch(1).

       remote.<name>.push

           The default set of "refspec" for git-push(1). See git-push(1).

       remote.<name>.mirror

           If true, pushing to this remote will automatically behave as if the --mirror option

           was given on the command line.

       remote.<name>.skipDefaultUpdate

           If true, this remote will be skipped by default when updating using git-fetch(1) or

           the update subcommand of git-remote(1).

       remote.<name>.skipFetchAll

           If true, this remote will be skipped by default when updating using git-fetch(1) or

           the update subcommand of git-remote(1).

       remote.<name>.receivepack

           The default program to execute on the remote side when pushing. See option

           --receive-pack of git-push(1).

       remote.<name>.uploadpack

           The default program to execute on the remote side when fetching. See option

           --upload-pack of git-fetch-pack(1).

       remote.<name>.tagOpt

           Setting this value to --no-tags disables automatic tag following when fetching from

           remote <name>. Setting it to --tags will fetch every tag from remote <name>, even if

           they are not reachable from remote branch heads. Passing these flags directly to git-

           fetch(1) can override this setting. See options --tags and --no-tags of git-fetch(1).

       remote.<name>.vcs

           Setting this to a value <vcs> will cause Git to interact with the remote with the

           git-remote-<vcs> helper. Page 100/118



       remote.<name>.prune

           When set to true, fetching from this remote by default will also remove any

           remote-tracking references that no longer exist on the remote (as if the --prune

           option was given on the command line). Overrides fetch.prune settings, if any.

       remote.<name>.pruneTags

           When set to true, fetching from this remote by default will also remove any local tags

           that no longer exist on the remote if pruning is activated in general via

           remote.<name>.prune, fetch.prune or --prune. Overrides fetch.pruneTags settings, if

           any.

           See also remote.<name>.prune and the PRUNING section of git-fetch(1).

       remote.<name>.promisor

           When set to true, this remote will be used to fetch promisor objects.

       remote.<name>.partialclonefilter

           The filter that will be applied when fetching from this promisor remote.

       remotes.<group>

           The list of remotes which are fetched by "git remote update <group>". See git-

           remote(1).

       repack.useDeltaBaseOffset

           By default, git-repack(1) creates packs that use delta-base offset. If you need to

           share your repository with Git older than version 1.4.4, either directly or via a dumb

           protocol such as http, then you need to set this option to "false" and repack. Access

           from old Git versions over the native protocol are unaffected by this option.

       repack.packKeptObjects

           If set to true, makes git repack act as if --pack-kept-objects was passed. See git-

           repack(1) for details. Defaults to false normally, but true if a bitmap index is being

           written (either via --write-bitmap-index or repack.writeBitmaps).

       repack.useDeltaIslands

           If set to true, makes git repack act as if --delta-islands was passed. Defaults to

           false.

       repack.writeBitmaps

           When true, git will write a bitmap index when packing all objects to disk (e.g., when

           git repack -a is run). This index can speed up the "counting objects" phase of

           subsequent packs created for clones and fetches, at the cost of some disk space and Page 101/118



           extra time spent on the initial repack. This has no effect if multiple packfiles are

           created. Defaults to true on bare repos, false otherwise.

       rerere.autoUpdate

           When set to true, git-rerere updates the index with the resulting contents after it

           cleanly resolves conflicts using previously recorded resolution. Defaults to false.

       rerere.enabled

           Activate recording of resolved conflicts, so that identical conflict hunks can be

           resolved automatically, should they be encountered again. By default, git-rerere(1) is

           enabled if there is an rr-cache directory under the $GIT_DIR, e.g. if "rerere" was

           previously used in the repository.

       reset.quiet

           When set to true, git reset will default to the --quiet option.

       safe.directory

           These config entries specify Git-tracked directories that are considered safe even if

           they are owned by someone other than the current user. By default, Git will refuse to

           even parse a Git config of a repository owned by someone else, let alone run its

           hooks, and this config setting allows users to specify exceptions, e.g. for

           intentionally shared repositories (see the --shared option in git-init(1)).

           This is a multi-valued setting, i.e. you can add more than one directory via git

           config --add. To reset the list of safe directories (e.g. to override any such

           directories specified in the system config), add a safe.directory entry with an empty

           value.

           This config setting is only respected when specified in a system or global config, not

           when it is specified in a repository config or via the command line option -c

           safe.directory=<path>.

           The value of this setting is interpolated, i.e.  ~/<path> expands to a path relative

           to the home directory and %(prefix)/<path> expands to a path relative to Git?s

           (runtime) prefix.

           To completely opt-out of this security check, set safe.directory to the string *. This

           will allow all repositories to be treated as if their directory was listed in the

           safe.directory list. If safe.directory=* is set in system config and you want to

           re-enable this protection, then initialize your list with an empty value before

           listing the repositories that you deem safe. Page 102/118



           As explained, Git only allows you to access repositories owned by yourself, i.e. the

           user who is running Git, by default. When Git is running as root in a non Windows

           platform that provides sudo, however, git checks the SUDO_UID environment variable

           that sudo creates and will allow access to the uid recorded as its value in addition

           to the id from root. This is to make it easy to perform a common sequence during

           installation "make && sudo make install". A git process running under sudo runs as

           root but the sudo command exports the environment variable to record which id the

           original user has. If that is not what you would prefer and want git to only trust

           repositories that are owned by root instead, then you can remove the SUDO_UID variable

           from root?s environment before invoking git.

       sendemail.identity

           A configuration identity. When given, causes values in the sendemail.<identity>

           subsection to take precedence over values in the sendemail section. The default

           identity is the value of sendemail.identity.

       sendemail.smtpEncryption

           See git-send-email(1) for description. Note that this setting is not subject to the

           identity mechanism.

       sendemail.smtpsslcertpath

           Path to ca-certificates (either a directory or a single file). Set it to an empty

           string to disable certificate verification.

       sendemail.<identity>.*

           Identity-specific versions of the sendemail.*  parameters found below, taking

           precedence over those when this identity is selected, through either the command-line

           or sendemail.identity.

       sendemail.aliasesFile, sendemail.aliasFileType, sendemail.annotate, sendemail.bcc,

       sendemail.cc, sendemail.ccCmd, sendemail.chainReplyTo, sendemail.confirm,

       sendemail.envelopeSender, sendemail.from, sendemail.multiEdit, sendemail.signedoffbycc,

       sendemail.smtpPass, sendemail.suppresscc, sendemail.suppressFrom, sendemail.to,

       sendemail.tocmd, sendemail.smtpDomain, sendemail.smtpServer, sendemail.smtpServerPort,

       sendemail.smtpServerOption, sendemail.smtpUser, sendemail.thread,

       sendemail.transferEncoding, sendemail.validate, sendemail.xmailer

           See git-send-email(1) for description.

       sendemail.signedoffcc (deprecated) Page 103/118



           Deprecated alias for sendemail.signedoffbycc.

       sendemail.smtpBatchSize

           Number of messages to be sent per connection, after that a relogin will happen. If the

           value is 0 or undefined, send all messages in one connection. See also the

           --batch-size option of git-send-email(1).

       sendemail.smtpReloginDelay

           Seconds wait before reconnecting to smtp server. See also the --relogin-delay option

           of git-send-email(1).

       sendemail.forbidSendmailVariables

           To avoid common misconfiguration mistakes, git-send-email(1) will abort with a warning

           if any configuration options for "sendmail" exist. Set this variable to bypass the

           check.

       sequence.editor

           Text editor used by git rebase -i for editing the rebase instruction file. The value

           is meant to be interpreted by the shell when it is used. It can be overridden by the

           GIT_SEQUENCE_EDITOR environment variable. When not configured the default commit

           message editor is used instead.

       showBranch.default

           The default set of branches for git-show-branch(1). See git-show-branch(1).

       splitIndex.maxPercentChange

           When the split index feature is used, this specifies the percent of entries the split

           index can contain compared to the total number of entries in both the split index and

           the shared index before a new shared index is written. The value should be between 0

           and 100. If the value is 0 then a new shared index is always written, if it is 100 a

           new shared index is never written. By default the value is 20, so a new shared index

           is written if the number of entries in the split index would be greater than 20

           percent of the total number of entries. See git-update-index(1).

       splitIndex.sharedIndexExpire

           When the split index feature is used, shared index files that were not modified since

           the time this variable specifies will be removed when a new shared index file is

           created. The value "now" expires all entries immediately, and "never" suppresses

           expiration altogether. The default value is "2.weeks.ago". Note that a shared index

           file is considered modified (for the purpose of expiration) each time a new Page 104/118



           split-index file is either created based on it or read from it. See git-update-

           index(1).

       ssh.variant

           By default, Git determines the command line arguments to use based on the basename of

           the configured SSH command (configured using the environment variable GIT_SSH or

           GIT_SSH_COMMAND or the config setting core.sshCommand). If the basename is

           unrecognized, Git will attempt to detect support of OpenSSH options by first invoking

           the configured SSH command with the -G (print configuration) option and will

           subsequently use OpenSSH options (if that is successful) or no options besides the

           host and remote command (if it fails).

           The config variable ssh.variant can be set to override this detection. Valid values

           are ssh (to use OpenSSH options), plink, putty, tortoiseplink, simple (no options

           except the host and remote command). The default auto-detection can be explicitly

           requested using the value auto. Any other value is treated as ssh. This setting can

           also be overridden via the environment variable GIT_SSH_VARIANT.

           The current command-line parameters used for each variant are as follows:

           ?   ssh - [-p port] [-4] [-6] [-o option] [username@]host command

           ?   simple - [username@]host command

           ?   plink or putty - [-P port] [-4] [-6] [username@]host command

           ?   tortoiseplink - [-P port] [-4] [-6] -batch [username@]host command

           Except for the simple variant, command-line parameters are likely to change as git

           gains new features.

       status.relativePaths

           By default, git-status(1) shows paths relative to the current directory. Setting this

           variable to false shows paths relative to the repository root (this was the default

           for Git prior to v1.5.4).

       status.short

           Set to true to enable --short by default in git-status(1). The option --no-short takes

           precedence over this variable.

       status.branch

           Set to true to enable --branch by default in git-status(1). The option --no-branch

           takes precedence over this variable.

       status.aheadBehind Page 105/118



           Set to true to enable --ahead-behind and false to enable --no-ahead-behind by default

           in git-status(1) for non-porcelain status formats. Defaults to true.

       status.displayCommentPrefix

           If set to true, git-status(1) will insert a comment prefix before each output line

           (starting with core.commentChar, i.e.  # by default). This was the behavior of git-

           status(1) in Git 1.8.4 and previous. Defaults to false.

       status.renameLimit

           The number of files to consider when performing rename detection in git-status(1) and

           git-commit(1). Defaults to the value of diff.renameLimit.

       status.renames

           Whether and how Git detects renames in git-status(1) and git-commit(1) . If set to

           "false", rename detection is disabled. If set to "true", basic rename detection is

           enabled. If set to "copies" or "copy", Git will detect copies, as well. Defaults to

           the value of diff.renames.

       status.showStash

           If set to true, git-status(1) will display the number of entries currently stashed

           away. Defaults to false.

       status.showUntrackedFiles

           By default, git-status(1) and git-commit(1) show files which are not currently tracked

           by Git. Directories which contain only untracked files, are shown with the directory

           name only. Showing untracked files means that Git needs to lstat() all the files in

           the whole repository, which might be slow on some systems. So, this variable controls

           how the commands displays the untracked files. Possible values are:

           ?   no - Show no untracked files.

           ?   normal - Show untracked files and directories.

           ?   all - Show also individual files in untracked directories.

           If this variable is not specified, it defaults to normal. This variable can be

           overridden with the -u|--untracked-files option of git-status(1) and git-commit(1).

       status.submoduleSummary

           Defaults to false. If this is set to a non zero number or true (identical to -1 or an

           unlimited number), the submodule summary will be enabled and a summary of commits for

           modified submodules will be shown (see --summary-limit option of git-submodule(1)).

           Please note that the summary output command will be suppressed for all submodules when Page 106/118



           diff.ignoreSubmodules is set to all or only for those submodules where

           submodule.<name>.ignore=all. The only exception to that rule is that status and commit

           will show staged submodule changes. To also view the summary for ignored submodules

           you can either use the --ignore-submodules=dirty command-line option or the git

           submodule summary command, which shows a similar output but does not honor these

           settings.

       stash.useBuiltin

           Unused configuration variable. Used in Git versions 2.22 to 2.26 as an escape hatch to

           enable the legacy shellscript implementation of stash. Now the built-in rewrite of it

           in C is always used. Setting this will emit a warning, to alert any remaining users

           that setting this now does nothing.

       stash.showIncludeUntracked

           If this is set to true, the git stash show command will show the untracked files of a

           stash entry. Defaults to false. See description of show command in git-stash(1).

       stash.showPatch

           If this is set to true, the git stash show command without an option will show the

           stash entry in patch form. Defaults to false. See description of show command in git-

           stash(1).

       stash.showStat

           If this is set to true, the git stash show command without an option will show

           diffstat of the stash entry. Defaults to true. See description of show command in git-

           stash(1).

       submodule.<name>.url

           The URL for a submodule. This variable is copied from the .gitmodules file to the git

           config via git submodule init. The user can change the configured URL before obtaining

           the submodule via git submodule update. If neither submodule.<name>.active or

           submodule.active are set, the presence of this variable is used as a fallback to

           indicate whether the submodule is of interest to git commands. See git-submodule(1)

           and gitmodules(5) for details.

       submodule.<name>.update

           The method by which a submodule is updated by git submodule update, which is the only

           affected command, others such as git checkout --recurse-submodules are unaffected. It

           exists for historical reasons, when git submodule was the only command to interact Page 107/118



           with submodules; settings like submodule.active and pull.rebase are more specific. It

           is populated by git submodule init from the gitmodules(5) file. See description of

           update command in git-submodule(1).

       submodule.<name>.branch

           The remote branch name for a submodule, used by git submodule update --remote. Set

           this option to override the value found in the .gitmodules file. See git-submodule(1)

           and gitmodules(5) for details.

       submodule.<name>.fetchRecurseSubmodules

           This option can be used to control recursive fetching of this submodule. It can be

           overridden by using the --[no-]recurse-submodules command-line option to "git fetch"

           and "git pull". This setting will override that from in the gitmodules(5) file.

       submodule.<name>.ignore

           Defines under what circumstances "git status" and the diff family show a submodule as

           modified. When set to "all", it will never be considered modified (but it will

           nonetheless show up in the output of status and commit when it has been staged),

           "dirty" will ignore all changes to the submodules work tree and takes only differences

           between the HEAD of the submodule and the commit recorded in the superproject into

           account. "untracked" will additionally let submodules with modified tracked files in

           their work tree show up. Using "none" (the default when this option is not set) also

           shows submodules that have untracked files in their work tree as changed. This setting

           overrides any setting made in .gitmodules for this submodule, both settings can be

           overridden on the command line by using the "--ignore-submodules" option. The git

           submodule commands are not affected by this setting.

       submodule.<name>.active

           Boolean value indicating if the submodule is of interest to git commands. This config

           option takes precedence over the submodule.active config option. See gitsubmodules(7)

           for details.

       submodule.active

           A repeated field which contains a pathspec used to match against a submodule?s path to

           determine if the submodule is of interest to git commands. See gitsubmodules(7) for

           details.

       submodule.recurse

           A boolean indicating if commands should enable the --recurse-submodules option by Page 108/118



           default. Applies to all commands that support this option (checkout, fetch, grep,

           pull, push, read-tree, reset, restore and switch) except clone and ls-files. Defaults

           to false. When set to true, it can be deactivated via the --no-recurse-submodules

           option. Note that some Git commands lacking this option may call some of the above

           commands affected by submodule.recurse; for instance git remote update will call git

           fetch but does not have a --no-recurse-submodules option. For these commands a

           workaround is to temporarily change the configuration value by using git -c

           submodule.recurse=0.

       submodule.fetchJobs

           Specifies how many submodules are fetched/cloned at the same time. A positive integer

           allows up to that number of submodules fetched in parallel. A value of 0 will give

           some reasonable default. If unset, it defaults to 1.

       submodule.alternateLocation

           Specifies how the submodules obtain alternates when submodules are cloned. Possible

           values are no, superproject. By default no is assumed, which doesn?t add references.

           When the value is set to superproject the submodule to be cloned computes its

           alternates location relative to the superprojects alternate.

       submodule.alternateErrorStrategy

           Specifies how to treat errors with the alternates for a submodule as computed via

           submodule.alternateLocation. Possible values are ignore, info, die. Default is die.

           Note that if set to ignore or info, and if there is an error with the computed

           alternate, the clone proceeds as if no alternate was specified.

       tag.forceSignAnnotated

           A boolean to specify whether annotated tags created should be GPG signed. If

           --annotate is specified on the command line, it takes precedence over this option.

       tag.sort

           This variable controls the sort ordering of tags when displayed by git-tag(1). Without

           the "--sort=<value>" option provided, the value of this variable will be used as the

           default.

       tag.gpgSign

           A boolean to specify whether all tags should be GPG signed. Use of this option when

           running in an automated script can result in a large number of tags being signed. It

           is therefore convenient to use an agent to avoid typing your gpg passphrase several Page 109/118



           times. Note that this option doesn?t affect tag signing behavior enabled by "-u

           <keyid>" or "--local-user=<keyid>" options.

       tar.umask

           This variable can be used to restrict the permission bits of tar archive entries. The

           default is 0002, which turns off the world write bit. The special value "user"

           indicates that the archiving user?s umask will be used instead. See umask(2) and git-

           archive(1).

       Trace2 config settings are only read from the system and global config files; repository

       local and worktree config files and -c command line arguments are not respected.

       trace2.normalTarget

           This variable controls the normal target destination. It may be overridden by the

           GIT_TRACE2 environment variable. The following table shows possible values.

       trace2.perfTarget

           This variable controls the performance target destination. It may be overridden by the

           GIT_TRACE2_PERF environment variable. The following table shows possible values.

       trace2.eventTarget

           This variable controls the event target destination. It may be overridden by the

           GIT_TRACE2_EVENT environment variable. The following table shows possible values.

           ?   0 or false - Disables the target.

           ?   1 or true - Writes to STDERR.

           ?   [2-9] - Writes to the already opened file descriptor.

           ?   <absolute-pathname> - Writes to the file in append mode. If the target already

               exists and is a directory, the traces will be written to files (one per process)

               underneath the given directory.

           ?   af_unix:[<socket_type>:]<absolute-pathname> - Write to a Unix DomainSocket (on

               platforms that support them). Socket type can be either stream or dgram; if

               omitted Git will try both.

       trace2.normalBrief

           Boolean. When true time, filename, and line fields are omitted from normal output. May

           be overridden by the GIT_TRACE2_BRIEF environment variable. Defaults to false.

       trace2.perfBrief

           Boolean. When true time, filename, and line fields are omitted from PERF output. May

           be overridden by the GIT_TRACE2_PERF_BRIEF environment variable. Defaults to false. Page 110/118



       trace2.eventBrief

           Boolean. When true time, filename, and line fields are omitted from event output. May

           be overridden by the GIT_TRACE2_EVENT_BRIEF environment variable. Defaults to false.

       trace2.eventNesting

           Integer. Specifies desired depth of nested regions in the event output. Regions deeper

           than this value will be omitted. May be overridden by the GIT_TRACE2_EVENT_NESTING

           environment variable. Defaults to 2.

       trace2.configParams

           A comma-separated list of patterns of "important" config settings that should be

           recorded in the trace2 output. For example, core.*,remote.*.url would cause the trace2

           output to contain events listing each configured remote. May be overridden by the

           GIT_TRACE2_CONFIG_PARAMS environment variable. Unset by default.

       trace2.envVars

           A comma-separated list of "important" environment variables that should be recorded in

           the trace2 output. For example, GIT_HTTP_USER_AGENT,GIT_CONFIG would cause the trace2

           output to contain events listing the overrides for HTTP user agent and the location of

           the Git configuration file (assuming any are set). May be overridden by the

           GIT_TRACE2_ENV_VARS environment variable. Unset by default.

       trace2.destinationDebug

           Boolean. When true Git will print error messages when a trace target destination

           cannot be opened for writing. By default, these errors are suppressed and tracing is

           silently disabled. May be overridden by the GIT_TRACE2_DST_DEBUG environment variable.

       trace2.maxFiles

           Integer. When writing trace files to a target directory, do not write additional

           traces if we would exceed this many files. Instead, write a sentinel file that will

           block further tracing to this directory. Defaults to 0, which disables this check.

       transfer.fsckObjects

           When fetch.fsckObjects or receive.fsckObjects are not set, the value of this variable

           is used instead. Defaults to false.

           When set, the fetch or receive will abort in the case of a malformed object or a link

           to a nonexistent object. In addition, various other issues are checked for, including

           legacy issues (see fsck.<msg-id>), and potential security issues like the existence of

           a .GIT directory or a malicious .gitmodules file (see the release notes for v2.2.1 and Page 111/118



           v2.17.1 for details). Other sanity and security checks may be added in future

           releases.

           On the receiving side, failing fsckObjects will make those objects unreachable, see

           "QUARANTINE ENVIRONMENT" in git-receive-pack(1). On the fetch side, malformed objects

           will instead be left unreferenced in the repository.

           Due to the non-quarantine nature of the fetch.fsckObjects implementation it cannot be

           relied upon to leave the object store clean like receive.fsckObjects can.

           As objects are unpacked they?re written to the object store, so there can be cases

           where malicious objects get introduced even though the "fetch" failed, only to have a

           subsequent "fetch" succeed because only new incoming objects are checked, not those

           that have already been written to the object store. That difference in behavior should

           not be relied upon. In the future, such objects may be quarantined for "fetch" as

           well.

           For now, the paranoid need to find some way to emulate the quarantine environment if

           they?d like the same protection as "push". E.g. in the case of an internal mirror do

           the mirroring in two steps, one to fetch the untrusted objects, and then do a second

           "push" (which will use the quarantine) to another internal repo, and have internal

           clients consume this pushed-to repository, or embargo internal fetches and only allow

           them once a full "fsck" has run (and no new fetches have happened in the meantime).

       transfer.hideRefs

           String(s) receive-pack and upload-pack use to decide which refs to omit from their

           initial advertisements. Use more than one definition to specify multiple prefix

           strings. A ref that is under the hierarchies listed in the value of this variable is

           excluded, and is hidden when responding to git push or git fetch. See receive.hideRefs

           and uploadpack.hideRefs for program-specific versions of this config.

           You may also include a !  in front of the ref name to negate the entry, explicitly

           exposing it, even if an earlier entry marked it as hidden. If you have multiple

           hideRefs values, later entries override earlier ones (and entries in more-specific

           config files override less-specific ones).

           If a namespace is in use, the namespace prefix is stripped from each reference before

           it is matched against transfer.hiderefs patterns. In order to match refs before

           stripping, add a ^ in front of the ref name. If you combine !  and ^, !  must be

           specified first. Page 112/118



           For example, if refs/heads/master is specified in transfer.hideRefs and the current

           namespace is foo, then refs/namespaces/foo/refs/heads/master is omitted from the

           advertisements. If uploadpack.allowRefInWant is set, upload-pack will treat want-ref

           refs/heads/master in a protocol v2 fetch command as if

           refs/namespaces/foo/refs/heads/master did not exist.  receive-pack, on the other hand,

           will still advertise the object id the ref is pointing to without mentioning its name

           (a so-called ".have" line).

           Even if you hide refs, a client may still be able to steal the target objects via the

           techniques described in the "SECURITY" section of the gitnamespaces(7) man page; it?s

           best to keep private data in a separate repository.

       transfer.unpackLimit

           When fetch.unpackLimit or receive.unpackLimit are not set, the value of this variable

           is used instead. The default value is 100.

       transfer.advertiseSID

           Boolean. When true, client and server processes will advertise their unique session

           IDs to their remote counterpart. Defaults to false.

       uploadarchive.allowUnreachable

           If true, allow clients to use git archive --remote to request any tree, whether

           reachable from the ref tips or not. See the discussion in the "SECURITY" section of

           git-upload-archive(1) for more details. Defaults to false.

       uploadpack.hideRefs

           This variable is the same as transfer.hideRefs, but applies only to upload-pack (and

           so affects only fetches, not pushes). An attempt to fetch a hidden ref by git fetch

           will fail. See also uploadpack.allowTipSHA1InWant.

       uploadpack.allowTipSHA1InWant

           When uploadpack.hideRefs is in effect, allow upload-pack to accept a fetch request

           that asks for an object at the tip of a hidden ref (by default, such a request is

           rejected). See also uploadpack.hideRefs. Even if this is false, a client may be able

           to steal objects via the techniques described in the "SECURITY" section of the

           gitnamespaces(7) man page; it?s best to keep private data in a separate repository.

       uploadpack.allowReachableSHA1InWant

           Allow upload-pack to accept a fetch request that asks for an object that is reachable

           from any ref tip. However, note that calculating object reachability is Page 113/118



           computationally expensive. Defaults to false. Even if this is false, a client may be

           able to steal objects via the techniques described in the "SECURITY" section of the

           gitnamespaces(7) man page; it?s best to keep private data in a separate repository.

       uploadpack.allowAnySHA1InWant

           Allow upload-pack to accept a fetch request that asks for any object at all. Defaults

           to false.

       uploadpack.keepAlive

           When upload-pack has started pack-objects, there may be a quiet period while

           pack-objects prepares the pack. Normally it would output progress information, but if

           --quiet was used for the fetch, pack-objects will output nothing at all until the pack

           data begins. Some clients and networks may consider the server to be hung and give up.

           Setting this option instructs upload-pack to send an empty keepalive packet every

           uploadpack.keepAlive seconds. Setting this option to 0 disables keepalive packets

           entirely. The default is 5 seconds.

       uploadpack.packObjectsHook

           If this option is set, when upload-pack would run git pack-objects to create a

           packfile for a client, it will run this shell command instead. The pack-objects

           command and arguments it would have run (including the git pack-objects at the

           beginning) are appended to the shell command. The stdin and stdout of the hook are

           treated as if pack-objects itself was run. I.e., upload-pack will feed input intended

           for pack-objects to the hook, and expects a completed packfile on stdout.

           Note that this configuration variable is ignored if it is seen in the repository-level

           config (this is a safety measure against fetching from untrusted repositories).

       uploadpack.allowFilter

           If this option is set, upload-pack will support partial clone and partial fetch object

           filtering.

       uploadpackfilter.allow

           Provides a default value for unspecified object filters (see: the below configuration

           variable). If set to true, this will also enable all filters which get added in the

           future. Defaults to true.

       uploadpackfilter.<filter>.allow

           Explicitly allow or ban the object filter corresponding to <filter>, where <filter>

           may be one of: blob:none, blob:limit, object:type, tree, sparse:oid, or combine. If Page 114/118



           using combined filters, both combine and all of the nested filter kinds must be

           allowed. Defaults to uploadpackfilter.allow.

       uploadpackfilter.tree.maxDepth

           Only allow --filter=tree:<n> when <n> is no more than the value of

           uploadpackfilter.tree.maxDepth. If set, this also implies

           uploadpackfilter.tree.allow=true, unless this configuration variable had already been

           set. Has no effect if unset.

       uploadpack.allowRefInWant

           If this option is set, upload-pack will support the ref-in-want feature of the

           protocol version 2 fetch command. This feature is intended for the benefit of

           load-balanced servers which may not have the same view of what OIDs their refs point

           to due to replication delay.

       url.<base>.insteadOf

           Any URL that starts with this value will be rewritten to start, instead, with <base>.

           In cases where some site serves a large number of repositories, and serves them with

           multiple access methods, and some users need to use different access methods, this

           feature allows people to specify any of the equivalent URLs and have Git automatically

           rewrite the URL to the best alternative for the particular user, even for a

           never-before-seen repository on the site. When more than one insteadOf strings match a

           given URL, the longest match is used.

           Note that any protocol restrictions will be applied to the rewritten URL. If the

           rewrite changes the URL to use a custom protocol or remote helper, you may need to

           adjust the protocol.*.allow config to permit the request. In particular, protocols you

           expect to use for submodules must be set to always rather than the default of user.

           See the description of protocol.allow above.

       url.<base>.pushInsteadOf

           Any URL that starts with this value will not be pushed to; instead, it will be

           rewritten to start with <base>, and the resulting URL will be pushed to. In cases

           where some site serves a large number of repositories, and serves them with multiple

           access methods, some of which do not allow push, this feature allows people to specify

           a pull-only URL and have Git automatically use an appropriate URL to push, even for a

           never-before-seen repository on the site. When more than one pushInsteadOf strings

           match a given URL, the longest match is used. If a remote has an explicit pushurl, Git Page 115/118



           will ignore this setting for that remote.

       user.name, user.email, author.name, author.email, committer.name, committer.email

           The user.name and user.email variables determine what ends up in the author and

           committer field of commit objects. If you need the author or committer to be

           different, the author.name, author.email, committer.name or committer.email variables

           can be set. Also, all of these can be overridden by the GIT_AUTHOR_NAME,

           GIT_AUTHOR_EMAIL, GIT_COMMITTER_NAME, GIT_COMMITTER_EMAIL and EMAIL environment

           variables.

           Note that the name forms of these variables conventionally refer to some form of a

           personal name. See git-commit(1) and the environment variables section of git(1) for

           more information on these settings and the credential.username option if you?re

           looking for authentication credentials instead.

       user.useConfigOnly

           Instruct Git to avoid trying to guess defaults for user.email and user.name, and

           instead retrieve the values only from the configuration. For example, if you have

           multiple email addresses and would like to use a different one for each repository,

           then with this configuration option set to true in the global config along with a

           name, Git will prompt you to set up an email before making new commits in a newly

           cloned repository. Defaults to false.

       user.signingKey

           If git-tag(1) or git-commit(1) is not selecting the key you want it to automatically

           when creating a signed tag or commit, you can override the default selection with this

           variable. This option is passed unchanged to gpg?s --local-user parameter, so you may

           specify a key using any method that gpg supports. If gpg.format is set to "ssh" this

           can contain the literal ssh public key (e.g.: "ssh-rsa XXXXXX identifier") or a file

           which contains it and corresponds to the private key used for signing. The private key

           needs to be available via ssh-agent. Alternatively it can be set to a file containing

           a private key directly. If not set git will call gpg.ssh.defaultKeyCommand (e.g.:

           "ssh-add -L") and try to use the first key available.

       versionsort.prereleaseSuffix (deprecated)

           Deprecated alias for versionsort.suffix. Ignored if versionsort.suffix is set.

       versionsort.suffix

           Even when version sort is used in git-tag(1), tagnames with the same base version but Page 116/118



           different suffixes are still sorted lexicographically, resulting e.g. in prerelease

           tags appearing after the main release (e.g. "1.0-rc1" after "1.0"). This variable can

           be specified to determine the sorting order of tags with different suffixes.

           By specifying a single suffix in this variable, any tagname containing that suffix

           will appear before the corresponding main release. E.g. if the variable is set to

           "-rc", then all "1.0-rcX" tags will appear before "1.0". If specified multiple times,

           once per suffix, then the order of suffixes in the configuration will determine the

           sorting order of tagnames with those suffixes. E.g. if "-pre" appears before "-rc" in

           the configuration, then all "1.0-preX" tags will be listed before any "1.0-rcX" tags.

           The placement of the main release tag relative to tags with various suffixes can be

           determined by specifying the empty suffix among those other suffixes. E.g. if the

           suffixes "-rc", "", "-ck" and "-bfs" appear in the configuration in this order, then

           all "v4.8-rcX" tags are listed first, followed by "v4.8", then "v4.8-ckX" and finally

           "v4.8-bfsX".

           If more than one suffixes match the same tagname, then that tagname will be sorted

           according to the suffix which starts at the earliest position in the tagname. If more

           than one different matching suffixes start at that earliest position, then that

           tagname will be sorted according to the longest of those suffixes. The sorting order

           between different suffixes is undefined if they are in multiple config files.

       web.browser

           Specify a web browser that may be used by some commands. Currently only git-

           instaweb(1) and git-help(1) may use it.

       worktree.guessRemote

           If no branch is specified and neither -b nor -B nor --detach is used, then git

           worktree add defaults to creating a new branch from HEAD. If worktree.guessRemote is

           set to true, worktree add tries to find a remote-tracking branch whose name uniquely

           matches the new branch name. If such a branch exists, it is checked out and set as

           "upstream" for the new branch. If no such match can be found, it falls back to

           creating a new branch from the current HEAD.

BUGS

       When using the deprecated [section.subsection] syntax, changing a value will result in

       adding a multi-line key instead of a change, if the subsection is given with at least one

       uppercase character. For example when the config looks like Page 117/118



             [section.subsection]

               key = value1

       and running git config section.Subsection.key value2 will result in

             [section.subsection]

               key = value1

               key = value2

GIT

       Part of the git(1) suite

NOTES

        1. user1@example.com

           mailto:user1@example.com

        2. user2@example.com

           mailto:user2@example.com

        3. Documentation/technical/pack-format.txt

           file:///usr/share/doc/git/html/../technical/pack-format.html

        4. wire protocol version 2

           file:///usr/share/doc/git/html/technical/protocol-v2.html

Git 2.34.1                                  07/07/2023                              GIT-CONFIG(1)

Page 118/118


